Course at a Glance

Plan

The Course at a Glance provides a useful visual organization of the AP Physics 2 curricular components, including the following:

- Sequence of units, along with approximate weighting and suggested pacing. Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and science practices across units.

Teach

SCIENCE PRACTICES

Science practices spiral throughout the course.

- 1 Modeling
- 4 Experimental Methods
- 2 Mathematical Routines
- 5 Data Analysis
- 3 Scientific Questioning
- 6 Argumentation 7 Making Connections
- + Indicates 3 or more science pratices for a given topic. The individual topic page will show all the science practices.

BIG IDEAS

Big ideas spiral across topics and units.

- sys 1-Systems
- con 5-Conservation
- FLD 2-Fields
- WAV 6-Waves
- INT 3-Force Interactions
- PRO 7-Probability
- CHA 4-Change

Assess

Assign the Personal Progress Checks—either as homework or in class—for each unit. Each Personal Progress Check contains formative multiple-choice and free-response questions. The feedback from these checks shows students the areas where they need to focus.

Fluids

~14-17 Class Periods

10-12% AP Exam Weighting

- SYS
- 1.1 Fluid Systems
- 1.2 Density
- INT
- 1.3 Fluids: Pressure and Forces
- INT +
- 1.4 Fluids and Free-Body **Diagrams**
- INT
- 1.5 Buoyancy
- CON
- 1.6 Conservation of **Energy in Fluid Flow**
- 1.7 Conservation of Mass Flow Rate in Fluids

Thermodynamics

~15-20 Class Periods

12-18% AP Exam Weighting

- SYS
- 2.1 Thermodynamic **Systems**
- PRO +
- 2.2 Pressure, Thermal Equilibrium, and the **Ideal Gas Law**
- INT +
- 2.3 Thermodynamics and **Forces**
- INT +
- 2.4 Thermodynamics and Free-Body Diagrams
- INT
- 2.5 Thermodynamics and **Contact Forces**
- 2.6 Heat and Energy Transfer
- CON +
- 2.7 Internal Energy and **Energy Transfer**
- CON +
- 2.8 Thermodynamics and **Elastic Collisions:** Conservation of **Momentum**
- CON
- 2.9 Thermodynamics and **Inelastic Collisions:** Conservation of Momentum
- 2.10 Thermal Conductivity
- 2.11 Probability, Thermal Equilibrium, and **Entropy**

Personal Progress Check 1

Multiple-choice: ~40 questions Free-response: 2 questions

- Experimental Design
- Paragraph Argument Short Answer

Personal Progress Check 2

Multiple-choice: ~60 questions Free-response: 2 questions

- Quantitative/Qualitative Translation
- Short Answer

Electric Force. Field, and **Potential**

~23-25 Class Periods

18-22% AP Exam Weighting

- 3.1 Electric Systems
- 3.2 Electric Charge
- CON
- 3.3 Conservation of **Electric Charge**
- CHA
- 3.4 Charge Distribution— Friction, Conduction, and Induction
- SYS
 - 3.5 Electric Permittivity
- INT +
- 3.6 Introduction to **Electric Forces**
- INT +
- 3.7 Electric Forces and **Free-Body Diagrams**
- INT +
- 3.8 Describing **Electric Force**
- INT
- 3.9 Gravitational and **Electromagnetic Forces**
- **5LD** 3.10 Vector and Scalar
 - **Fields**
- FLD +
- 3.11 Electric Charges and **Fields**
- FLD

+

- 3.12 Isolines and **Electric Fields**
- CON +
- 3.13 Conservation of **Electric Energy**

Personal Progress Check 3

Multiple-choice: ~75 questions Free-response: 2 questions

- Experimental Design
- Paragraph Argument Short Answer

Electric Circuits

~14-16 Class

10-14% AP Exam Weighting

- SYS
- 4.1 Definition and Conservation of **Electric Charge**
- SYS
- 4.2 Resistivity and Resistance
- 4.3 Resistance and Capacitance
- CON +
- 4.4 Kirchhoff's Loop Rule
- CON +
- 4.5 Kirchhoff's Junction Rule and the **Conservation of Electric Charge**

Magnetism and **Electromagnetic** Induction

~13-15 Class Periods

10-12% AP Exam Weighting

- SYS
- 5.1 Magnetic Systems
- SYS **5.2** Magnetic Permeability and Magnetic Dipole
- FLD
- 5.3 Vector and Scalar Fields
- FLD +
- 5.4 Monopole and Dipole Fields

Moment

- 5.5 Magnetic Fields and Forces
- INT
- 5.6 Magnetic Forces
- +
- 5.7 Forces Review
- INT +
- CHA 5.8 Magnetic Flux
- +

Personal Progress Check 5

Multiple-choice: ~35 questions Free-response: 2 questions

- Experimental Design
- Paragraph Argument Short Answer

Personal Progress Check 4

Quantitative/Qualitative Translation

Multiple-choice: ~40 questions

Free-response: 2 questions

~15-18 Class Periods

12-14% AP Exam Weighting

6.1 Waves

6.2 Electromagnetic Waves

WAV

6.3 Periodic Waves

6.4 Refraction, Reflection, and Absorption

6.5 Images from Lenses and Mirrors

6.6 Interference and Diffraction

Quantum, Atomic, and Nuclear Physics

~13-15 Class Periods

10-12% AP Exam Weighting

7.1 Systems and Fundamental Forces

7

7.2 Radioactive Decay

7.3 Energy in Modern
Physics (Energy in
Radioactive Decay and $E = mc^2$)

7.4 Mass-Energy Equivalence

7.5 Properties of Waves and Particles

7.6 Photoelectric Effect

7.7 Wave Functions and Probability

Personal Progress Check 6

Multiple-choice: ~50 questions Free-response: 2 questions

- Experimental Design
- Short Answer

Personal Progress Check 7

Multiple-choice: ~55 questions Free-response: 2 questions

- Quantitative/Qualitative Translation
- Paragraph Argument Short Answer