AP Physics C: Mechanics
 Scoring Guidelines Set 2

Scoring note: Examples of appropriate labels for the force due to gravity include: F_{G}, $F_{\mathrm{g}}, F_{\text {grav }}, W, m g, M g$, "grav force," "F Earth on block," "F on block by Earth,"
$F_{\text {Earth on block }}, F_{\mathrm{E}, \text { Block }}, F_{\text {Block,E }}$. The labels G or g are not appropriate labels for the force due to gravity. F_{n}, F_{N}, N, "normal force," "ground force," or similar labels may be used for the normal force.

(c)	For correctly evaluating Newton's second law equation for block 1: $T-f=m_{1} a$	1 point
	For correctly evaluating Newton's second law equation for block 2: $m_{2} g-T=m_{2} a$ Combining the two equations $m_{2} g-f=\left(m_{1}+m_{2}\right) a \therefore f=m_{2} g-\left(m_{1}+m_{2}\right) a$ Scoring note: Both points are earned for a single correct Newton's second law equation for the two-block system.	1 point
	For correctly substituting for kinetic friction into above equation $\begin{aligned} & f=\mu_{k} F_{N}=\mu_{k} m_{1} g=m_{2} g-\left(m_{1}+m_{2}\right) a \therefore \mu_{k}=\frac{m_{2} g-\left(m_{1}+m_{2}\right) a}{m_{1} g} \\ & \mu_{k}=\frac{(0.20 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-(0.44 \mathrm{~kg}+0.20 \mathrm{~kg})\left(2.3 \mathrm{~m} / \mathrm{s}^{2}\right)}{(0.44 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.11 \end{aligned}$	1 point
	Total for part (c)	3 points
(d)	For selecting "Yes" and attempting a relevant justification	1 point
	For a correct justification	1 point
	Example response for part (d) If the track is not level, the angle of the track must be incorporated into the equation for acceleration, and this could account for the larger coefficient of kinetic friction.	

ii. For calculating slope using two points from the best-fit line
slope $=\frac{\Delta y}{\Delta x}=\frac{(6-2)\left(\mathrm{m} / \mathrm{s}^{2}\right)}{(0.45-0.15)(\mathrm{kg})}=13.3 \mathrm{~m} / \mathrm{kg} \cdot \mathrm{s}^{2}$
For correctly using an expression that relates the slope to the acceleration due to gravity
From $y=m x+b$
$a=($ slope $) m_{2}+(y$-intercept $)$
$a=\frac{m_{2} g}{\left(m_{1}+m_{2}\right)} \therefore$ slope $=\frac{g}{\left(m_{1}+m_{2}\right)}$
$g=$ slope $\times\left(m_{1}+m_{2}\right)=\left(13.3 \mathrm{~m} / \mathrm{kg} \cdot \mathrm{s}^{2}\right)(0.44 \mathrm{~kg}+0.20 \mathrm{~kg})=8.5 \mathrm{~m} / \mathrm{s}^{2}$

		Total for part (e)	$\mathbf{3}$ points
(f)	For a correct justification	$\mathbf{1}$ point	
	Example response for part (f)		
	The acceleration would be greater because there would be a component of the		
	gravitational force on block 1 along the surface, which would be in the same direction as the tension force.		

Question 2: Free-Response Question

(a) For integrating using the correct limits or constant of integration

1 point
$I=\int_{r=0}^{r=2 L} \lambda r^{2} d r=\lambda\left[\frac{r^{3}}{3}\right]_{r=0}^{r=2 L}=\frac{\lambda}{3}\left((2 L)^{3}-0\right)$
For correctly relating λ to M and L
1 point

$$
\lambda=\frac{m}{\ell}=\frac{M}{2 L} \therefore I=\left(\frac{1}{3}\right)\left(\frac{M}{2 L}\right)\left(8 L^{3}\right)=\frac{4}{3} M L^{2}
$$

Total for part (a) 2 points

(b) i. For correctly substituting into an equation for the center of mass of an object in the horizontal direction

$$
X_{C M}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}=\frac{\left[\left(\frac{M}{2}\right)\left(\frac{L}{2}\right)+\left(\frac{M}{2}\right)(L)\right]}{\left(\frac{M}{2}+\frac{M}{2}\right)}=\frac{\left(\frac{M L}{4}+\frac{M L}{2}\right)}{M}=\frac{3}{4} L
$$

ii. For correctly substituting into an equation for the center of mass of an object in the vertical $\mathbf{1}$ point direction

$$
Y_{C M}=\frac{\sum m_{i} y_{i}}{\sum m_{i}}=\frac{\left[\left(\frac{M}{2}\right)(L)+\left(\frac{M}{2}\right)\left(\frac{L}{2}\right)\right]}{\left(\frac{M}{2}+\frac{M}{2}\right)}=\frac{\left(\frac{M L}{2}+\frac{M L}{4}\right)}{M}=\frac{3}{4} L
$$

(c)

For selecting "Less than" and attempting a relevant justification	$\mathbf{1}$ point
For a correct justification	$\mathbf{1}$ point

Example response for part (c)

Because object B has more of its mass closer to the pivot than object A, the rotational inertia of object B must be less than that of object A.

Total for part (c) 2 points

(d)	For an acceleration graph that is concave down and begins horizontally	$\mathbf{1}$ point
For an angular speed graph that is concave down and ends horizontally	$\mathbf{1}$ point	
For consistency between the angular acceleration and angular speed graphs	$\mathbf{1}$ point	

Example responses for part (d)

	Total for part (d)	3 points
(e)	For selecting "Decreasing" and attempting a relevant justification	1 point
	For a justification that indicates the lever arm for the torque is decreasing	1 point
	Example response for part (e) Because the horizontal position of the center of mass for the object is moving closer to the pivot, the lever arm for the force of gravity is decreasing so the angular acceleration decreases.	
	Total for part (e)	2 points
(f)	For using conservation of energy $U_{g 1}=K_{2}$	1 point
	For correctly relating the change in rotational kinetic energy to the change in gravitational potential energy $m g h=\frac{1}{2} I \omega^{2}$	1 point
	For correctly substituting for h into the equation above $m g\left(\frac{L}{2}\right)=\frac{1}{2} I \omega^{2}$	1 point
	For an expression for ω that uses only the allowed symbols and is algebraically consistent with the previous steps $\begin{aligned} & \omega=\sqrt{\frac{2 m g h}{I}}=\sqrt{\frac{2 M g(L / 2)}{I_{\mathrm{B}}}} \\ & \omega=\sqrt{\frac{M g L}{I_{\mathrm{B}}}} \end{aligned}$	1 point

For correctly drawing and labeling the weight of the block	$\mathbf{1}$ point
For correctly drawing and labeling the force exerted by the track on the block	$\mathbf{1}$ point
For a correct justification consistent with the diagram	$\mathbf{1}$ point

Example response for part (a)

The force F_{g} represents the weight of the block and always points downward. The force F_{N} represents the force the track exerts on the block to keep it moving in a circular path and points perpendicular to the surface of the track.

Scoring Note: Examples of appropriate labels for the force due to gravity include: F_{G}, $F_{\mathrm{g}}, F_{\text {grav }}, W, m g, M g$, "grav force," "F Earth on block," "F on block by Earth,"
$F_{\text {Earth on block }}, F_{\mathrm{E}, \text { Block }}, F_{\text {Block,E }}$. The labels G or g are not appropriate labels for the force due to gravity. F_{n}, F_{N}, N, "normal force," "ground force," or similar labels may be used for the normal force.

Scoring Note: If extraneous forces are present, a maximum of 2 points can be earned.
(b) i. For using conservation of energy
$U_{1}+K_{1}=U_{2}+K_{2} \therefore U_{1}+0=U_{2}+K_{2}$
For correctly relating the elastic potential energy at maximum spring compression to the gravitational potential energy at point B
$U_{s 1}+0=U_{g 2}+K_{2} \therefore K_{2}=U_{s 1}-U_{g 2}$
For a correct substitution into the equation above
$\frac{1}{2} m v_{B}^{2}=\frac{1}{2} k(\Delta x)^{2}-m g h_{2}$
$v_{B}^{2}=\frac{k}{m}(\Delta x)^{2}-2 g(3 R) \therefore v_{B}=\sqrt{\frac{k}{m}(\Delta x)^{2}-6 g R}$
ii. For correctly relating the centripetal force to speed from part (b)(i)

1 point
$F_{C}=\frac{m v^{2}}{r}=\frac{m v_{B}^{2}}{R}$
For an answer consistent with part (b)(i)
1 point
$F_{C}=\frac{m}{R}\left(\sqrt{\frac{k}{m}(\Delta x)^{2}-6 g R}\right)^{2}=\frac{k(\Delta x)^{2}}{R}-6 m g$

Total for part (e) 3 points
Total for question 315 points

