AP Physics l: Algebra-Based Scoring Guidelines

(a) For using conservation of energy to find the speed v of the bicycle as it leaves the ramp 1 point

For using kinematics, vertical components, attempting to find the time the bicycle is in the air $\mathbf{1}$ point
For a correct expression for X_{0} in terms of given quantities
1 point

Example response for part (a)

$E_{\text {top }}=E_{\text {bottom }}$
$m_{0} g H_{0}=\frac{1}{2} m_{0} v^{2}$
$v=\sqrt{2 g H_{0}}$
$v_{f y}=v_{i y}+a t$
$-v \sin \theta=v \sin \theta-g t$
$-2 v \sin \theta=-g t$

$$
\begin{aligned}
& 2 \sin \theta_{0} \sqrt{2 g H_{0}}=g t \\
& t=\frac{2 \sin \theta_{0} \sqrt{2 g H_{0}}}{g} \\
& X_{0}=v_{x} t \\
& X_{0}=\cos \theta_{0} \sqrt{2 g H_{0}} \frac{2 \sin \theta_{0} \sqrt{2 g H_{0}}}{g} \\
& X_{0}=4 H_{0} \cos \theta_{0} \sin \theta_{0}
\end{aligned}
$$

Scoring Note:

Using the range equation to get $X_{0}=2 H_{0} \sin 2 \theta_{0}$ is sufficient to earn the second and third points.

Total for part (a) 3 points
(b) Correct answer: 12 cars

For an answer and justification that attempts to use the functional dependence of the horizontal $\mathbf{1}$ point distance on the initial height
For an answer consistent with the expression derived in part (a)
(c) For a linear graph with a constant negative slope 1 point

For a graph that starts at v_{y} and ends at $-v_{y}$, using only allowed variables

Example response for part (c)

Vertical Component of
Stunt Cyclist's Velocity

Total for part (c) 2 points
Total for Question $1 \quad 7$ points

Question 2: Experimental Design

(a)

For measuring the radius or diameter of rods with different radii using an appropriate tool	$\mathbf{1}$ point
For measuring force using an appropriate tool	$\mathbf{1}$ point
For a plausible/practical way to directly or indirectly determine $F_{\text {max }}$ for a given rod	$\mathbf{1}$ point
For attempting to reduce experimental uncertainty in an experiment that involves breaking $\mathbf{1}$ point the rods	

Example response for part (a)
Measure the diameter D of each rod with a ruler.
Students should pull on the rod with the force probe until the rod breaks.
Record the force $F_{\max }$ just before breaking.
Repeat each trial several times to reduce error.
Then trade for a new set of rods with different radii.
Repeat this experiment for several different radii rods.

	Total for part (a)	4 points
(b)	For a straight-line graph marked "A" with a slope of $\frac{F_{0}}{r_{0}}$	$\mathbf{1}$ point
For a graph marked "B" that is concave up	$\mathbf{1}$ point	
For a graph marked "B" that shows a quadratic relationship at the correct points	$\mathbf{1}$ point	
For two graphs that both contain the point $\left(r_{0}, F_{0}\right)$	$\mathbf{1}$ point	

[^0]

Total for question 212 points
(a) i.

For a correct answer $v_{D}=\frac{F_{H} t_{f}}{M_{D}}$
ii. For indicating the total momentum of the system is the same before and after the collision

1 point
Scoring Note: If the response only includes a correct final answer of $\frac{M_{S}}{M_{D}}$, the response
earns this point but not the next point.
For correctly substituting the appropriate variables into a conservation of momentum equation

AND

an answer in the form $\frac{v_{D}}{v_{S}}=\ldots$

Scoring Notes:

This point can be earned only if the first point is earned.
The answer need not be correct to earn this point.
Example response for part (a)(ii)
$p_{i}=p_{f}$
$0=M_{S} v_{S}-M_{D} v_{D}$
$\frac{v_{D}}{v_{S}}=\frac{M_{S}}{M_{D}}$

	Total for part (a)	$\mathbf{3}$ points		
(b)	For two functions that are straight segments for $t<t_{f}$,			
AND				
begin at the origin,				
AND				
have two different positive slopes		$\mathbf{1}$ point		
For two functions that are				
horizontal functions for $t>t_{f}$			\quad	AND
:---				
are continuous over the entire time range $0<t<2 t_{f}$				

OR

The curve labeled D is greater than the curve labeled S for all $t>0$
Scoring note: This point can still be earned if the labels are not on the vertical axis but clearly indicate that $v_{D}>v_{S}$.

Example response for part (b)

	Total for part (b)	3 points
(c) $\begin{array}{rr}\text { i. } \\ & \\ & \\ & \text { ii. }\end{array}$	For stating or mathematically representing that if the disk is much more massive, then the block will have little effect on the motion of disk 1 OR For stating or mathematically representing that when $M_{D} \gg M_{B}, v_{c m}=v_{1}$	1 point
	For correct reasoning. Correct answer: When $M_{D} \ll M_{B}, v_{c m}=0$	1 point
	Example response for part (c) (ii) If the block is much more massive, then it will barely move when the disk collides and sticks to it.	
iii.	For using conservation of momentum	1 point
	For a correct answer	1 point
	$v_{c m}=\frac{m_{D} v_{1}}{m_{D}+m_{B}}$	

iv. For an attempt to use limiting-case reasoning or functional dependence with the equation $\mathbf{1}$ point in part (c)(iii)
For recognizing the equation from (c)(iii) reduces to a simpler form and the simplified $\mathbf{1}$ point form is correctly compared to their answer in (c)(i)

Example 1 response for part (c) (iv)

Yes. If M_{B} is very small, then the denominator of the equation simplifies to M_{D}, which
then can cancel out of the equation leaving $v_{c m}=v_{1}$.
(a) For a straight line with a positive slope beginning at the origin and reaching a maximum $\quad \mathbf{1}$ point value when the distance traveled is L_{0}

For a nonzero horizontal line between L_{0} and $2 L_{0}$	$\mathbf{1}$ point

Example response for part (a)

	Total for part (a)	$\mathbf{2}$ points
(b)	For indicating that both objects start with the same gravitational potential energy in the object-Earth system	$\mathbf{1}$ point
For a correct statement about the energy transformations that occur to the cylinder as it travels down the ramp	$\mathbf{1}$ point	
For a correct statement about the energy transformations that occur to the block as it travels down the ramp	$\mathbf{1}$ point	
For indicating that the cylinder's final rotational kinetic energy is equal to the amount of the	$\mathbf{1}$ point	
block-Earth system's initial mechanical energy that is dissipated by friction		
For a logical, relevant, and internally consistent argument that addresses the required	$\mathbf{1}$ point	
argument or question asked, and follows the guidelines described in the published		
requirements for the paragraph-length response		

(a) i. For correct expressions for the torques from the weight of each object

The torques are $m_{0} g\left(2 r_{0}\right)$ for object 1 and $\left(1.5 m_{0} g\right) r_{0}$ for object 2
For indicating that the two torques are exerted in opposite directions
$\tau_{\text {net }}=m_{0} g\left(2 r_{0}\right)-\left(1.5 m_{0} g\right) r_{0}$
For the derivation of a correct answer of $0.5 m_{0} g r_{0}$
Example response for part (a)(i)
$\tau_{\text {net }}=\tau_{1}-\tau_{2}$
$\tau_{\text {net }}=m_{0} g\left(2 r_{0}\right)-\left(1.5 m_{0} g\right) r_{0}$
$\tau_{\text {net }}=0.5 m_{0} g r_{0}$
ii. For an explanation that object 1 exerts a larger torque than object $2 \quad 1$ point

Example response for part (a)(ii)

Object 1 is twice as far from the axle as object 2, while object 2 has only 1.5 times the weight of object 1. So, object 1 exerts a larger torque.

Total for part (a) 4 points
(b) Correct answer: "Opposite directions"

Scoring note: If the wrong answer is selected, the response is not graded.
For a correct answer and a correct explanation

Example response for part (b)

The objects exerted torques in opposite directions, with object 1 exerting a larger torque, so object 1 determines the net torque direction. With the torque from object 1 removed, the net torque and angular acceleration switch direction (becoming clockwise) to the torque from object 2. The angular velocity does not change direction immediately and is still counterclockwise.
(c) For a linear graph between 0 and t_{C}, with an initial angular velocity of zero and nonzero slope $\mathbf{1}$ point

Scoring note: The slope can be positive or negative.
For a change in the sign of the slope at $t=t_{C}$
1 point
AND
no discontinuity.
Example response for part (c)

Total for part (c) 2 points
Total for question $5 \quad 7$ points

[^0]: Total for part (b) 4 points

