Question 1: Long Answer 10 points

(a) For the correct expression: 1 point

\[K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]} \]

(b) For the correct calculated concentration of H_3O^+: 1 point

\[
\begin{align*}
HCOOH + H_2O & \rightleftharpoons H_3O^+ + HCOO^- \\
I & \quad 0.25 \quad 0 \quad 0 \\
C & \quad -x \quad +x \quad +x \\
E & \quad 0.25 - x \quad x \quad x \\
\end{align*}
\]

Let \([H_3O^+] = x\), then \(1.8 \times 10^{-4} = \frac{x^2}{(0.25 - x)}\)

Assume \(x << 0.25\), then \(1.8 \times 10^{-4} = \frac{x^2}{0.25} \Rightarrow x = 0.0067 \text{ M}\)

For the correct calculated value of pH: 1 point

\[
pH = -\log[H_3O^+] = -\log(0.0067) = 2.17
\]

Total for part (b) 2 points

(c) For the correct diagram: 1 point

\[
\begin{align*}
\text{O} & \\
\text{H} & \text{C} & \text{O} & \text{H} \\
\end{align*}
\]

(d) (i) For the correct balanced equation (state symbols not required): 1 point

\[H_2NNH_3(aq) + HCOOH(aq) \rightarrow H_2NNH_3^+(aq) + HCOO^-(aq) \]

(ii) For the correct answer and a valid justification: 1 point

Acidic. The \(K_a\) of \(H_2NNH_3^+\) is greater than the \(K_b\) of \(HCOO^-\), so the production of \(H_3O^+ (aq)\) occurs to a greater extent than the production of \(OH^- (aq)\).

Total for part (d) 2 points

(e) For the correct answer and a valid justification: 1 point

Accept one of the following:

* Yes. The oxidation number of hydrogen changes from +1 in HCOOH to zero in \(H_2\).
* Yes. The oxidation number of carbon changes from +2 in HCOOH to +4 in CO_2.
For the correct calculated value of the pressure of CO₂ (may be implicit):

\[24 \text{ atm total} \times \frac{1 \text{ atm CO}_2}{2 \text{ atm of product}} = 12 \text{ atm CO}_2 \]

1 point

For the correct calculated number of moles of CO₂:

\[PV = nRT \]

\[n = \frac{PV}{RT} = \frac{(12 \text{ atm})(4.3 \text{ L})}{(0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1})(298 \text{ K})} = 2.1 \text{ mol CO}_2 \]

1 point

Total for part (f) 2 points

For the correct answer and a valid justification:

It would remain the same. In a catalyzed reaction the net amount of catalyst is constant.

1 point

Total for question 1 10 points
Question 2: Long Answer 10 points

(a) (i) For the correct answer:
14 protons and 14 neutrons 1 point

(ii) For the correct answer:
Accept one of the following:
• \(1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^2\)
• \([Ne] \, 3s^2 \, 3p^2\) 1 point

Total for part (a) 2 points

(b) For a correct explanation:
SiH\(_4\) is composed of molecules, for which the only intermolecular forces are London dispersion forces. SiO\(_2\) is a network covalent compound with covalent bonds between silicon and oxygen atoms. London dispersion forces are much weaker than covalent bonds, so SiH\(_4\) boils at a much lower temperature than SiO\(_2\). 1 point

(c) For the correct balanced equation (state symbols not required):
SiH\(_4\)(g) \(\rightarrow\) Si(s) + 2 H\(_2\)(g) 1 point

(d) For a correct explanation:
The H\(_2\)(g) molecules are more highly dispersed than the Si(s) atoms and, therefore, have a higher absolute molar entropy. Silicon is a solid; therefore, its atoms are in fixed positions, are less dispersed, and have a lower absolute molar entropy. 1 point

(e) For the correct calculated value:
\[\Delta S_{\text{rxn}} = (18 + 2(131)) - 205 = +75 \text{ J/(mol}_{\text{rxn}} \cdot \text{K)}\] 1 point

(f) For a correct explanation:
High temperature is required for the reactant particles to have sufficient thermal energy to overcome the activation energy of the reaction. 1 point
(g) For the correct peak height and location:

The peak should be drawn to the right of the other peaks, and it should reach the second line above the horizontal axis.

(h) For a correct explanation:

The valence electrons of a Ge atom occupy a higher shell (n=4) than those of a Si atom (n=3), so the average distance between the nucleus and the valence electrons is greater in Ge than in Si. This greater separation results in weaker Coulombic attractions between the Ge nucleus and its valence electrons, making them less tightly bound and, therefore, easier to remove compared to those in Si.

(i) For the correct calculated value:

\[E = h\nu = h\left(\frac{c}{\lambda}\right) = 6.626 \times 10^{-34} \text{ J} \cdot \text{s} \left(\frac{2.998 \times 10^8 \text{ m s}^{-1}}{4.00 \times 10^{-7} \text{ m}}\right) = 4.97 \times 10^{-19} \text{ J} \]

Total for question 2 10 points
Question 3: Long Answer 10 points

(a) For the correct balanced equation (state symbols not required): 1 point

\[
\text{Ba}^{2+}(aq) + \text{SO}_4^{2-}(aq) \rightarrow \text{BaSO}_4(s)
\]

(b) For the correct calculated value of the mass of precipitate (may be implicit): 1 point

\[
1.136 \text{ g} - 0.764 \text{ g} = 0.372 \text{ g BaSO}_4
\]

For the correct calculated value of the number of moles, consistent with mass of precipitate: 1 point

\[
0.372 \text{ g} \times \frac{1 \text{ mol}}{233.39 \text{ g}} = 0.00159 \text{ mol}
\]

Total for part (b) 2 points

(c) For the correct calculated value, consistent with part (b): 1 point

\[
0.00159 \text{ mol BaSO}_4 \times \frac{1 \text{ mol CuSO}_4}{1 \text{ mol BaSO}_4} = 0.00159 \text{ mol CuSO}_4
\]

\[
\frac{0.00159 \text{ mol CuSO}_4}{0.0500 \text{ L}} = 0.0318 \text{ M CuSO}_4 \quad (0.0319 \text{ M if decimals are carried})
\]

(d) For the correct calculated value: 1 point

\[
M_1V_1 = M_2V_2
\]

\[
V_1 = \frac{(0.0500 \text{ M})(50.00 \text{ mL})}{(0.1000 \text{ M})} = 25.0 \text{ mL}
\]

(e) For a correct technique to measure the volume of solution: 1 point

First, measure out the correct volume of 0.1000 M CuSO\textsubscript{4} solution with a 25.0 mL volumetric pipet (graduated cylinder or buret is acceptable).

For a correct technique to dilute the solution to the final volume: 1 point

Transfer the 25.0 mL of solution to a 50.00 mL volumetric flask and dilute the solution with water up to the 50.00 mL mark.

Total for part (e) 2 points

(f) For the correct value (between 0.032 M and 0.038 M): 1 point

Accept one of the following:

- \[
y = mx = \frac{0.63}{0.1000} \quad x = 6.3x
\]

\[
x = \frac{y}{6.3} = \frac{0.219 \text{ M}}{6.3} = 0.035 \text{ M}
\]

- Estimated value from the graph within the specified range.
(g) For the correct answer:

The concentration will be less than that determined in part (f).

For a valid justification:

The additional water will decrease the concentration of CuSO₄ in the cuvette. Therefore, there will be a decrease in absorbance (according to the Beer-Lambert law). This dilution results in a lower estimated concentration of CuSO₄.

<table>
<thead>
<tr>
<th>Total for part (g)</th>
<th>2 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total for question 3</td>
<td>10 points</td>
</tr>
</tbody>
</table>
Question 4: Short Answer 4 points

a For the correct calculated value with units:
\[q = mc\Delta T = (15.0 \text{ g})(0.72 \text{ J/(g \cdot ^\circ C)})(39.7 ^\circ C - 22.0 ^\circ C) = 190 \text{ J} \]

b For the correct calculated value of the moles of reaction, consistent with part (a) (may be implicit):
\[q_{sys} = -q_{surr} \]
\[-190 \text{ J} \times \frac{1 \text{ kJ}}{1000 \text{ J}} \times \frac{1 \text{ mol}_{rxn}}{1650 \text{ kJ}} = 0.00012 \text{ mol}_{rxn} \]

For the correct calculated value of the mass of iron:
\[0.00012 \text{ mol}_{rxn} \times \frac{4 \text{ mol Fe}}{1 \text{ mol}_{rxn}} \times \frac{55.85 \text{ g Fe}}{1 \text{ mol Fe}} = 0.027 \text{ g Fe} \]
(0.026 g if decimals are carried)

Total for part (b) 2 points

c For the correct answer and a valid justification:
Greater than. A greater mass of iron provides a greater number of moles of reaction, which would transfer a greater quantity of thermal energy to the same mass of sand and therefore lead to a greater maximum temperature.

Total for question 4 4 points
Question 5: Short Answer 4 points

(a) For the correct answer: 1 point

Electron flow should be indicated only in a counter-clockwise direction in the external circuit, from the Cl$_2$ anode to the Mg cathode.

(b) For the correct answer and calculated value: 1 point

No, because 2.0 V is less than 3.73 V, which is the minimum voltage needed for electrolysis to occur.

\[E_{\text{cell}} = -2.37 \text{ V} + (-1.36 \text{ V}) = -3.73 \text{ V} \]

(c) For the correct calculated value of moles of electrons (may be implicit): 1 point

\[
2.00 \text{ g Mg} \times \frac{1 \text{ mol Mg}}{24.30 \text{ g Mg}} \times \frac{2 \text{ mol } e^-}{1 \text{ mol Mg}} = 0.165 \text{ mol } e^-
\]

For the correct calculated number of seconds: 1 point

\[
0.165 \text{ mol } e^- \times \frac{96,485 \text{ C}}{1 \text{ mol } e^-} \times \frac{1 \text{ s}}{5.00 \text{ C}} = 3180 \text{ s}
\]

Total for part (c) 2 points

Total for question 5 4 points
Question 6: Short Answer
4 points

<table>
<thead>
<tr>
<th></th>
<th>For a correct description: 1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Ionic solids do not have free-moving ions that are required to carry an electric current. Therefore, there is no conduction of electricity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>For the correct answer and a valid justification: 1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>CaSO₄. The greater electrical conductivity of the CaSO₄ solution relative to the PbSO₄ solution implies a higher concentration of ions, which comes from the dissolution (dissociation) of CaSO₄ to a greater extent.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>For a correct drawing that shows an equal number of cations and anions: 1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>The drawing shows solid PbSO₄ at the bottom of the beaker (similar to the solid shown for CaSO₄) and fewer dissociated Pb²⁺ and SO₄²⁻ ions in the solution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>For a correct explanation: 1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>The additional precipitate is CaSO₄ that forms in response to the increased [SO₄²⁻] in solution. According to Le Chatelier’s principle (Q > Kᵥ), the introduction of SO₄²⁻ as a common ion shifts the equilibrium towards the formation of more CaSO₄(s).</td>
</tr>
</tbody>
</table>

© 2021 College Board
Question 7: Short Answer

(a) For the correct calculated value:
1 point

Accept one of the following:

- \[0.325 \text{ mol } \text{O}_2 \times \frac{32.00 \text{ g } \text{O}_2}{1 \text{ mol } \text{O}_2} = 10.4 \text{ g } \text{O}_2\]

\[D = \frac{m}{V} = \frac{10.4 \text{ g}}{7.95 \text{ L}} = 1.31 \text{ g/L}\]

- \[D = \frac{m}{V} = \frac{P(\text{MM})}{RT} = \frac{(1.0 \text{ atm})(32.00 \text{ g/mol})}{(0.08206 \frac{\text{L atm}}{\text{mol K}})(298 \text{ K})} = 1.31 \text{ g/L}\]

(b) For the correct answer and a valid justification:
1 point

Accept one of the following:

- No, the density of the gas remains constant because \(P, R,\) and \(T\) remain constant AND the mass and volume of \(\text{O}_2\) decrease proportionately.

- A mathematical justification is shown below.

\[D = \frac{m}{V} = \frac{n \text{ moles of } \text{O}_2 \times \text{molar mass of } \text{O}_2}{nRT} = \frac{P \times (\text{molar mass of } \text{O}_2)}{RT}\]

(c) For a valid explanation:
1 point

Accept one of the following:

- As the gas cools, the average kinetic energy (speed) of the \(\text{O}_2\) molecules decreases. The molecules rebound with less energy when they collide with each other and the walls of the container. The spacing between particles decreases, causing the volume occupied by the gas to decrease.

- As the gas cools, the average kinetic energy (speed) of the \(\text{O}_2\) molecules decreases. The molecules rebound with less energy when they collide with each other and the walls of the container. The only way for the molecules to maintain a constant rate of collisions with the walls of the container (maintaining a pressure of 1.00 atm) is for the volume of the gas to decrease.

(d) For a valid explanation:
1 point

The ideal gas law assumes that gas particles do not experience interparticle attractions. As a real gas cools further, the intermolecular forces have greater effect as the average speed of the molecules decreases, resulting in inelastic collisions. To maintain a gas pressure of 1.00 atm, the volume must decrease to accommodate more collisions with less energy.

Total for question 7 4 points