2021

AP[°] Physics 2: Algebra-Based

Sample Student Responses and Scoring Commentary

Inside:

Free Response Question 1

- **☑** Scoring Guideline
- ☑ Student Samples
- **☑** Scoring Commentary

© 2021 College Board. College Board, Advanced Placement, AP, AP Central, and the acorn logo are registered trademarks of College Board. Visit College Board on the web: collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

Question 1: Short Answer

(a)	For indicating that $\Delta U = 0$ J	1 point
	For correctly calculating the net work done during the two processes with correct units	1 point
	$W = -P\Delta V = -(100 \times 10^{3} \mathrm{Pa})[(4-1)(\times 10^{3} \mathrm{m})] = -300 \mathrm{J}$	
	Scoring note: The answer must either have the negative sign or indicate that the work is done by the gas.	
	For substituting ΔU and W into the first law of thermodynamics to obtain a value for Q OR for applying the first law to show that Q is equal in magnitude to W but opposite in	1 point
	sign	
	Example response for part (a)	
	The change in internal energy is zero because the initial and final temperatures are the same at points 1 and 3. The work done on the gas is $-P\Delta V = -300 \text{ J}$. Because the work is negative, 300 J of energy must be transferred to the gas by heating in order for the internal energy of the gas to remain constant.	
	Total for part (a)	3 points
(b) i.	For indicating that the work is less than in part (a), with a reference to less area under the curve	1 point
	For indicating that the work is positive or opposite the sign indicated in part (a), with a reference to the sign of the change in volume or the direction of the process as indicated in the graph	1 point
	Example response for part (b)(i)	
	The magnitude of the work done is less than the work in part (a) because there is less	
	area under the curve. The work is also the opposite sign from part (a) because the volume	
	decreases, as shown by the direction of the arrow.	
ii.		1 point
	For indicating a change that is relevant to the collision rate Scoring note: Acceptable responses include volume, surface area, time to traverse the container.	1 point
	For indicating that there are more collisions with the walls of the container; thus, more force per area (must refer to the walls)	1 point
	Example response for part (b)(ii)	
	Temperature does not change, so the speed of the molecules and the force of collisions	
	with the walls of the container stays the same. Volume decreases, so the density of the gas	
	molecules increases, and they collide more frequently. This means more net force due to	
	collisions with the container walls. The smaller volume also means less surface area. Total for part (b)	5 points
		_
(c)	For indicating that the temperature in state 2 is higher than in state 3	1 point
	For indicating that energy flows from the state indicated as hotter to the state indicated as cooler	1 point
	Example response for part (c)	
	<i>The temperature of the gas in sample 2 is higher than the temperature of sample 3.</i>	
	Energy goes from hot to cold, so energy will transfer from sample 2 to sample 3.	

Total for part (c) 2 points

Total for question 1 10 points

P2 Q1 A p1

Continue your response to QUESTION 1 on this page. (b) Consider isothermal process C. i. Compare the magnitude and sign of the work W done on the gas in process C to the magnitude and sign of the work in the portion of the cycle in part (a). Support your answer using features of the graph. the area Work can be measured by incer the process. Because process A has a greater average pressure than process G the work done on the gas through process A is greater h that of process C. No work orders during process B. Pro A increases in volume so negative vork is some on the gas. As ii. Explain how the microscopic behavior of the gas particles and changes in the size of the container affect interactions on the microscopic level and produce the observed pressure difference between under affect interactions on the microscopic level and produce the observed pressure difference between the beginning and end of process C. the volume decreases gas particles more closer together, so they collide more frequently with each other and with the walls of the container. Sample 2 Sample 3 State 2 State 3 (c) Consider two samples of the gas, each with the same number of gas particles. Sample 2 is in state 2 shown in the graph, and sample 3 is in state 3 shown in the graph. The samples are put into thermal contact, as shown above. Indicate the direction, if any, of energy transfer between the samples. Support your answer using macroscopic thermodynamic principles. Because PV=nRT, Pa=P3, Va=V3, and n3=n3, Ta>T3, meaning sample a has a higher temporalyie than sample 3. Energy will flow from high temperature to low temperature so from samplea

Unauthorized copying or reuse of this page is illegal.

Page 3

GO ON TO THE NEXT PAGE.

P2 Q1 B p1

Continue your response to QUESTION 1 on this page. (b) Consider isothermal process C. i. Compare the magnitude and sign of the work W done on the gas in process C to the magnitude and sign of the work in the portion of the cycle in part (a). Support your answer using features of the graph. The sign of the work done on the yas in C is opposite to the portion of the egue in part A because the area underneath the graph is negative, since Volume is decreasing whilst preserve to increasing in Cashile moving bachwards. ii. Explain how the microscopic behavior of the gas particles and changes in the size of the container affect interactions on the microscopic level and produce the observed pressure difference between the beginning and end of process C. Theospeed of the particles is the same as the provers is inothermal, however, since volume is being decreased and pressure is Increased, there will be more cellisions between particles within the space. $\begin{array}{c} \text{Sample 2} \\ \text{State 2} \end{array} \xrightarrow{\text{Sample 3}} \\ \text{State 3} \end{array} \qquad \left(\begin{array}{c} 100 \text{ Pi} \\ \text{i} \end{array} \right) \left(\begin{array}{c} 400 \text{ Pi} \\ \text{i} \end{array} \right) \left(\begin{array}{c} 25 \text{ Pi} \\ \text{i} \end{array} \right) \left(\begin{array}{c} 400 \text{ Pi} \\ \text{i} \end{array} \right) \end{array}$ (c) Consider two samples of the gas, each with the same number of gas particles. Sample 2 is in state 2 shown in the graph, and sample 3 is in state 3 shown in the graph. The samples are put into/thermal contact, as shown above. Indicate the direction, if any, of energy transfer between the samples. Support your answer using macroscopic thermodynamic principles. Boy he's law Tleul in order to Ly heat is transferred the high from areas to ithe high Unauthorized copying or reuse of this page is illegal. GO ON TO THE NEXT PAGE. Page 3

P2 Q1 C p1

Question 1

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The responses to this question were expected to demonstrate the following:

- Analyze a P vs. V graph to compare relative values of temperature based on states' pressures and volumes
- Analyze a P vs. V graph to calculate work through -P*∆V (or -Area)
- Calculate thermal energy transferred using $\Delta U=Q+W$ given ΔU and W
- Make claims about sign and magnitude of work when analyzing processes in a P vs. V graph
- Explain a process on a P vs. V graph according to microscopic properties of gas (frequency of collisions between particles and container, average kinetic energy or average speed of particles, volume or distance or time for particles to move in)
- Make predictions about energy flow based on macroscopic properties of gas (T)

Sample: P2 Q1 A Score: 9

Part (a) earned 3 points. One point was earned for a correct $\Delta U=0$. One point was earned for a correct value for W with calculations, units, and sign. One point was earned for a response that shows W and ΔU used correctly in the first law to calculate Q. Part (b)(i) earned 2 points. One point was earned for a response that correctly identifies the magnitude of work greater in part A due to greater "average pressure" and also mentions area, and one point was earned for a response that identifies the sign of work in C as positive due to decrease in volume. Part (b)(ii) earned 2 points. There were no points earned for a response that does not discuss constant KE or v. The response earned 1 point for a response that notes a decrease in volume during process C, and 1 point was earned for an increase in collisions between gas molecules and the walls of the container. Part (c) earned 2 points. One point was earned for stating that T2>T3, and one point was earned for stating that energy flows from 2 to 3.

Sample: P2 Q1 B Score: 5

Part (a) earned 1 point for having a response that correctly shows that $\Delta U=0$. No points were earned for an incorrect value for W and for the first law not being used correctly (response has Q=W- ΔU instead of Q= ΔU -W). Part (b)(i) earned 1 point for a response that correctly identifies the sign of work in process C as opposite to part (a) because volume is decreasing, but there is no mention of magnitude. Part (b)(ii) earned 2 points. One point was earned for a response that correctly states that the average speed of the particles is the same, and 1 point was earned for a response that correctly states that volume is being decreased. No point was earned because while more collisions are referenced, there is no mention of the wall. Part (c) earned 1 point for using the ideal gas law correctly in the calculation to show that $T_2>T_3$. No point was earned for the response stating that "heat is transferred from areas with high heat," because "heat" is not a suitable substitution for hotter or temperature.

Question 1 (continued)

Sample: P2 Q1 C Score: 2

Part (a) earned 1 point for a correct value for W with "area under the curve" shown for work. No points were earned for an incorrect ΔU and for not having evidence that the first law is used for Q. Part (b)(i) earned no points because the response incorrectly identifies magnitude of work in C equal to work in A and incorrectly identifies the sign of work in C equal to sign of work in A. Part (b)(ii) earned 1 point for a response that correctly identifies decrease in volume. No points were awarded for a response that does not discuss constant KE or v, and only discusses collisions between particles, not collisions between particles and the walls of the container. Part (c) earned no points because there is no mention of temperatures or the direction of energy flow from high T to low T.