AP Physics l: Algebra-Based Sample Student Responses and Scoring Commentary

Inside:

Free Response Question 3
\checkmark Scoring Guideline
\checkmark Student Samples
\square Scoring Commentary
(a) i .

For a correct answer $v_{D}=\frac{F_{H} t_{f}}{M_{D}}$
ii. For indicating the total momentum of the system is the same before and after the collision

1 point
Scoring Note: If the response only includes a correct final answer of $\frac{M_{S}}{M_{D}}$, the response
earns this point but not the next point.
For correctly substituting the appropriate variables into a conservation of momentum

AND

an answer in the form $\frac{v_{D}}{v_{S}}=\ldots$

Scoring Notes:

This point can be earned only if the first point is earned.
The answer need not be correct to earn this point.
Example response for part (a)(ii)
$p_{i}=p_{f}$
$0=M_{S} v_{S}-M_{D} v_{D}$
$\frac{v_{D}}{v_{S}}=\frac{M_{S}}{M_{D}}$
\(\left.\begin{array}{llr}(b) \& For two functions that

are straight segments for t<t_{f}, \& Total for part (a) \& \mathbf{3} points

AND

begin at the origin,

AND

have two different positive slopes \& \mathbf{1} point

\hline For two functions that are

horizontal functions for t>t_{f} \& 1 point

AND

are continuous over the entire time range 0<t<2 t_{f}\end{array}\right]\)| For labeling values on the vertical axis with $v_{D}>v_{S}$ |
| :--- |
| OR |
| The curve labeled D is greater than the curve labeled S for all $t>0$ |

Example response for part (b)

	Total for part (b)	3 points
(c) $\begin{aligned} & \text { i. } \\ & \\ & \text { ii. }\end{aligned}$	For stating or mathematically representing that if the disk is much more massive, then the block will have little effect on the motion of disk 1 OR For stating or mathematically representing that when $M_{D} \gg M_{B}, v_{c m}=v_{1}$	1 point
	For correct reasoning. Correct answer: When $M_{D} \ll M_{B}, v_{c m}=0$	1 point
	Example response for part (c) (ii) If the block is much more massive, then it will barely move when the disk collides and sticks to it.	
iii.	For using conservation of momentum	1 point
	For a correct answer	1 point
	$v_{c m}=\frac{m_{D} v_{1}}{m_{D}+m_{B}}$	

iv. For an attempt to use limiting-case reasoning or functional dependence with the equation $\mathbf{1}$ point in part (c)(iii)
For recognizing the equation from (c)(iii) reduces to a simpler form and the simplified $\mathbf{1}$ point form is correctly compared to their answer in (c)(i)
Example 1 response for part (c) (iv)
Yes. If M_{B} is very small, then the denominator of the equation simplifies to M_{D}, which then can cancel out of the equation leaving $v_{c m}=v_{1}$.

Begin your response to QUESTION 3 on this page.
3. (12 points, suggested time 25 minutes)
(a) A student of mass M_{S}, standing on a smooth surface, uses a stick to push a disk of mass M_{D}. The student exerts a constant horizontal force of magnitude F_{H} over the time interval from time $t=0$ to $t=t_{f}$ while pushing the disk. Assume there is negligible friction between the disk and the surface.
i. Assuming the disk begins at rest, determine an expression for the final speed v_{D} of the disk relative to the surface. Express your answer in terms of $F_{y} L_{5}, M_{5}, M_{D}$, and physical constants, as appropriate.
$a=\frac{V_{p}}{T_{f}}$

$$
\begin{aligned}
& F_{H}^{H}=M_{S} a \\
& F_{H}=\left(M_{D}\right)\left(\frac{V P}{T_{F}}\right) \\
& F_{H} T_{F}=\left(M_{D}\right) V_{D}
\end{aligned}
$$

ii. Assume there is negligible friction between the student's shoes and the surface. After time t_{f}, the student slides with speed v_{S}. Derive an equation for the ratio v_{D} / v_{S}. Express your answer in terms of M_{S}, M_{D}, and physical constants, as appropriate.

(b) Assume that the student's mass is greater than that of the disk $\left(M_{S}>M_{D}\right)$. On the grid below, sketch graphs of the speeds of both the student and the disk as functions of time t between $t=0$ and $t=2 t_{f}$. Assume that neither the disk nor the student collides with anything after $t=t_{f}$. On the vertical axis, label v_{D} and v_{S}. Label the graphs " S " and " D " for the student and the disk, respectively.

Continue your response to QUESTION 3 on this page.

Disk

Block
(c) The disk is now moving at a constant speed v_{1} on the surface toward a block of mass M_{B}, which is at rest on the surface, as shown above. The disk and block collide head-on and stick together, and the center of mass of the disk-block system moves with speed v_{cm}.
i. Suppose the mass of the disk is much greater than the mass of the block. Estimate the velocity of the center of mass of the disk-block system. Explain how you arrived at your prediction without deriving it mathematically.
The velocity of the system will be slightly less than $V_{1} \cdot C O O-m V=\left(m+M_{B}\right) V$. Because the mass of the disk-bloct system is slightly greater than the dist. ii. Suppose the mass of the disk is much less than the mass of the block. Estimate the velocity of the center of mass of the disk-block system. Explain how you arrived at your prediction without deriving it mathematically. the disk-bloct system will be The velocity of the disk block system will be
much less than V_{1}. Due to the law of conservation of momentum a langer mass collision decreases velocity
iii. Now suppose that neither object's mass is much greater than the other but that they are not necessarily equal. Derive an equation for v_{cm}. Express your answer in terms of v_{1}, M_{D}, M_{B}, and physical constants, as appropriate.

$$
\begin{gathered}
V_{1} M_{B}=V_{C M}\left(M_{D}+M_{B}\right) \\
V_{c m}=\frac{V_{1} M_{D}}{\left(M_{D}+M_{B}\right)}
\end{gathered}
$$

iv. Consider the scenario from part (c)(i), where the mass of the disk was much greater than the mass of the block. Does your equation for v_{cm} from part (c)(iii) agree with your reasoning from part (c)(i) ?
\qquad Yes \qquad No
Explain your reasoning by addressing why, according to your equation, v_{cm} becomes (or approaches) a certain value when M_{D} is much greater than M_{B}.
Because $V_{C M}$ is equal to the ratio of M_{D} to $M_{D}+M_{B}$ multiplied by V_{1}. In this scenario the ratio of $M_{D} /\left(M_{D}+M_{B}\right)$ is slightly less than 1 which would make V_{1} slightly less than V_{cm}

Begin your response to QUESTION 3 on this page.

3. (12 points, suggested time 25 minutes)
(a) A student of mass M_{S}, standing on a smooth surface, uses a stick to push a disk of mass M_{D}. The student exerts a constant horizontal force of magnitude F_{H} over the time interval from time $t=0$ to $t=t_{f}$ while pushing the disk. Assume there is negligible friction between the disk and the surface.
i. Assuming the disk begins at rest, determine an expression for the final speed v_{D} of the disk relative to the surface. Express your answer in terms of $F_{H}, t_{f}, M_{S}, M_{D}$, and physical constants, as
$\begin{aligned} & \text { appropriate. } \\ & F_{X}=m a \\ & F_{H}=M_{D}{ }^{a} \\ & F_{H} \\ & M_{D}\end{aligned}=a$

ii. Assume there is negligible friction between the student's shoes and the surface. After time t_{f}, the student slides with speed v_{S}. Derive an equation for the ratio v_{D} / v_{S}. Express your answer in terms of M_{S}, M_{D}, and physical constants, as appropriate.

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2} \\
& K E_{D}=\frac{1}{2} M_{D} V_{D}^{2} \\
& K E_{S}=\frac{1}{2} M_{S} V_{S}^{2}
\end{aligned}
$$

(b) Assume that the student's mass is greater than that of the disk $\left(M_{S}>M_{D}\right)$. On the grid below, sketch graphs of the speeds of both the student and the disk as functions of time t between $t=0$ and $t=2 t_{f}$. Assume that neither the disk nor the student collides with anything after $t=t_{f}$. On the vertical axis, label v_{D} and v_{S}. Label the graphs " S " and " D " for the student and the disk, respectively.

P1 Q3 B pe

Continue your response to QUESTION 3 on this page.

(c) The disk is now moving at a constant speed v_{1} on the surface toward a block of mass M_{B}, which is at rest on the surface, as shown above. The disk and block collide head-on and stick together, and the center of mass of the disk-block system moves with speed v_{cm}.
i. Suppose the mass of the disk is much greater than the mass of the block. Estimate the velocity of the center of mass of the disk-block system. Explain how you arrived at your prediction without deriving it mathematically. The velocity of the disk-block system should be very chose to that of v_{1}, This is because if the mass of the block is very small compared to that of the disk. when the masses combine the total mass will only sightly increase. Following the conservation of momentum, if the final mass barely ineresset the final velocity will barely decrease
ii. Suppose the mass of the disk is much less than the mass of the block. Estimate the velocity of the center of mass of the disk-block system. Explain how you arrived at your prediction without deriving it mathematically. km would be very close to 0 , This is because if M_{B} is much greater than M_{0}, when the masses combine the total mass will greatly inciesse. In order for the conservatich of momentum to be the, rem must greatly decrease in response to a large increase in the systems mass since initio l momentum must easel final momentum
iii. Now suppose that neither object's mass is much greater than the other but that they are not necessarily equal. Derive an equation for v_{cm}. Express your answer in terms of v_{1}, M_{D}, M_{B}, and physical constants, as appropriate.

$$
\begin{aligned}
& \Delta_{D}=\Delta_{p f} \\
& m_{D}=\left(M_{D}+H_{B}\right) v_{c m}
\end{aligned} \quad v_{C m}=\frac{M_{D} v_{1}}{M_{D}+M_{B}}
$$

iv. Consider the scenario from part (c)(i), where the mass of the disk was much greater than the mass of the block. Does your equation for v_{cm} from part (c)(iii) agree with your reasoning from part (c)(i) ?
\checkmark Yes \qquad No
Explain your reasoning by addressing why, according to your equation, v_{cm} becomes (or approaches) a certain value when M_{D} is much greater than M_{B}.
According to the equation, $M_{D} V_{1}$ is divided by $M_{D}+M_{P}$ to solve for $v \mathrm{~cm}$, If M_{D} is much lavejer than M_{B}, the addition of M_{B} to H_{D} will minimally affect the total velocity of the system because the denominator is only changing slightly. its a result Vim would almost equal v_{1} because if Mes was $0 H_{D}$ would cancel from the equation and vim would equal v_{1}. Since it is known that M_{B} is very small but opeecter than 0 , it caw be deduced that the change to rem will be very small', Unauthorized copying or reuse of this page is illegal apploachplagets not equal viGO ON TO THE NEXT PAGE.

Begin your response to QUESTION 3 on this page.

3. (12 points, suggested time 25 minutes)
(a) A student of mass M_{S}, standing on a smooth surface, uses a stick to push a disk of mass M_{D}. The student exerts a constant horizontal force of magnitude F_{H} over the time interval from time $t=0$ to $t=t_{f}$ while pushing the disk. Assume there is negligible friction between the disk and the surface.
i. Assuming the disk begins at rest, determine an expression for the final speed v_{D} of the disk relative to the surface. Express your answer in terms of $F_{H}, t_{f}, M_{S}, M_{D}$, and physical constants, as appropriate.

$$
V_{D}=\sqrt{V_{0}+2 a\left(x-x_{0}\right)}
$$

ii. Assume there is negligible friction between the student's shoes and the surface. After time t_{f}, the student slides with speed v_{S}. Derive an equation for the ratio v_{D} / v_{S}. Express your answer in terms of M_{S}, M_{D}, and physical constants, as appropriate.

$$
\text { 4. } \frac{V_{D}}{V_{S}}=\frac{m_{S}-m_{D}}{r}
$$

(b) Assume that the student's mass is greater than that of the disk $\left(M_{S}>M_{D}\right)$. On the grid below, sketch graphs of the speeds of both the student and the disk as functions of time t between $t=0$ and $t=2 t_{f}$. Assume that neither the disk nor the student collides with anything after $t=t_{f}$. On the vertical axis, label v_{D} and v_{S}. Label the graphs " S " and " D " for the student and the disk, respectively.

P1 Q3 C p2

Continue your response to QUESTION 3 on this page.

Disk

Block
(c) The disk is now moving at a constant speed v_{1} on the surface toward a block of mass M_{B}, which is at rest on the surface, as shown above. The disk and block collide head-on and stick together, and the center of mass of the disk-block system moves with speed v_{cm}.
i. Suppose the mass of the disk is much greater than the mass of the block. Estimate the velocity of the center of mass of the disk-block system. Explain how you arrived at your prediction without deriving it mathematically.
the velocity would be the same if the maeses were the same bc if the velocity you pushed the disk at is the same then the velocity of the com would be the same.
ii. Suppose the mass of the disk is much less than the mass of the block. Estimate the velocity of the center of mass of the disk-block system. Explain how you arrived at your prediction without deriving it mathematically.
The velocity would be the same bc the velocity doesn't change unless initial velocity changes
iii. Now suppose that neither object's mass is much greater than the other but that they are not necessarily equal. Derive an equation for v_{cm}. Express your answer in terms of v_{1}, M_{D}, M_{B}, and physical constants, as appropriate.

$$
V_{\mathrm{cm}}=V_{0}+2 a\left(x-x_{0}\right)
$$

iv. Consider the scenario from part (c)(i), where the mass of the disk was much greater than the mass of the block. Does your equation for v_{cm} from part (c)(iii) agree with your reasoning from part (c)(i) ?

Explain your reasoning by addressing why, according to your equation, v_{cm} becomes (or approaches) a certain value when M_{D} is much greater than M_{B}.
my equation is finding the fin al velocity

Question 3

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

Responses to this question were expected to demonstrate an understanding of the center of mass of a system of two objects involved in a collision. To successfully complete the problem, students must:

- Predict the velocity of the center of mass of a system.
- Derive an equation for the velocity of the center of mass.
- Graph the speed of two objects involved in a conservation of momentum scenario.
- Determine an expression for final speed when an impulse is applied.
- Apply limiting reasoning and functional dependence to support a claim.

Sample: P1 Q3 A

Score: 10

Part (a)(i) earned 1 point for the correct expression. Part (a)(ii) earned no points. The response does not show a valid starting point for conservation of momentum. The second point cannot be earned without the first point. Part (b) earned 3 points. One point was earned for a graph that contains two straight functions that both start at the origin and each have a different positive slope before time t_{f}. One point was earned for a graph that contains two horizontal line segments after time t_{f} and is continuous for all times. One point was earned for a graph for D that is greater than the graph for S for all times greater than zero. Part (c)(i) earned 1 point for a response that correctly estimates the velocity of the center of mass with an explanation. Part (c)(ii) earned l point for a response that correctly estimates the velocity of the center of mass with an explanation. Part (c)(iii) earned 2 points. One point was earned for a response that starts with the law of conservation of momentum and uses the law in a derivation. One point was earned for reaching the correctly derived equation. Part (c)(iv) earned 2 points. One point was earned for an attempt to apply a limiting case or functional dependence to the equation for part (c)(iii). One point was earned for explaining how the equation in part (c)(iii) supports the estimate in part (c)(i). Note: While the response does not explicitly state that M_{B} is much smaller than M_{D}, this is implied because the prompt in part (c)(iv) refers to the scenario in part (c)(i) where this is the case.

Sample: P1 Q3 B

Score: 6
Part (a)(i) did not earn any points for the correct expression. Part (a)(ii) earned no points. The response does not show a valid starting point for conservation of momentum. The second point cannot be earned without the first point. Part (b) earned no points for this graph. The response shows curved lines for the entire time period and graph S is greater than graph D at all times greater than zero. Part (c)(i) earned 1 point for a response that correctly estimates the velocity of the center of mass with an explanation. Part (c)(ii) earned 1 point for a response that correctly estimates the velocity of the center of mass with an explanation. Part (c)(iii) earned 2 points. One point was earned for a response that starts with the law of conservation of momentum and uses the law in the derivation. One point was earned for reaching the correctly derived equation. Part (c)(iv) earned 2 points. One point was earned for an attempt to apply a limiting case or functional dependence to the equation for part (c)(iii). One point was earned for explaining how the equation in part (c)(iii) supports the estimate in part (c)(i). Note: While the response states " $M_{D}+M_{D}$ " in the first line, the response later clarifies in the third line that it is "the addition of M_{B} to M_{D}."

Question 3 (continued)

Sample: P1 Q3 C

Score: 2

Part (a)(i) did not earn the point for the correct expression. Part (a)(ii) earned no points. The response does not show a valid starting point for conservation of momentum. The second point cannot be earned without the first point. Part (b) earned 2 points. One point was earned for a graph that contains two straight functions that both start at the origin and each have a different positive slope before time $t_{\text {f. }}$. One point was earned for a graph for D that is greater than the graph for S for all times greater than zero. Note: The response shows that the D line ends before $2 t_{5}$, the implication is that the line continues. The response does not show two horizontal functions after t_{f}. Parts (c)(i) and (c)(ii) earned no points. Neither response estimates the velocity of the center of mass of the system in relation to the original velocity of the disk. It does not appear in the response that the premise of the unequal masses is being addressed. Part (c)(iii) earned no points because the response does not start with the law of conservation of momentum and does not show the correct equation. Part (c)(iv) earned no points because the response shows no attempt to apply a limiting case or functional dependence to the equation in part (c)(iii) and does not link the equation in part (c)(iii) to the estimate in part (c)(i).

