AP® European History
Sample Student Responses and Scoring Commentary

Inside:

- Document-Based Question
- Scoring Guideline
- Student Samples
- Scoring Commentary

© 2019 The College Board. College Board, Advanced Placement, AP, AP Central, and the acorn logo are registered trademarks of the College Board. Visit the College Board on the web: collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.
Question 1 — Document-Based Question

Maximum Possible Points: 7

“Evaluate whether or not the Catholic Church in the 1600s was opposed to new ideas in science.”

<table>
<thead>
<tr>
<th>Points</th>
<th>Rubric</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **A: Thesis/Claim (0-1)** | Responds to the prompt with a historically defensible thesis/claim that establishes a line of reasoning. (1 point)
To earn this point, the thesis must make a claim that responds to the prompt rather than restating or rephrasing the prompt. The thesis must consist of one or more sentences located in one place, either in the introduction or the conclusion. | The thesis must take a position on whether the Catholic Church in the 1600s was opposed to new ideas in science, with some indication of the reason for taking that position.
• “The Catholic Church was opposed to new ideas as it put the Bible under heavy criticizing, caused people and clergy to question teachings, and provided evidence that the sun was the center of the universe and not the Earth.”
• “The Catholic Church in the 1600s was not opposed to new ideas in science due to the willingness of the Catholic Church to listen and learn while also having the desire to conduct science themselves.”
• “The Catholic Church opposed new scientific ideas because they threatened the Church’s interpretation of scripture.” |
| **B: Contextualization (0-1)** | Describes a broader historical context relevant to the prompt. (1 point)
To earn this point, the response must relate the topic of the prompt to broader historical events, developments, or processes that occur before, during, or continue after the time frame of the question. This point is not awarded for merely a phrase or reference. | To earn the point, the essay must accurately describe a broader context relevant to the Catholic Church in the early modern period and/or new ideas in science.
Examples might discuss the following topics, with appropriate elaboration:
• The Protestant Reformation
• The Catholic Reformation
• Scientific Revolution
• Geocentricism
• The development and spread of the Gutenberg printing press |
Question 1 — Document-Based Question (continued)

<table>
<thead>
<tr>
<th>C: Evidence (0-3)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence from the Documents:</td>
<td>Evidence beyond the Documents:</td>
</tr>
<tr>
<td>Uses the content of at least three documents to address the topic of the prompt. (1 point)</td>
<td>To earn 1 point, the response must accurately describe — rather than simply quote — the content from at least three of the documents to address the topic of the Catholic Church’s stance on new scientific ideas.</td>
</tr>
<tr>
<td>OR</td>
<td>To earn 2 points, the response must accurately describe — rather than simply quote — the content from at least six documents. In addition, the response must use the content from the documents to support an argument in response to the prompt.</td>
</tr>
<tr>
<td>Supports an argument in response to the prompt using at least six documents. (2 points)</td>
<td>Evidence from the documents may include such examples as:</td>
</tr>
<tr>
<td></td>
<td>• Cardinal Bellarmine upholding the geocentric view of the world</td>
</tr>
<tr>
<td></td>
<td>• Galileo’s claims that geocentrism is a result of not understanding the Bible</td>
</tr>
<tr>
<td></td>
<td>• Jesuit astronomers, such as Schreiner, observing sunspots</td>
</tr>
<tr>
<td>Evidence beyond the Documents:</td>
<td>Typically, statements credited as evidence from outside the documents will be more specific details relevant to an argument, analogous to the function of evidence drawn from the documents.</td>
</tr>
<tr>
<td>Uses at least one additional piece of specific historical evidence (beyond that found in the documents) relevant to an argument about the prompt. (1 point)</td>
<td>Typically, statements credited as contextualization will be more general statements that place an argument, or a significant portion of it, in a broader context.</td>
</tr>
<tr>
<td>To earn this point, the evidence must be described, and it must be more than a phrase or reference. This additional piece of evidence must be different from the evidence used to earn the point for contextualization.</td>
<td></td>
</tr>
</tbody>
</table>
D: Analysis and Reasoning (0–2)

Sourcing: For at least **three** documents, explains how or why the document’s point of view, purpose, historical situation, and/or audience is relevant to an argument. (1 point)

See document summaries for examples of possible sourcing.

Complexity: Demonstrates a complex understanding of the historical development that is the focus of prompt, using evidence to corroborate, qualify, or modify an argument that addresses the question. (1 point)

This understanding must be part of an argument, not merely a phrase or reference.

To earn this point, the response must explain how or why — rather than simply identifying — the document’s point of view, purpose, historical situation, or audience is relevant to an argument that addresses the prompt for each of the three documents sourced.

Complexity should emerge from the essay’s argumentation and use of evidence, and while it does not have to be present throughout the essay, the complexity point should consist of substantial elaboration.

Examples of demonstrating a complex understanding for this question might include:

- Explaining nuance of motivation by analyzing how different elements of the Church had different goals and motivations in dealing with the implications of the Scientific Revolution
- Explaining how the Church both opposed and supported scientific investigation as Church authorities attempted to maintain control over religion, knowledge, and education
- Explaining relevant and insightful connections within and across periods, such as comparing the actions of the Church during the Scientific Revolution of the 1600s with the actions of the Church during the Protestant Reformation of the 1500s, or explaining shifts within the Catholic clergy’s willingness to consider scientific ideas over the period identified by the prompt
- Confirming the validity of an argument by corroborating multiple perspectives across the documents and using outside evidence
- Qualifying or modifying an argument by considering diverse or alternative views or evidence, such as pointing out the political interests that influenced the Church’s stance on the Scientific Revolution

If response is completely blank, enter -- for all four score categories A, B, C, and D.
Question 1 — Document-Based Question (continued)

Document Summaries and Possible Sourcing

<table>
<thead>
<tr>
<th>Document</th>
<th>Summary of Content</th>
<th>Explains the relevance of point of view, purpose, situation, and/or audience by elaborating on examples such as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Paolo Foscarini</td>
<td>• Advocates for Copernicus’s model of planetary movements in a heliocentric system</td>
<td>• Notes that many are questioning the Ptolemaic model based on new observations (situation)</td>
</tr>
<tr>
<td></td>
<td>• Notes that many are questioning the Ptolemaic model based on new observations (situation)</td>
<td>• Discusses the fear many scholars have of contradicting the Bible in endorsing the Copernican model (POV/audience)</td>
</tr>
<tr>
<td>2. Cardinal Bellarmine</td>
<td>• Replies to Foscarini and affirms the Catholic belief in the geocentric model in order to uphold the authority of the Church</td>
<td>• Cites the Council of Trent in order to remind Foscarini of the danger of contradicting scripture (purpose/audience)</td>
</tr>
<tr>
<td></td>
<td>• Is acting as an agent of the Catholic Reformation by citing the Council of Trent (situation)</td>
<td></td>
</tr>
<tr>
<td>3. Christoph Greinberger</td>
<td>• Advocates for Jesuits to be allowed to think more freely about descriptions of the universe</td>
<td>• Is countering the idea that scientific observations are against scripture (purpose/audience)</td>
</tr>
<tr>
<td></td>
<td>• As a German Jesuit mathematician, he wants more freedom to investigate new ideas (POV)</td>
<td>• As a German Jesuit mathematician, he wants more freedom to investigate new ideas (POV)</td>
</tr>
<tr>
<td>4. Galileo Galilei</td>
<td>• Claims that contradictions between the Bible and heliocentrism are attributable to the “abstruse” language of the Bible</td>
<td>• Is acting in his own self-interest as an astronomer who believes in the heliocentric model and is persecuted as a result (POV)</td>
</tr>
<tr>
<td></td>
<td>• Galileo seeks the support of political authorities as sponsors of science and to counterbalance the Church (audience/purpose)</td>
<td></td>
</tr>
<tr>
<td>5. Maria Celeste Galilei</td>
<td>• Claims that the Pope supports Galileo based on letters sent to Galileo</td>
<td>• To reassure his daughter, Galileo may have been exaggerating his support from the Pope (purpose)</td>
</tr>
<tr>
<td></td>
<td>• As a radical nun, Suor Arcangela is more likely to tolerate dissenting views such as those of Maria and Galileo (situation)</td>
<td>• As a radical nun, Suor Arcangela is more likely to tolerate dissenting views such as those of Maria and Galileo (situation)</td>
</tr>
<tr>
<td>6. Sunspots image</td>
<td>• Shows Christoph Scheiner, a German Jesuit astronomer, observing sunspots</td>
<td>• Shows Jesuit astronomical research to a broader educated public (audience)</td>
</tr>
<tr>
<td></td>
<td>• Places the Jesuit researchers in the best possible light as scholars and men of faith (POV)</td>
<td>• Places the Jesuit researchers in the best possible light as scholars and men of faith (POV)</td>
</tr>
<tr>
<td>7. Critique of Descartes</td>
<td>• French Jesuit school rejects Descartes’s ideas as heretical</td>
<td>• Standing for traditional order against Descartes’s more direct challenge to scriptural authority (purpose)</td>
</tr>
<tr>
<td></td>
<td>• Sees Descartes’s model as undermining Church authority (POV)</td>
<td></td>
</tr>
</tbody>
</table>
Question 1 — Document-Based Question (continued)

Introductory notes:

- Except where otherwise noted, each point of these rubrics is earned independently, e.g., a student could earn a point for evidence without earning a point for thesis/claim.
- **Accuracy**: The components of this rubric require that students demonstrate historically defensible content knowledge. Given the timed nature of the exam, the essay may contain errors that do not detract from the overall quality, as long as the historical content used to advance the argument is accurate.
- **Clarity**: Exam essays should be considered first drafts and thus may contain grammatical errors. Those errors will not be counted against a student unless they obscure the successful demonstration of the content knowledge, skills, and practices described below.

Note: Student samples (when available) are quoted verbatim and may contain grammatical errors.

A. Thesis/Claim (0-1 point)

The thesis must take a position on whether the Catholic Church was opposed to new ideas in science, with some indication of the reason for taking that position.

Responses earn 1 point by responding to the prompt with a historically defensible thesis that establishes a line of reasoning about the topic. To earn this point, the thesis must make a claim that responds to the prompt rather than simply restating or rephrasing the prompt. The thesis must suggest at least one main line of argument development or establish the analytic categories of the argument.

The thesis must consist of one or more sentences located in one place, either in the introduction or the conclusion, which is not necessarily limited to the first or last paragraph.

Examples of acceptable theses:

- “Thus, the Catholic Church in the 1600s was split between those who believed in science and wanted to reconcile it with Catholic tradition and those who oppose it because it undermined Catholic doctrine.” *(The response addresses the prompt with an evaluative claim that establishes a line of reasoning.)*
- “Although there were individual members of the clergy who were willing to accept new ideas in science, the Church as an institution was generally opposed to these ideas because they contrasted traditional interpretation of scripture, traditional scientific thought, and common ideas in philosophy.” *(The response addresses the prompt with a robust evaluative claim that establishes a line of reasoning.)*
- “However, in the 1600s, the Catholic Church strongly opposed new developments in Science as they considered these developments to be against the Bible.” *(The response addresses the prompt with a claim that establishes a minimally acceptable line of reasoning.)*
Example of unacceptable theses:

- “Although it is a commonly-held belief today that the Catholic Church is anti-science and doesn’t accept new ideas in history, this is a miscategorization of the Church’s beliefs at times.” (The response acknowledges the terms of the question, but the line of reasoning is nonspecific and essentially repeats the terms of the prompt. If this statement was immediately followed or preceded by another sentence suggesting a valid reason for taking this position, then the two sentences taken together could receive credit.)

- “People during the 16th-17th centuries began to realize that there was another view of the universe that made more sense to our world but went against the Catholic Church. This reveals that the Catholic Church opposed new ideas in science during the 1600s.” (The response merely indicates the position that will be argued without giving any indication as to the line of reasoning. If this statement was immediately followed or preceded by another sentence suggesting a valid reason for taking this position, then the two sentences taken together could receive credit.)

- “The Catholic Church in the 1600’s were opposed and not opposed to the new ideas being introduced in the 1600’s.” (The response addresses the prompt by merely rephrasing it.)

B. Contextualization (0-1 point)

Responses earn 1 point for contextualization by describing a broader historical context relevant to the prompt. To earn this point, the response must accurately and explicitly connect the context of the prompt to broader historical events, developments, or processes that occur before, during, or continue after the time frame of the question. This point is not awarded for merely a phrase or reference.

To earn the point, the essay must accurately describe a broader context relevant to the Catholic Church in the early modern period and/or new ideas in science.

Examples of acceptable contextualization:

- “The 1600’s in Europe was a time of intellectual change. The rediscovery of classical texts during the Renaissance also reintroduced Greco-Roman scientific thought from the likes of Aristotle and Ptolemy along with reasoning and logic. However, with more advanced technological innovations, such as the telescope and microscope, closer observation of the natural world has lead leading scientists such as Tycho Brahe, Copernicus, and Galileo to question the traditional Ptolemaic beliefs, the scientific viewpoint of the Catholic Church.” (The response relates scientific development over time to challenge the position of the Catholic Church.)

- “The Scientific Revolution began in the Seventeenth century. It consisted of using reasoning and observation to know the truth (René Descartes and Francis Bacon). As a result, scientists such as Nicholas Copernicus observed to find new truths. Scientists believed that the truth can never be given and can only be learnt by doubting and use of logic. Copernicus developed the heliocentric theory. This theory stated that the sun, not the earth, was the center of the Solar System. This contradicted from the geocentric view of the earth being the center while the sun, moon and planets orbited it. The geocentric view was accepted for centuries and was taught by the Catholic Church.” (The response recognizes the development of new scientific evidence and relates it to the traditional beliefs of the Catholic Church.)
Examples of unacceptable contextualization:

- “Prior to common knowledge, it was believed that the universe revolved around the Earth as stated in the Holy Scriptures. The Catholic Church promoted this idea for many years, however it is known that those who opposed the Church are punished.” (The response attempts to lay the foundation for the Church’s geocentric stance but does so vaguely without providing sufficient information.)

- “The Enlightenment was happening during this time period, through it emerged many new ideas in both philosophy and science. A more rational and secular way of thinking was becoming popular. Many Enlightenment ideas contradicted those of the Church. However, members of the Catholic Church had a hard time denying clear evidence and over time began to view it as a possibility.” (The response relating the Enlightenment to the Scientific Revolution is incorrect.)

Students may choose to discuss such potentially relevant examples of context as:

- The Catholic Reformation and the Council of Trent
- The educational mission of the Jesuit order
- The spread of the printing press and scientific ideas
- The wars of religion and diminishing Catholic political authority

C. Evidence (0-3 points)

a) Document Content — Addressing the Topic (1 point)

In order to achieve the first point, the response must use the content of at least three documents to address the topic of the prompt (1 point). To earn 1 point for evidence from the documents, the response must accurately describe — rather than simply quote — the content from at least three of the documents to address the topic of the Catholic Church’s reaction to the Scientific Revolution.

Example of describing the content of a document:

- (Document 2): “In document 2, a letter from Cardinal Bellarmine to Paolo Antonio Foscarini, Cardinal Bellarmine says that Copernicus’s theory is dangerous, and that interpreting the Bible in your own way is against the Catholic religion.” (The response provides an accurate summary of the document.)

b) Document Content — Supporting an Argument (1 point)

In order to achieve the second point for evidence from the documents, the response needs to support an argument in response to the prompt by accurately using the content of at least six documents (2 points). The six documents do not have to be used in support of a single argument, but they can be used across subarguments or to address counterarguments.
Question 1 — Document-Based Question (continued)

Examples of supporting an argument using the content of a document:

- (Document 1): “The criticism of the Catholic Church for new scientific ideas is apparent, but there was some acceptance present within the community. The account of a Catholic monk in document 1 expresses the uncertainty in the community of which side to believe. The Catholic monk recognizes that Copernicus’ theory is valid but after which he mentions how it has been suppressed by the Church because of its disalignment with the Church’s values.” (The response connects the content of the document to an argument about the debate on heliocentric ideas within the Catholic Church.)

- (Document 6): “A Jesuit astronomer is shown using new scientific technologies like the telescope to investigate sunspots. Sunspots proved an imperfection in the Heavenly Bodies which were said by the Church to be perfect. His investigation and published book go against the belief of the Church.” (The response successfully uses evidence from the documents to support a line of argument.)

c) Evidence beyond the Documents (1 point)

The response must use at least one additional piece of specific historical evidence (beyond that found in the documents) relevant to an argument that addresses the topic of the Catholic Church’s reaction to the Scientific Revolution (1 point). To earn this point, the evidence must be described, and it must be more than a phrase or reference. This additional piece of evidence must be different from the evidence used to earn the point for contextualization.

Typically, statements credited as contextualization will be more general statements that place an argument or a significant portion of it in a broader context. Statements credited as evidence from outside the documents will typically be more specific details relevant to an argument, analogous to the function of evidence drawn from the documents.

Example of providing an example or additional piece of specific evidence beyond the documents relevant to an argument that addresses the prompt:

- “Furthermore, Galileo was imprisoned by the Catholic Church for his ‘heretic’ ideas, which implies that the Church feared that his new ideas regarding science would eventually lead to the deterioration of power held by the Catholic Church.” (The response provides accurate outside information relevant to an argument that addresses the prompt.)
Question 1 — Document-Based Question (continued)

D. Analysis and Reasoning (0-2 points)

Document Sourcing (1 point)

For at least three documents, the response explains how or why the document’s point of view, purpose, historical situation, and/or audience is relevant to an argument that addresses the prompt (1 point). To earn this point, the response must explain how or why — rather than simply identifying — the document’s point of view, purpose, historical situation, or audience is relevant to an argument addressing the prompt for each of the three documents sourced.

Example of acceptable explanation of the significance of the author’s point of view:
- (Document 2): “His point of view is also essential in understanding the Church’s position on new scientific thought as Bellarmine was a high ranking Cardinal and thus was a reflection of the ideas held by the Church hierarchy.” (The response provides sourcing regarding the point of view of the author relevant to his position within the Catholic Church.)

Example of acceptable explanation of the significance of the author’s purpose:
- (Document 1): “The Catholic monk and scientist believed that Copernicus’ theory was right in a book he wrote. As a Catholic himself he was aware this theory contradicts the Church doctrine. However, he was still hoping for other people to learn about the new theory and this is his purpose of writing this book. His audience was other intellectuals like him, he tried to express concerns he had regarding the church and wanted to get some feedback from his peers.” (The response successfully connects the document’s purpose to an argument relevant to the topic of the prompt.)

Example of acceptable explanation of the relevance of the historical situation of a document:
- (Document 5): “Galileo asked his daughter to keep the letters from the Pope private. It speaks volumes that the Pope of the Catholic Church had to be secretive about his support for a scientist.” (The response successfully connects the document’s historical situation to an argument relevant to the topic of the prompt.)

Example of acceptable explanation of the significance of the audience:
- (Document 7): “This critique from a Jesuit College is aimed at those who may want to follow Descartes thoughts and believe it; moreover, by claiming those who may want to follow Descartes reasoning are heretics, it further shows their intent to keep people from going away from traditional Catholic thinking like Protestants did.” (The response successfully connects the document’s audience to an argument relevant to the topic of the prompt.)
Question 1 — Document-Based Question (continued)

Demonstrating Complex Understanding (1 point)

The response demonstrates a complex understanding of the historical motivations and factors that influenced the Catholic Church’s reaction to the Scientific Revolution, using evidence to corroborate, qualify, or modify an argument that addresses the question. This understanding must be part of an argument, not merely a phrase or reference.

Demonstrating a complex understanding might include:
- Explaining nuance of motivation by analyzing how different elements of the Church had different goals and motivations in dealing with the implications of the Scientific Revolution
- Explaining how the Church both opposed and supported scientific investigation as an attempt of Church authorities to maintain control over religion, knowledge, and education
- Explaining relevant and insightful connections within and across periods, such as comparing the response of the Catholic Church to the Scientific Revolution to the Church’s response in dealing with Luther and the Protestant Reformation
- Confirming the validity of an argument by corroborating multiple perspectives across the documents and outside evidence
- Qualifying or modifying an argument by considering diverse or alternative views or evidence, such as pointing out the considerations behind the Church’s reluctance to embrace all aspects of the Scientific Revolution.

Examples of demonstrating complex understanding:
- The response demonstrates nuance by weaving the documents together to show that while some elements of the Church hierarchy maintained traditional views, others, such as the Jesuit scholars, were more willing to question tradition and engage with the new discoveries of the Scientific Revolution.
- The response uses multiple causes of the Reformation and wars of religion to show that the Church was concerned about losing its authority and was considering the benefits and drawbacks of new scientific ideas such as heliocentrism. These ideas could be seen as undermining Scripture, but also risked undermining the Church if empirically verifiable observations and discoveries were rejected.
- Using documents and outside evidence, the response corroborates its claim that the Church hardened its stance over time, using the example of Galileo’s heresy trial as evidence, as well as the Inquisition and the rejection of Descartes’s and Newton’s models of the universe.
- The response connects the Church’s actions in the 1500s in response to the Protestant Reformation and the wars of religion with the Church’s actions in response to the new science.
In the 1600s, the Catholic Church was still recovering from a large exodus of its members during the Protestant Reformation. In order to maintain a place in European society, the Church had to address this problem. One of their most notable responses was the Council of Trent, which ended practices like indulgences and relics, while also reaffirming church doctrine. After this challenge to Catholic authority, a direct, the Scientific Revolution blossomed. With this came much conflict between the Church and Science, mostly relating to the heliocentric model.

To a large extent, the Catholic Church in the 1600s was opposed to the new ideas expressed by science because they rendered a literal interpretation of scripture false. However, to a lesser extent the Church was not opposed to these ideas because some science was clearly observable and being explored by some prominent members of the clergy.

To a large extent, the Catholic Church opposed the Scientific revolution because it rendered some scriptures false, depending on the interpretation. For example, a Cardinal of the Church named Cardinal Bellarmine once sent a response to a monk who practiced science which essentially stated that the Council of Trent made it illegal to interpret scripture “against the common consensus of the Holy Fathers”. It is important to note that as this was a personal letter, the beliefs expressed by Cardinal Bellarmine would probably align closely to his actual beliefs because the only person really it would be a single person, not the public on the
Church. Another member of the Catholic Church, a Jesuit math professor named Grintberger, also agreed that the church did not support the ideas represented by the Scientific Revolution at all. He stated once that the Catholic Church did not allow its members to pursue science, saying, "his hands have been tied.

This must be taken with a grain of salt however, because Grintberger was a professor, in Rome no less; so he probably chafed against the Church's rules—these may not have been his inner beliefs. Galileo Galilei is a very prominent figure in the Scientific Revolution, and attempted to persuade people of the Heliocentric model with his telescope. However, in his letter to the Grand Duchess Christina of Tuscany in 1615, he recognized that because of a commonly literal interpretation of the Bible, the Church couldn't believe his ideas. While the Roman Catholic Church officially condemned this work, Galileo supports science in this letter; it is important to note that later he denies these very same ideas. He was put on trial by the Catholic Church for heresy, and told to recant his ideas or else—so he took it all back to keep his life and freedom. Other scientific figures and their ideas were attacked as well, especially Descartes. For example, the Jesuits of Clermont College in 1665, Paris, utterly demonize him in a critique. They call Descartes "distasteful", "heretical" and "disturbance of the traditional order". This critique needs to be read skeptically, however, because these are Jesuits.
of a College and may be trying to discredit Descartes solely
to maintain their teaching position and remain relevant. To
sum up, the Catholic Church in the 1600's was mostly opposed to new
scientific insights.

However, to a lesser extent the Church was not opposed
because some science could easily be proven and some clergy
were approaching science with less hostility. One of the
such clergyman wrote an essay titled "An Epistle Concerning
the Pythagorean..." His name was Foscarini, and he was
both a monk and a scientist, a hypothetical combination
during this time period. The essence of his writing is
that educated people and all sorts of problems with Ptolemaic
models, so there is probably another model out there like
Copernicus. However, it is important to note that even though
because this monk is also a scientist, he is clearly not
completely an obedient example of a Catholic and is praised.

Indeed, another clergyman, Maria Celeste Galilei, a nun,
shows that the church does end up supporting Galileo in her
letter to Galileo. She says that a Cardinal who became a
highly valued Galileo's ideas. With Maria Galilei, it
is important to realize that she is Galileo's daughter,
calling her to lean toward her father's radical ideas.

Some clergy members were in favor of science's new ideas.

In conclusion, to a large extent, the Catholic Church
was opposed to new scientific ideas in the 1670's because
it rendered scriptures false. However, to a lesser extent
the Catholic Church wasn't opposed to new scientific ideas because some Catholic clergy people were practicing science. With the advent of the Scientific Revolution, the Catholic Church and religion became less important in people's lives, and eventually empiricism became widely accepted as a reliable source of knowledge, not just Scripture from the Bible. The Church lost its monopoly after the Protestant Reformation, but the blow that took away its final vestiges of authority was Science.
During the 1500s, primarily in the Mediterranean area (Italy), the upper middle class encountered the Italian Renaissance. As the Renaissance was identified as the revival of classical Greek and Italian works, new "isms" were created during this time. As humanism, secularism, and idealism were developed, this was the first time ever when humans were glorified and praised for their accomplishments; there was more to life than religion. This can be seen through the works of Machiavelli, Michelangelo, and other Renaissance artists. Additionally, the Renaissance spread to the North of the Holy Roman Empire, where other thinkers/humanists such as Erasmus had great contributions. Therefore, using the science and mathematics rediscovered in the Renaissance, scientists such as Copernicus, Galileo, and Newton applied and discovered even bigger concepts which contradicted the Catholic Church. Thus, the Catholic Church in the 1600s was definitely opposed to new ideas in science revealed by there actions of being fearful and against the new ideas proposed by scientists, and the fear of changing their standards, morals, and concepts established at the Council of Trent to adjust to their current society.

The Catholic Church in the 1600s was definitely opposed to new ideas in science revealed by there actions of being fearful and against the new ideas proposed by scientists. As discussed by Foscarini, the Catholic Church doesn't like anything new which contradicts and makes people question their teachings. In certain ways this can be compared to the Protestant Reformation, where due to the ideas triggered by Martin Luther, the
European people began to question the teachings of the Roman Catholic Church. Yet, Foscarini does not disagree with Copernicus' findings, however he deems them incorrect towards the questioning the Church's logic. Unfortunately, Foscarini's perspective is very biased as he is a Catholic monk. Therefore, it is quite obvious that he would be pro-Church teachings and only support the Church. This is significant because as he is a monk, he is also a scientist, thus we must question how he combined his jobs of being a monk and a scientist, since both are very contradicting. Additionally, as Cardinal Bellarmine discusses his reaction to the heliocentric theory, first off as identified before he is a Cardinal, a dedicated man to the Roman Catholic Church. So it is again obviously biased that he is unsupportive of the teachings and findings of a new concept. However, it is significant that the Cardinal is not entirely closed-minded since towards the end of the letter, he basically says he will believe it when he sees it. Finally, also discussed by the Jesuits of Clermont College, which yet again are biased towards new thoughts due to them being serious Catholic worshipers. However, there is more to it. The time period is 1665 in Paris, this is the beginning of the center of the Enlightenment which is fueled by reason to finding new natural laws. Descartes was famous for discovering the deductive method to attack the scientific
method using mathematical strategies. The Enlightenment was a direct result of the Scientific Revolution, as during the Scientific Revolution, new natural laws were discovered for scientific concepts. However, during the Enlightenment, new natural laws were searched for economics (law of iron wages) and government (separation of powers, Montesquieu). Therefore, it is understandable why the Roman Catholic Church was not open to new ideas and concepts, as in their eyes, too much radicalism was surrounding them, as people were also resorting to deism, which they didn't even believe that God was active in people's lives after the creation of Earth. Also, the introduction of these new ideas caused people to try not to go against the church yet they still questioned.

The Catholic Church in the 1600s was definitely opposed to new ideas in science revealed by their fear of changing their standards, morals, and concepts established at the Council of Trent to adjust to their current society. As humans are seen throughout history, people are fearful of change, perfectly exhibited by the Age of Anxiety where similarly new ideologies regarding relativity, humanities importance and the subconscious caused people to freak out. This led to the impressionism art.
movement where people painted how they saw the world or themselves. A great post-impressionist painter is Vincent van Gogh, as in his self-portrait, he painted out of swirls or confusion people were confused. Back to the 1600s, Grienberger somewhat agrees with the new scientific concepts, and like Luther, he wants to associate reform to adjust the church's teachings to current ideologies. As Grienberger is a mathematics professor, this adjusts his perspectives since math is a huge factor in science. Thus that may be a reason why he agrees with the new teachings. To support this even further, as depicted in Document 4, the church themselves are so internally conflicted with the discoveries of new ideas that they had to find out for themselves. The church did not want to abide by societies new findings, yet they too wanted to be up to date on the new advancements, but were too conflicted to admit it. Finally, a Catholic Nun, Galilei, had radical beliefs, yet she still did not call out for reform. This is significant because since the time period was 1623, making any type of call or voice out for anything was laughed upon since at that time women were viewed as inferior to men. However, due to the
stubbornness of the Church, no reform was made until way later on in history to adjust with societies current accepted values. Furthermore, the Catholic Church established an Index of Forbidden Books, that not any Catholic were allowed to read because they did not want their followers to be introduced to new contradicting ideas against the Church. However, some may say that all the Catholic Church in the 1600s was not opposed to new ideas in science. For example, during the late period of the Renaissance the church would pay for artists to paint highly secular, idealistic paintings such as naked man on the walls. Nudity would have been shunned in the Middle Ages yet the revival of scientific works during the Renaissance led the church to some openness. But as supported by the Catholic Church revealing that they were fearful and against new ideas proposed by scientists and fear of changing their standards, morals, and concepts established at the Council of Trent the Roman Catholic Church was definitely opposed to new ideas in science.
In the 1600s came an age of curiosity and exploration within the human mind. The 17th century was preceded by the enlightenment, which was characterized by new ideas and ideologies that contradicted the government/church. The enlightenment brought to light and influenced the scientific revolution, which consisted of astronomers and mathematicians coming up with new ways to interpret the world. This wave of new ideas challenged the Catholic Church because it contradicted certain beliefs. Although the scientific revolution challenged the Catholic church in some ways, the Church was not opposed to new ideas in science in the 1600s, because these ideas did not contradict God's plans/beliefs, the discoveries about the earth are factual and accurate, and finally because authorities of the church publicly accepted the new ideas in science.

The ideas proposed by many scientists in the 1600s are factual and accurate, therefore not opposed by the Catholic Church.

According to Cardinal Bellarmine, who is catholic, the ideas of Paolo Antonio Foscarini are intelligent, and the ideas of the church can be challenged as long as the Scriptures are not disrespectfully targeted (cloc. 2). This clearly demonstrates that the discoveries made at this time period are accurate because Cardinal Bellarmine notes them to be factual and intelligent, which indicates no opposition from the church.
Similarly, the monk and scientist who proposed these ideas himself, Paolo Foscarini clearly mentions that there is no better theory or hypothesis than that of Copernicus (doc. 1). Foscarini is a monk and a Catholic, and obviously approving the heliocentric theory because he says it is accurate, which demonstrates approval from the Church. Foscarini may be taking this standpoint because he is a monk and a scientist as well, therefore his perspective could be twisted toward acceptance of Copernican theories. His viewpoint may have been influenced by Leonardo Da Vinci, who demonstrated extreme religion, while proposing modern scientific ideas during the Da Vinci Renaissance.

Another way in which the Catholic Church was not opposed to new ideas in science can be seen in the fact that these ideas do not contradict those of God in any way. Christophr Grienberger, a German Jesuit argues that the 'imperfection in the heavens' is not contrary to the theology of God (doc. 3). Clearly this excerpt explains that the scientific advances were completely aligned with the rules of God. Similar to Foscarini, Grienberger was not only a Jesuit, but also a mathematic professor. So he may have been biased toward reasoning and science. In a parallel way, Galileo Galilei argues that God would not ever ask people to deny science and reason (doc. 4).
Clearly, this supports the fact that biblically God was not opposed to scientific reason and thought. His purpose in writing this letter to the Grand Duchess may have been to seek authoritative approval of his work and further influence the church to have liberal ideas in demonstrating approval from the Duchess.

Thirdly, it is clear that Church authority figures were not against the spread of ideas. Maria Galilei, a Catholic nun reveals that the Pope values Galileo Galilei’s scientific abilities (doc. 5). A church figure such as the pope who approved Galileo’s teachings demonstrates the ultimate ‘okay’ from the Catholic Church. Maria Galilei’s purpose in writing to her father could be to encourage the man she cares for dearly to continue his teachings. Other scientists during the 1600s, such as Johannes Kepler who have had radical ideas about the universe have not been punished or negatively affected by the Catholic church, which further supports this argument. An illustration from a text on sunspots portrays two scientist conducting research about the universe (doc. 6). This demonstrates approval of church authority figures because the man who illustrated the image was a Jesuit himself, and he is positively depicting scientific advances and ideas. Considering the image was published publicly, Christoph Scheiner may have been taking into consideration his audience, and embodying the scientist...
As clearly demonstrated by several historical documents, the Catholic Church was not opposed to new ideas in the 1600s; because authority figures of the Church approved of the research, the advances were factual and accurate, and they did not contradict the teachings of God. This argument can be compared across time periods to the enlightenment, in which philosophers were publicly proposing new ideas to reform the government. Although in this case the Church did not oppose scientific advances, the governmental authorities did not approve of enlightening thinkers and their teachings.
Question 1 — Document-Based Question

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The Document-Based Question (DBQ) is designed to evaluate the degree to which students can analyze various types of historical documents in order to construct an essay that responds to the tasks required by the prompt. Responses were assessed on the extent to which they met seven requirements specified in the scoring guidelines. This particular DBQ asked students to evaluate whether or not the Catholic Church in the 1600s was opposed to new ideas in science. Students were provided with seven documents (one of which was an image) on which to base their responses. In order to answer this question, students had to have an understanding of the early modern period and evaluate the Catholic Church’s views of new ideas in science (Key Concept 1.1 IV). Students were asked to write an essay containing a historically defensible claim that took a position on whether or not the Catholic Church in the 1600s was opposed to new ideas in science, with some indication of the line of reasoning. The responses were expected to provide context by situating the Catholic Church and/or the historical development of new ideas in science in the early modern period. To earn 1 point for evidence students were required to describe the content of at least three documents as evidence related to the Catholic Church’s stance on new scientific ideas, and to earn 2 points students had to use at least six documents accurately to support an argument. Responses were also required to provide additional historical evidence beyond the documents connected to the Catholic Church’s stance on new scientific ideas. In addition, responses were expected to articulate the audience, purpose, point of view, or historical situation for at least three sources. Finally, responses were required to demonstrate a complex understanding of the motivations of the Catholic Church, both to support and to oppose scientific investigation: by explaining a nuanced relationship of different elements within the Catholic Church and its stance on new scientific ideas; explaining insightful connections among these motivations; explaining connections within and across periods; qualifying or modifying an argument by considering diverse or alternative views or evidence; or qualifying one of the motivations with an alternative motivation.

Sample: 1A

Score: 7

The response earned the thesis point in the introduction by stating that while the Catholic Church was opposed to new ideas in science as potential threats to a literal interpretation of the Bible, it also supported some scientific ideas as observable truths. The response earned the contextualization point in the introduction by explaining the roles the Protestant Reformation and the Scientific Revolution played in exposing the vulnerability of the Catholic Church in the 1500s, which caused the Church to address these threats at the Council of Trent, both reforming and reaffirming the faith. The response earned 2 evidence points for using the content from at least six documents (1, 2, 3, 4, 5, and 7) to support an argument relevant to the prompt that the Church was both opposed to the new science as it threatened traditional teachings and was also clearly interested in the new ideas as practiced by members of the clergy. The response earned 1 point for evidence beyond the documents with the reference to the trial of Galileo. The response earned the sourcing point by successfully analyzing three documents, Document 2 for audience and Documents 3 and 5 for point of view. The response earned the complexity point for a nuanced argument on the motivations and perspectives of the various groups within the Church, as well as those beyond the confines of the Church, as empirical evidence became more accepted over time.
Sample: 1B
Score: 4

The response earned the thesis point in the introduction by claiming that the standards established at the Council of Trent in the prior century were being challenged by the new ideas of science in the 1600s. The response earned the point for contextualization because it describes a broader context of the Renaissance, and it ties the Renaissance to the Scientific Revolution and to scientists’ contradiction of Church standards. The response earned 1 point for using at least three documents. While referencing the content of six documents (1, 2, 3, 4, 5, and 7), it accurately uses only three documents (2, 3, and 7) to support an argument, so did not earn the second evidence point. The response earned 1 point for evidence beyond the documents by including the *Index of Forbidden Books* to support the contention that the Church chose to limit the information available to Catholics. The response did not earn a sourcing point because, while it attempts to establish the point of view of four documents (1, 2, 3, and 7), the attempt is not sufficient. It either asserts that the author is biased or it offers an inadequate explanation of the link between the point of view and the content of each of the documents. The response did not earn a point for demonstrating complex understanding because its attempt to compare Luther to the Church’s response to new ideas is not sufficient. The explanation and comparison of various responses to change, the challenges of the Age of Anxiety and art in the Renaissance, for example, do not provide enough connection to the argument.

Sample: 1C
Score: 2

The response did not earn the thesis point because its attempt to claim that the Church was not opposed to new ideas in science because these ideas were factual is historically inaccurate and indefensible. The response did not earn the contextualization point because the attempt is both vague and inaccurate as it asserts, in the introduction, that the Enlightenment led to the Scientific Revolution. The response earned 1 point for evidence from the documents by using content from five documents (1, 3, 4, 5, and 6), but it does not support an argument with the requisite six documents. The response did not earn the evidence beyond the documents point for its reference to Kepler because it is not sufficient and does not further an argument. The response earned the sourcing point by successfully analyzing Document 1 for point of view, Documents 4 and 6 for audience, and Document 5 for purpose. The response did not earn the point for demonstrating complex understanding because its discussion of the treatment of da Vinci and the Enlightenment is not linked sufficiently to the Catholic Church or to an argument.