
CSP Exam Reference Sheet
Instruction Explanation 

Assignment, Display, and Input 
Text: 
a ← expression 

Block: 

a expression 

Evaluates expression and then assigns a copy of the result to  
the variable a. 

Text: 
DISPLAY(expression) 

Block: 

DISPLAY expression 

Displays the value of expression, followed by a space. 

Text: 
INPUT() 

Block: 
INPUT 

Accepts a value from the user and returns the input value. 

Arithmetic Operators and Numeric Procedures 
Text and Block: 
a + b 
a - b 
a * b 
a / b 

The arithmetic operators +, -, *,  and / are used to perform  
arithmetic on a and b. 

For example, 17 / 5 evaluates to 3.4. 

The order of operations used in mathematics applies when evaluating 
expressions. 

Text and Block: 
a MOD b 

Evaluates to the remainder when a is divided by b.  Assume that  
a is an integer greater than or equal to 0 and b is an integer  
greater than 0. 

For example, 17 MOD 5 evaluates to 2. 

The MOD operator has the same precedence as the * and / 
operators. 

Text: 
RANDOM(a, b) 

Block: 

RANDOM  a, b 

Generates and returns a random integer from a to b,  including  
a and b.  Each result is equally likely to occur. 

For example, RANDOM(1, 3) could return 1, 2,  or 3. 

Relational and Boolean Operators 
Text and Block: 
a = b 
a ≠ b 
a > b 
a < b 
a ≥ b 
a ≤ b 

The relational operators are used to test 
the relationship between two variables, expressions, or values. A 
comparison using relational operators evaluates to a Boolean value. 

For example, a = b evaluates to true if a and b are  
equal; otherwise it evaluates to false. 

 

 
 

 
 

   

= , ≠, >, <, ≥,  and ≤ 
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Instruction Explanation 
Relational and Boolean Operators (continued) 

Text: 
NOT condition 

Block: 
NOT condition 

Evaluates to true if condition is false; otherwise 
evaluates to false. 

Text: 
condition1 AND condition2 

Block: 

condition1 AND condition2 

Evaluates to true if both condition1 and condition2 
are true; otherwise evaluates to false. 

Text: 
condition1 OR condition2 

Block: 

condition1 OR condition2 

Evaluates to true if condition1 is true or if  
condition2 is true or if both condition1 and  
condition2 are true;  otherwise evaluates to false. 

Selection 
Text: 
IF(condition) 
{
 <block of statements> 
} 

Block: 

IF condition 

block of statements 

The code in block of statements is executed if the 
Boolean expression condition evaluates to true; no 
action is taken if condition evaluates to false. 

Text: 
IF(condition) 
{
 <first block of statements> 
} 
ELSE 
{
 <second block of statements> 
} 

Block: 

IF condition 

first block of statements 

ELSE 

second block of statements 

The code in first block of statements is executed 
if the Boolean expression condition evaluates to true; 
otherwise the code in second block of statements is 
executed. 
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Instruction Explanation 
Iteration 

Text: 
REPEAT n TIMES 
{
 <block of statements> 
} 

Block: 

REPEAT  n  TIMES 

block of statements 

The code in block of statements is executed n times. 

Text: 
REPEAT UNTIL(condition) 
{
 <block of statements> 
} 

Block: 

REPEAT UNTIL 

block of statements 

condition 

The code in block of statements is repeated until the  
Boolean expression condition evaluates to true. 

List Operations 
For all list operations, if a list index is less than 1 or greater than the length of the list, an error message is produced and the program  
terminates. 
Text: 
aList ← [value1, value2, value3, ...] 

Block: 

aList valuel, value2, value3 

Creates a new list that contains the values value1, value2, 
value3, and ... at indices 1, 2, 3, and ... 
respectively and assigns it to aList. 

Text:  
aList ← [] 

Block: 

aList 

Creates an empty list and assigns it to aList. 

Text:  
aList ← bList 

Block: 

aList bList 

Assigns a copy of the list bList to the list aList.  

For example, if bList contains [20, 40, 60], 
then aList will also contain [20, 40, 60] after the  
assignment. 

Text: 
aList[i] 

Block: 

aList i 

Accesses the element of aList at index i. The first element 
of aList is at index 1 and is accessed using the notation 
aList[1]. 
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x aList i 

aList i x 

aList i aList j 

INSERT aList, i, value 

APPEND aList, value 

REMOVE aList, i 

aList 

FOR EACH item IN aList 

block of statements 

Instruction Explanation 
List Operations (continued) 

Text: 
x ← aList[i] 

Block: 

Assigns the value of aList[i] to the variable x. 

Text: 
aList[i] ← x 

Block: 

Assigns the value of x to aList[i]. 

Text: 
aList[i] ← aList[j] 

Block: 

Assigns the value of aList[j] to aList[i]. 

Text: 
INSERT(aList, i, value) 

Block: 

Any values in aList at indices greater than or equal to i are 
shifted one position to the right. The length of the list is increased by 
1, and value is placed at index i in aList. 

Text: The length of aList is increased by 1, and value is placed at 
the end of aList. APPEND(aList, value) 

Block: 

Text: Removes the item at index i in aList and shifts to the left  
any values at indices greater than i.  The length of aList is  
decreased by 1. 

REMOVE(aList, i) 

Block: 

Text: 
LENGTH(aList) 

Block: 
LENGTH 

Evaluates to the number of elements in aList. 

Text: 
FOR EACH item IN aList 
{
 <block of statements> 
} 

Block: 

The variable item is assigned the value of each element of  
aList sequentially, in order, from the first element to the last  
element. The code in block of statements is executed  
once for each assignment of item. 
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Instruction Explanation 
Procedures and Procedure Calls 

Text: 
PROCEDURE procName(parameter1, 
                     parameter2, ...)
{

 

 <block of statements> 
} 
Block: 

PROCEDURE procName 

block of statements 

parameter1, 
parameter2,... 

Defines procName as a procedure that takes zero or more 
arguments. The procedure contains block of statements. 
The procedure procName can be called using the following  
notation, where arg1 is assigned to parameter1, arg2 is  
assigned to parameter2,  etc.:  
procName(arg1, arg2, ...) 

Text: 
PROCEDURE procName(parameter1, 
                     parameter2, ...) 
{
 <block of statements>
 RETURN(expression) 
} 
Block: 

PROCEDURE procName 

block of statements 

RETURN expression 

parameter1, 
parameter2,... 

Defines procName as a procedure that takes zero or more 
arguments. The procedure contains block of statements 
and returns the value of expression. The RETURN 
statement may appear at any point inside the procedure and 
causes an immediate return from the procedure back to the calling 
statement. 
The value returned by the procedure procName can be assigned  
to the variable result using the following notation: 
result ← procName(arg1, arg2, ...) 

Text: 
RETURN(expression) 
Block: 

RETURN expression 

Returns the flow of control to the point where the procedure was  
called and returns the value of expression. 

Robot 

If the robot attempts to move to a square that is not open or is beyond the edge of the grid, the robot will stay in its current location  
and the program will terminate. 

Text: 
MOVE_FORWARD() 
Block: 

MOVE_FORWARD 

The robot moves one square forward in the direction it is facing. 

Text: 
ROTATE_LEFT() 
Block: 

ROTATE_LEFT 

The robot rotates in place 90 degrees counterclockwise (i.e., makes 
an in-place left turn). 
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CAN_MOVE direction 

   

Instruction Explanation 
Robot 

Text: The robot rotates in place 90 degrees clockwise (i.e., makes an in-
place right turn).ROTATE_RIGHT() 

Block: 

ROTATE_RIGHT 

Text: 
CAN_MOVE(direction) 
Block: 

Evaluates to true if there is an open square one square in the  
direction relative to where the robot is facing; otherwise evaluates to 
false.  The value of direction can be left, right,  
forward,  or backward.
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