
CSP Exam Reference Sheet
Instruction Explanation

Assignment, Display, and Input
Text:
a ← expression

Block:

a expression

Evaluates expression and then assigns a copy of the result to
the variable a.

Text:
DISPLAY(expression)

Block:

DISPLAY expression

Displays the value of expression, followed by a space.

Text:
INPUT()

Block:
INPUT

Accepts a value from the user and returns the input value.

Arithmetic Operators and Numeric Procedures
Text and Block:
a + b
a - b
a * b
a / b

The arithmetic operators +, -, *, and / are used to perform
arithmetic on a and b.

For example, 17 / 5 evaluates to 3.4.

The order of operations used in mathematics applies when evaluating
expressions.

Text and Block:
a MOD b

Evaluates to the remainder when a is divided by b. Assume that
a is an integer greater than or equal to 0 and b is an integer
greater than 0.

For example, 17 MOD 5 evaluates to 2.

The MOD operator has the same precedence as the * and /
operators.

Text:
RANDOM(a, b)

Block:

RANDOM a, b

Generates and returns a random integer from a to b, including
a and b. Each result is equally likely to occur.

For example, RANDOM(1, 3) could return 1, 2, or 3.

Relational and Boolean Operators
Text and Block:
a = b
a ≠ b
a > b
a < b
a ≥ b
a ≤ b

The relational operators are used to test
the relationship between two variables, expressions, or values. A
comparison using relational operators evaluates to a Boolean value.

For example, a = b evaluates to true if a and b are
equal; otherwise it evaluates to false.

   

= , ≠, >, <, ≥, and ≤

AP Computer Science Principles Exam Reference Sheet  V.1 | 1
© 2020 College Board

Instruction Explanation
Relational and Boolean Operators (continued)

Text:
NOT condition

Block:
NOT condition

Evaluates to true if condition is false; otherwise
evaluates to false.

Text:
condition1 AND condition2

Block:

condition1 AND condition2

Evaluates to true if both condition1 and condition2
are true; otherwise evaluates to false.

Text:
condition1 OR condition2

Block:

condition1 OR condition2

Evaluates to true if condition1 is true or if
condition2 is true or if both condition1 and
condition2 are true; otherwise evaluates to false.

Selection
Text:
IF(condition)
{
 <block of statements>
}

Block:

IF condition

block of statements

The code in block of statements is executed if the
Boolean expression condition evaluates to true; no
action is taken if condition evaluates to false.

Text:
IF(condition)
{
 <first block of statements>
}
ELSE
{
 <second block of statements>
}

Block:

IF condition

first block of statements

ELSE

second block of statements

The code in first block of statements is executed
if the Boolean expression condition evaluates to true;
otherwise the code in second block of statements is
executed.

AP Computer Science Principles Exam Reference Sheet  V.1 | 2
© 2020 College Board

Instruction Explanation
Iteration

Text:
REPEAT n TIMES
{
 <block of statements>
}

Block:

REPEAT n TIMES

block of statements

The code in block of statements is executed n times.

Text:
REPEAT UNTIL(condition)
{
 <block of statements>
}

Block:

REPEAT UNTIL

block of statements

condition

The code in block of statements is repeated until the
Boolean expression condition evaluates to true.

List Operations
For all list operations, if a list index is less than 1 or greater than the length of the list, an error message is produced and the program
terminates.
Text:
aList ← [value1, value2, value3, ...]

Block:

aList valuel, value2, value3

Creates a new list that contains the values value1, value2,
value3, and ... at indices 1, 2, 3, and ...
respectively and assigns it to aList.

Text:
aList ← []

Block:

aList

Creates an empty list and assigns it to aList.

Text:
aList ← bList

Block:

aList bList

Assigns a copy of the list bList to the list aList.

For example, if bList contains [20, 40, 60],
then aList will also contain [20, 40, 60] after the
assignment.

Text:
aList[i]

Block:

aList i

Accesses the element of aList at index i. The first element
of aList is at index 1 and is accessed using the notation
aList[1].

   AP Computer Science Principles Exam Reference Sheet  V.1 | 3
© 2020 College Board

   

x aList i

aList i x

aList i aList j

INSERT aList, i, value

APPEND aList, value

REMOVE aList, i

aList

FOR EACH item IN aList

block of statements

Instruction Explanation
List Operations (continued)

Text:
x ← aList[i]

Block:

Assigns the value of aList[i] to the variable x.

Text:
aList[i] ← x

Block:

Assigns the value of x to aList[i].

Text:
aList[i] ← aList[j]

Block:

Assigns the value of aList[j] to aList[i].

Text:
INSERT(aList, i, value)

Block:

Any values in aList at indices greater than or equal to i are
shifted one position to the right. The length of the list is increased by
1, and value is placed at index i in aList.

Text: The length of aList is increased by 1, and value is placed at
the end of aList. APPEND(aList, value)

Block:

Text: Removes the item at index i in aList and shifts to the left
any values at indices greater than i. The length of aList is
decreased by 1.

REMOVE(aList, i)

Block:

Text:
LENGTH(aList)

Block:
LENGTH

Evaluates to the number of elements in aList.

Text:
FOR EACH item IN aList
{
 <block of statements>
}

Block:

The variable item is assigned the value of each element of
aList sequentially, in order, from the first element to the last
element. The code in block of statements is executed
once for each assignment of item.

AP Computer Science Principles Exam Reference Sheet  V.1 | 4
© 2020 College Board

Instruction Explanation
Procedures and Procedure Calls

Text:
PROCEDURE procName(parameter1,
 parameter2, ...)
{

 <block of statements>
}
Block:

PROCEDURE procName

block of statements

parameter1,
parameter2,...

Defines procName as a procedure that takes zero or more
arguments. The procedure contains block of statements.
The procedure procName can be called using the following
notation, where arg1 is assigned to parameter1, arg2 is
assigned to parameter2, etc.:
procName(arg1, arg2, ...)

Text:
PROCEDURE procName(parameter1,
 parameter2, ...)
{
 <block of statements>
 RETURN(expression)
}
Block:

PROCEDURE procName

block of statements

RETURN expression

parameter1,
parameter2,...

Defines procName as a procedure that takes zero or more
arguments. The procedure contains block of statements
and returns the value of expression. The RETURN
statement may appear at any point inside the procedure and
causes an immediate return from the procedure back to the calling
statement.
The value returned by the procedure procName can be assigned
to the variable result using the following notation:
result ← procName(arg1, arg2, ...)

Text:
RETURN(expression)
Block:

RETURN expression

Returns the flow of control to the point where the procedure was
called and returns the value of expression.

Robot

If the robot attempts to move to a square that is not open or is beyond the edge of the grid, the robot will stay in its current location
and the program will terminate.

Text:
MOVE_FORWARD()
Block:

MOVE_FORWARD

The robot moves one square forward in the direction it is facing.

Text:
ROTATE_LEFT()
Block:

ROTATE_LEFT

The robot rotates in place 90 degrees counterclockwise (i.e., makes
an in-place left turn).

   AP Computer Science Principles Exam Reference Sheet  V.1 | 5
© 2020 College Board

CAN_MOVE direction

   

Instruction Explanation
Robot

Text: The robot rotates in place 90 degrees clockwise (i.e., makes an in-
place right turn).ROTATE_RIGHT()

Block:

ROTATE_RIGHT

Text:
CAN_MOVE(direction)
Block:

Evaluates to true if there is an open square one square in the
direction relative to where the robot is facing; otherwise evaluates to
false. The value of direction can be left, right,
forward, or backward.

AP Computer Science Principles Exam Reference Sheet V.1 | 6
© 2020 College Board

Accessibility Report

		Filename:

		00762-093-CED-CSP_Web PDF_Exam Reference Sheet.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

