AP® PHYSICS 2 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS					
Proton mass, $m_p = 1.67 \times 10^{-27}$ kg	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$				
Neutron mass, $m_n = 1.67 \times 10^{-27}$ kg	1 electron volt, 1 eV = 1.60×10^{-19} J				
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$				
Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$				
Universal gas constant, $R = 8.31 \text{ J/(mol·K)}$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$				
Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$					
1 unified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$				
Planck's constant,	$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$				
	$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$				
Vacuum permittivity,	$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$				
Coulomb's law constant,	$k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$				
Vacuum permeability,	$\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$				
Magnetic constant,	$k' = \mu_0 / 4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$				
1 atmosphere pressure,	$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$				

	meter,	m	mole,	mol	watt,	W	farad,	F
LINUT	kilogram,	kg	hertz,	Hz	coulomb,	С	tesla,	Т
SYMBOLS	second,	S	newton,	Ν	volt,	V	degree Celsius,	°C
5 I WIDOLS	ampere,	А	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	Κ	joule,	J	henry,	Н		

PREFIXES				
Factor	Prefix Symbol			
10 ¹²	tera	Т		
10 ⁹	giga	G		
10 ⁶	mega	М		
10 ³	kilo	k		
10^{-2}	centi	с		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10 ⁻⁹	nano	n		
10 ⁻¹²	pico	р		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin heta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos\theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. In all situations, positive work is defined as work done <u>on</u> a system.
- III. The direction of current is conventional current: the direction in which positive charge would drift.
- IV. Assume all batteries and meters are ideal unless otherwise stated.
- V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
- VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object

AP[®] PHYSICS 2 EQUATIONS

MECHANICS

$ \begin{split} \mathbf{v}_{x} &= \mathbf{v}_{x0} + a_{x}t & a = \operatorname{acceleration} \\ A &= \operatorname{amplitude} \\ x &= x_{0} + v_{x0}t + \frac{1}{2}a_{x}t^{2} & E = \operatorname{cnergy} \\ \vec{v}_{x}^{2} &= v_{x0}^{2} + 2a_{x}(x - x_{0}) & f = \operatorname{frequency} \\ \vec{a} &= \sum \vec{F} & I = \operatorname{rotational inertia} \\ \vec{F}_{f} &\leq \mu \vec{F}_{n} & I = \operatorname{rotational inertia} \\ \vec{F}_{f} &\leq \mu \vec{F}_{n} & L = \operatorname{angular momentum} \\ \ell &= \operatorname{length} & \ell &= \operatorname{length} \\ a_{c} &= \frac{v^{2}}{r} & P &= \operatorname{power} \\ \vec{p} &= m\vec{v} & r &= \operatorname{radius or separation} \\ \vec{\Delta}\vec{p} &= \vec{F} \Delta t & T &= \operatorname{potential energy} \\ \vec{V} &= \frac{1}{2}mv^{2} & V &= \operatorname{speed} \\ \Delta E &= W &= F_{\parallel}d &= Fd\cos\theta \\ W &= \operatorname{work done on a} \\ system \\ P &= \frac{\Delta E}{\Delta t} & x &= \operatorname{position} \\ \theta &= a_{0} + at & r &= \operatorname{torque} \\ w &= a_{0} + at & r &= \operatorname{torque} \\ w &= a_{0} + at & r &= \operatorname{torque} \\ w &= a_{0} + at & r &= \operatorname{torque} \\ w &= a_{0} + at & r &= \operatorname{torque} \\ w &= wcs(\omega t) &= A\cos(2\pi ft) & U_{s} &= \frac{1}{2}kx^{2} \\ x_{cm} &= \sum \frac{Tm_{i}x_{i}}{Tm_{i}} & \Delta U_{g} &= mg\Delta y \\ \end{split}$	MECHA	NICS	ELECTRICITY AND MAGNETISM		
$\omega = \omega_{0} + \alpha t \qquad \tau = \text{ torque} \\ \omega = \text{ angular speed} \\ x = A\cos(\omega t) = A\cos(2\pi f t) \qquad \omega = \text{ angular speed} \\ U_{s} = \frac{1}{2}kx^{2} \qquad U_{s} = \frac{1}{2}kx^{2} \\ \lambda U_{g} = mg \Delta y \qquad \qquad \vec{r}_{g} = V \\ P = I \Delta V \qquad \vec{r}_{g} = V \\ \vec{r}_{g}$	$v_x = v_{x0} + a_x t$ $x = x_0 + v_{x0}t + \frac{1}{2}a_x t^2$ $v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$ $\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$ $ \vec{F}_f \le \mu \vec{F}_n $ $a_c = \frac{v^2}{r}$ $\vec{p} = m\vec{v}$ $\Delta \vec{p} = \vec{F} \Delta t$ $K = \frac{1}{2}mv^2$ $\Delta E = W = F_{ }d = Fd\cos\theta$ $P = \frac{\Delta E}{\Delta t}$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	$a = \operatorname{acceleration} \\ A = \operatorname{amplitude} \\ d = \operatorname{distance} \\ E = \operatorname{energy} \\ F = \operatorname{force} \\ f = \operatorname{frequency} \\ I = \operatorname{rotational inertia} \\ K = \operatorname{kinetic energy} \\ k = \operatorname{spring constant} \\ L = \operatorname{angular momentum} \\ \ell = \operatorname{length} \\ m = \operatorname{mass} \\ P = \operatorname{power} \\ p = \operatorname{momentum} \\ r = \operatorname{radius or separation} \\ T = \operatorname{period} \\ t = \operatorname{time} \\ U = \operatorname{potential energy} \\ v = \operatorname{speed} \\ W = \operatorname{work done on a} \\ \\ \operatorname{system} \\ x = \operatorname{position} \\ y = \operatorname{height} \\ \alpha = \operatorname{angular acceleration} \\ \mu = \operatorname{coefficient of friction} \\ \alpha = \operatorname{angular} \\ $	$ \vec{F}_E = \frac{1}{4\pi\varepsilon_0} \frac{ q_1q_2 }{r^2}$ $\vec{E} = \frac{\vec{F}_E}{q}$ $ \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{ q }{r^2}$ $\Delta U_E = q\Delta V$ $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$ $ \vec{E} = \left \frac{\Delta V}{\Delta r}\right $ $\Delta V = \frac{Q}{C}$ $C = \kappa\varepsilon_0 \frac{A}{d}$ $E = \frac{Q}{\varepsilon_0 A}$ $U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$	$A = \text{area}$ $B = \text{magnetic field}$ $C = \text{capacitance}$ $d = \text{distance}$ $E = \text{electric field}$ $E = \text{emf}$ $F = \text{force}$ $I = \text{current}$ $\ell = \text{length}$ $P = \text{power}$ $Q = \text{charge}$ $q = \text{point charge}$ $R = \text{resistance}$ $r = \text{separation}$ $t = \text{time}$ $U = \text{potential (stored)}$ $energy$ $V = \text{electric potential}$ $v = \text{speed}$ $\kappa = \text{dielectric}$ $constant$ $\rho = \text{resistivity}$ $\theta = \text{angle}$ $\Phi = \text{flux}$	
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I} \qquad T = \frac{2\pi}{\omega} = \frac{1}{f} \qquad I = \frac{\Delta V}{R} \qquad I = \frac{\Delta V}{R} \qquad \vec{F}_M = \vec{t}\vec{\ell} \sin\theta \vec{B} $ $\tau = r_{\perp}F = rF\sin\theta \qquad T_s = 2\pi\sqrt{\frac{m}{k}} \qquad I = \frac{\Delta V}{R} \qquad \vec{F}_M = \vec{t}\vec{\ell} \sin\theta \vec{B} $ $R_s = \sum_i R_i \qquad \Phi_B = \vec{B}\cdot\vec{A}$ $\Delta L = \tau\Delta t \qquad T_p = 2\pi\sqrt{\frac{\ell}{g}} \qquad \frac{1}{r^2} \qquad \vec{F}_g = G\frac{m_1m_2}{r^2}$ $ \vec{F}_s = k \vec{x} \qquad \vec{g} = \frac{\vec{F}_g}{m} \qquad U_G = -\frac{Gm_1m_2}{r} \qquad U_G = -\frac{Gm_1m_2}{r}$ $B = \frac{\mu_0}{2\pi}\frac{I}{r}$	$\omega = \omega_0 + \alpha t$ $x = A\cos(\omega t) = A\cos(2\pi f t)$ $x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$ $\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$ $\tau = r_{\perp}F = rF\sin\theta$ $L = I\omega$ $\Delta L = \tau \Delta t$ $K = \frac{1}{2}I\omega^2$ $ \vec{F}_s = k \vec{x} $	$\tau = \text{ torque}$ $\omega = \text{ angular speed}$ $U_s = \frac{1}{2}kx^2$ $\Delta U_g = mg \Delta y$ $T = \frac{2\pi}{\omega} = \frac{1}{f}$ $T_s = 2\pi \sqrt{\frac{m}{k}}$ $T_p = 2\pi \sqrt{\frac{\ell}{g}}$ $\left \vec{F}_g\right = G \frac{m_1 m_2}{r^2}$ $\vec{g} = \frac{\vec{F}_g}{m}$ $U_G = -\frac{Gm_1 m_2}{r}$	$I = \frac{\Delta Q}{\Delta t}$ $R = \frac{\rho \ell}{A}$ $P = I \Delta V$ $I = \frac{\Delta V}{R}$ $R_s = \sum_i R_i$ $\frac{1}{R_p} = \sum_i \frac{1}{R_i}$ $C_p = \sum_i C_i$ $\frac{1}{C_s} = \sum_i \frac{1}{C_i}$ $B = \frac{\mu_0}{2\pi} \frac{I}{r}$	$\vec{F}_{M} = q\vec{v} \times \vec{B}$ $ \vec{F}_{M} = q\vec{v} \sin\theta \vec{B} $ $\vec{F}_{M} = I\vec{\ell} \times \vec{B}$ $ \vec{F}_{M} = I\vec{\ell} \sin\theta \vec{B} $ $\Phi_{B} = \vec{B} \cdot \vec{A}$ $\Phi_{B} = \vec{B} \cos\theta \vec{A} $ $\mathcal{E} = -\frac{\Delta\Phi_{B}}{\Delta t}$ $\mathcal{E} = B\ell\nu$	

AP[®] PHYSICS 2 EQUATIONS

FLUID MECHANICS AN	ND THERMAL PHYSICS	WAVES AND OPTICS		
$\rho = \frac{m}{V}$	A = area F = force h = depth	$\lambda = \frac{v}{f}$	d = separation f = frequency or focal length	
$P = \frac{F}{A}$	k = thermal conductivity K = kinetic energy	$n = \frac{c}{v}$	h = height L = distance	
$P = P_0 + \rho g h$	L = thickness	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	M = magnification	
$F_b = \rho V g$	m = number of moles	$\frac{1}{c} + \frac{1}{c} = \frac{1}{f}$	$m = \inf \operatorname{indegen} n$ $n = \operatorname{index of} n$	
$A_1 v_1 = A_2 v_2$	N = number of molecules P = pressure	$\begin{vmatrix} s_i & s_o \end{vmatrix}$	s = distance	
$P_1 + \rho g y_1 + \frac{1}{2} \rho {v_1}^2$	Q = energy transferred to a system by heating	$ M = \left \frac{n_i}{h_o}\right = \left \frac{s_i}{s_o}\right $	v = speed $\lambda = \text{wavelength}$	
$= P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$	T = temperature t = time	$\Delta L = m\lambda$	θ = angle	
$\frac{Q}{\Delta t} = \frac{kA \Delta T}{L}$	U = internal energy V = volume	$d\sin\theta = m\lambda$		
Δl L	v = speed	GEOMETRY ANI	O TRIGONOMETRY	
$PV = nRT = Nk_BT$	W = work done on a system	Rectangle	A = area	
	y = height	A = bh	C = circumference	
$K = \frac{2}{2}k_BT$	$\rho = \text{density}$		V = volume	
		Triangle	S = surface area	
$W = -P \Delta V$		$A = \frac{1}{2}bh$	b = base	
$\Delta U = Q + W$		2	h = height	
		Circle	$\ell = \text{length}$	
		$A = \pi r^2$	w = width	
		$A = \pi r$ $C = 2\pi r$	r = radius	
MODERN	PHYSICS	$C = 2\pi I$		
E = hf	E = energy f = frequency	Rectangular solid $V = \ell w h$	Right triangle	
$K_{\max} = hf - \phi$	K = kinetic energy m = mass	Cylinder	$c^2 = a^2 + b^2$	
$\lambda = \frac{h}{h}$	p = momentum	$V = x^2 \theta$	$\sin\theta = \frac{1}{c}$	
$\lambda = \frac{p}{p}$	$\lambda =$ wavelength	$V = \pi r^{-} \ell$	b b	
$E = mc^2$	ϕ = work function	$S = 2\pi r\ell + 2\pi r^2$	$\cos\theta = \frac{1}{c}$	
		Sphere	$\tan \theta = \frac{a}{b}$	
		$V = \frac{4}{\pi r^3}$	×	
		3	c a	
		$S = 4\pi r^2$	$\theta 90^{\circ}$	