L, mL = liter(s), milliliter(s)mm Hg =millimeters of mercury J. kJ = joule(s), kilojoule(s) = gram(s) g nanometer(s) V volt(s) = nm = atmosphere(s) atm = mol = mole(s) **ATOMIC STRUCTURE** E = energyE = hvv = frequency $c = \lambda v$ λ = wavelength Planck's constant, $h = 6.626 \times 10^{-34}$ J s Speed of light, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$ Electron charge, $e = -1.602 \times 10^{-19}$ coulomb **EQUILIBRIUM** $K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$, where $a A + b B \rightleftharpoons c C + d D$ **Equilibrium Constants** K_c (molar concentrations) $K_{p} = \frac{(P_{\rm C})^{c} (P_{\rm D})^{d}}{(P_{\rm A})^{a} (P_{\rm B})^{b}}$ K_p (gas pressures) K_a (weak acid) K_h (weak base) $K_a = \frac{[\mathrm{H}^+][\mathrm{A}^-]}{[\mathrm{HA}]}$ K_w (water) $K_b = \frac{[\text{OH}^-][\text{HB}^+]}{[\text{B}]}$ $K_w = [\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$ $= K_a \times K_b$ $pH = -log[H^+], pOH = -log[OH^-]$ 14 = pH + pOH $pH = pK_a + \log \frac{[A^-]}{[HA]}$ $pK_a = -\log K_a, pK_b = -\log K_b$ **KINETICS** k = rate constant $[A]_t - [A]_0 = -kt$ t = time $\ln[A]_t - \ln[A]_0 = -kt$ $t_{1/2}$ = half-life $\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$

AP[®] CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

AP Chemistry Equations and Constants

 $t_{1/2} = \frac{0.693}{k}$

GASES, LIQUIDS, AND SOLUTIONS $PV = nRT$ $P_A = P_{\text{total}} \times X_A, \text{ where } X_A = \frac{\text{moles } A}{\text{total moles}}$ $P_{total} = P_A + P_B + P_C + \dots$ $n = \frac{m}{M}$ $K = ^{\circ}C + 273$ $D = \frac{m}{V}$ $KE_{\text{molecule}} = \frac{1}{2}mv^2$ Molecity, M , mediae of a shute neglities of a shuting	$P = \text{pressure}$ $V = \text{volume}$ $T = \text{temperature}$ $n = \text{number of moles}$ $m = \text{mass}$ $M = \text{molar mass}$ $D = \text{density}$ $KE = \text{kinetic energy}$ $v = \text{velocity}$ $A = \text{absorbance}$ $\varepsilon = \text{molar absorptivity}$ $b = \text{path length}$ $c = \text{concentration}$ $Gas \text{ constant}, R = 8.314 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$
Molarity, M = moles of solute per liter of solution $A = \varepsilon bc$	= $0.08206 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1}$ = $62.36 \text{ L} \text{ torr mol}^{-1} \text{ K}^{-1}$
	1 atm = 760 mm Hg = 760 torr
	STP = 273.15 K and 1.0 atm
	Ideal gas at STP = 22.4 L mol^{-1}
THERMODYNAMICS/ELECTROCHEMISTRY	q = heat
$q = mc\Delta T$	m = mass c = specific heat capacity
$\Delta S^{\circ} = \sum S^{\circ}$ products $-\sum S^{\circ}$ reactants	T = temperature
$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products} - \sum \Delta H_f^{\circ} \text{ reactants}$	S° = standard entropy H° = standard enthalpy
$\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{ products} - \sum \Delta G_f^{\circ} \text{ reactants}$	G° = standard Gibbs free energy n = number of moles F° = standard reduction potential
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	I = current(amperes)
$= -RT \ln K$	q = charge (coulombs)
$= -nFE^{\circ}$	t = time (seconds)
$I = \frac{q}{t}$	Q = reaction quotient Faraday's constant, F = 96,485 coulombs per mole
$E_{cell} = E_{cell}^{o} - \frac{RT}{nF} \ln Q$	of electrons $1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$