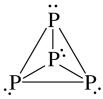


AP Chemistry

Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 3


- ☑ Scoring Guidelines
- **☑** Student Samples
- **☑** Scoring Commentary

Question 3: Long Answer

10 points

A For the correct diagram:

Point 01

B (i) For a correct explanation:

Point 02

Because gas particles are more dispersed (have more microstates) than solids, the entropy decreases as the reactants (which include a gas) convert to the solid product.

(ii) For the correct answer and a valid justification:

Point 03

Yes. Given that $\Delta G_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - T \Delta S_{rxn}^{\circ}$, the reaction must have $\Delta G_{rxn}^{\circ} < 0$ to be favorable. Because the reaction is exothermic, $\Delta H_{rxn}^{\circ} < 0$ and enthalpy contributes to favorability. $\Delta S_{rxn}^{\circ} < 0$, so entropy does not contribute to favorability.

C (i) For the correct calculated value reported with the correct number of significant figures:

Point 04

$$q = 160 \text{ J} = 0.16 \text{ kJ}$$

(ii) For the correct calculated value, consistent with part C (i):

 $q = mc\Delta T = (100.1 \text{ g})(4.18 \text{ J/(g} \cdot ^{\circ}\text{C}))(22.38 ^{\circ}\text{C} - 22.00 ^{\circ}\text{C})$

Point 05

$$q_{rxn} = -q_{surr} = -0.16 \,\mathrm{kJ}$$

$$\Delta H_{rxn}^{\circ} = \frac{-0.16 \text{ kJ}}{0.100 \text{ g P}_4 \text{O}_{10}} \times \frac{283.9 \text{ g P}_4 \text{O}_{10}}{1 \text{ mol P}_4 \text{O}_{10}} \times \frac{1 \text{ mol P}_4 \text{O}_{10}}{1 \text{ mol}_{rxn}} = -450 \text{ kJ/mol}_{rxn}$$

For the correct sign:

Point 06

 $-450 \text{ kJ/mol}_{rxn}$

D For the correct answer and a valid justification:

Point 07

Less than. If less P_4O_{10} is present, less thermal energy will be transferred to the water during the reaction, causing the temperature increase to be less than it was with 0.100~g of P_4O_{10} .

E For the correct calculated value:

Point 08

Using Hess's law:

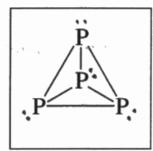
$$\Delta H_{f, \text{ PCl}_5(g)}^{\circ} = \frac{1}{4} \Delta H_1^{\circ} + \Delta H_2^{\circ}$$

$$\Delta H_{f, \text{PCl}_5(g)}^{\circ} = \frac{1}{4} (-1148) + (-88) = -375 \text{ kJ/mol}$$

F (i) For the correct calculated value:

Point 09

$$K_p = \frac{P_{\text{PCl}_5}}{\left(P_{\text{PCl}_3}\right)\left(P_{\text{Cl}_2}\right)} = \frac{4.00}{(2.00)(6.00)} = \frac{1}{3} = 0.333$$


(ii) For the correct answer and a valid justification:

Point 10

Decrease. The negative value of ΔH_2° indicates that the reaction is exothermic. Because exothermic reactions favor reactant formation at higher temperature, the value of K_p decreases.

Part A

Part B

- i) Δs° is negative because as the reaction progresses, gas molecules are used to produce solid molecules. Solids have less entropy than gases because there are less possible locations and positions of the solid molecules compared to the gas molecules. The solid molecules also move slower. So, the entropy of the system decreases and Δs° is negative.
- ii) DG° = DH° TDS°

The student is correct. It reaction is thermodynamically favorable when $\Delta 6^{\circ}$ is negative. Since $\Delta 5^{\circ}$ is negative. Value. The only way that the reaction can be thermodynamically favorable is if ΔH° is negative.

Page 8

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Part C

Question 3

- i) 9 = (100.0g X 4.18 J/g°C X 22.38°C 22.00°C) = 160 J = 0.16 +J
- 11) 0.100 g Pyo 10 x 1mol Pyo 10 x 1 mol rxn
 283.9 g x 1 mol Pyo 10 = 0.000 352 mol rxn
 ΔHrxn = -0.16 +1
 0.000 352 mol rxn -450 +1/mol rxn

Part D

AT would less than AT of the first trial. P4010 is
the limiting reactant, so the moles of P4010
present oletermines how many reactions occur.
When there is less P4010 in the calorimeter, less
reactions occurr, so less heat is transferred to
the water. So, the water experiences less change
in temperature.

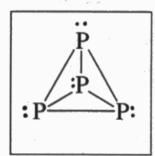
Page 9

Question 3

Part F

Part E

i)
$$V_{R} = \frac{P_{RCI_{3}}}{P_{RCI_{3}}P_{CI_{2}}} = \frac{(4.00)}{(2.00)(6.00)} = 0.333$$


to decreases when the temperature is raised. At 2 is negative, so the reaction is exothermic. When heat is added, the reaction will shift towards the reactions and produce more PCI3 and CI2. When the concentrations of PCI3 and CI2 increase, kp decreases.

Page 10

Continue to Question 4.

Part A

Question 3

Part B

- i) The entropy decreases because as the reaction progresses Py as will react with gas 02 to form Py 0,000). Since there will be no gas as a product and the particles turned to rolled, there is less distribution of molecules and less dispersion of molecules, decreasing entropy
- equation of = off- Toso, the reaction will be favorable if off is negative and oso is positive. In this reaction, off is negative, but oso is also negative, so the reaction favorability is only driven by enthalpy.

Page 8

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Part C

Question 3

i) q=mcaT

9= (100.19)(4.18) (22.38°C-22.00°C)

WARR INSTAND > 159 J * INOU J = 0.159 KJ of neat 11 released

Equestion: P40(0(s) + 6 H20(1) -> 4 H3 P04(99)

0.159 KT/molan 0.0265 KT/molan

0.03985 KT/molan

1.00398 KT/molan

Part D

compared to the errit that, the st for the second that would be greater. Using the equation q=mcot, where there is an invesse relation between must and st. so it must deceated, st increases

Page 9

Part E

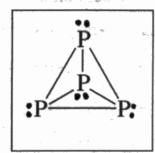
Question 3

FIRST equation & stride to multiply by L second equation: remains the same

\$ Pusit & cl2 (9) -> Poticos OHi= (-1148 EJIMOITEN) 4 PCHS (9) + Clz (9) = PCIs (9) OH= -88 KJ molnen

4 P4 (1) + 3 c1 2(9) -> PC1s(9) OH4 = - 375 FJ/molan

Part F


ii) If the tempreture inocutes, then the value of kp snould thereare deceate because one is negative lexothermic.

Page 10

Continue to Question 4.

Part A

Part B

i.) As the reaction progresses, more solid P4010 will form. Solids will create less collisions and they are more orderly man the gas Oz. Since there will be more order, the amount of disorder, spontaneousness, will decrease therefore be negative.

ii.) No, the student is incorrect. ΔG is favorable when it is a negative value. All factors including both enthalpy and entropy contribute to the favorability. Since the ΔH is negative and the ΔS is also negative, the reaction will be favorable at low temperatures. ($\Delta G = \Delta H - T \Delta S$)

Page 8

Part C

Question 3

Equal to the mass of P4010, regardless of being the limiting reactant does not affect the change in remprative of the trials.

Page 9

Part E

Hi= -375 KJM

Question 3

\$ P4 + Ochon > A PS/3

PSY34CI2 + PCIS

(-148 x 1/4)+(-88)=(375)

Part F

2 P az falz ZAPUS

$$K_{p} = \frac{4}{(6)(2)}$$
 $K_{p} = 0.33$

ii.) [increase], as temperature increases, pressure

increases. A higher temp will increase they are directly purportional.

Page 10

Continue to Question 4.

Question 3

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

NEW for 2025: The question overviews can be found in the *Chief Reader Report on Student Responses* on AP Central.

Sample: 3A Score: 10

Point 01: 1

Part A: The point was earned for correctly placing two lone pair electrons on each phosphorus atom.

Point 02: 1

Part B (i): The point was earned for correctly explaining how the reaction has gas molecules as reactants and no gas molecules as products, and solids have "less possible locations and positions," indicating that the solid has fewer possible microstates than the gas molecules.

Point 03: 1

Part B (ii): The point was earned for correctly stating that the student is correct, using the mathematical relationship of ΔG° , ΔH° , and ΔS° , and correctly discussing how ΔH° must be negative in order for ΔG° to be negative and therefore "thermodynamically favorable."

Point 04: 1

Part C (i): The point was earned for correctly calculating the heat (q) that was released from the reaction and showing the supporting setup. The answer is reported to the correct number of significant figures (two).

Point 05: 1

Part C (ii): The point was earned for correctly calculating the magnitude of ΔH_{rxn}° .

Point 06: 1

Part C (ii): The point was earned for including the negative sign on the final answer, indicating that reaction is exothermic.

Point 07: 1

Part D: The point was earned for correctly stating that ΔT would be "less than," and explaining that less heat is transferred to the water, due to "less P_4O_{10} ," and indicating "less reactions occur," resulting in a smaller ΔT .

Point 08: 1

Part E: The point was earned for correctly using Hess's law to calculate ΔH_f° for the given reaction.

Point 09: 1

Part F (i): The point was earned for correctly setting up a K_p expression, using the particle diagram to determine the partial pressures of each gas, and calculating the value of K_p .

Point 10: 1

Part F (ii): The point was earned for correctly stating that " K_p decreases" and relating an increase in temperature to a shift towards the reactants, which results in a smaller value of K_p .

Question 3 (continued)

Sample: 3B Score: 5

Point 01: 1

Part A: The point was earned for correctly drawing two lone pair electrons on each phosphorus atom.

Point 02: 1

Part B (i): The point was earned for correctly explaining how the reaction has gas reactants and solid products, and "there is less distribution of molecules and less dispersion of molecules" in solids.

Point 03: 1

Part B (ii): The point was earned for correctly stating that the student is correct, using the mathematical relationship of ΔG° , ΔH° , and ΔS° , and correctly discussing how " ΔH° is negative, but ΔS° is also negative," and so the "favorability is only driven by enthalpy."

Point 04: 0

Part C (i): The point was not earned because even though the response correctly calculated the heat (q) that was released, the answer was reported to the incorrect number of significant figures (three instead of two).

Point 05: 0

Part C (ii): The point was not earned due to an incorrect setup and calculation for ΔH_{rxn}° . The response incorrectly divides q by the stoichiometric coefficients in the balanced reaction equation and subtracts (products – reactants) instead of dividing q by the calculated moles of P_4O_{10} .

Point 06: 1

Part C (ii): The point was earned for including the negative sign on the final answer, indicating that the reaction is exothermic.

Point 07: 0

Part D: The point was not earned for incorrectly stating that " ΔT increases," which results from using an incorrect application of $q = mc\Delta T$.

Point 08: 1

Part E: The point was earned for correctly using Hess's law to calculate ΔH_f° for the given reaction.

Point 09: 0

Part F (i): The point was not earned. Although the K_p expression is set up correctly, the partial pressures substituted into the expression are not consistent with the particle diagram.

Point 10: 0

part F (ii): The point was not earned. The response correctly states that " K_p should decrease," but the response fails to mention that exothermic reactions favor the reactants at higher temperatures.

Question 3 (continued)

Sample: 3C Score: 3

Point 01: 1

Part A: The point was earned for correctly drawing two lone pair electrons on each phosphorus atom.

Point 02: 0

Part B (i): The point was not earned because the response incorrectly states that "[s]olids will create less collisions and they are more orderly" and does not use particle-level reasoning. The response could have earned the point had it explained that the gaseous reactant particles have greater dispersal, more degrees of freedom, a greater number of microstates, or more possible arrangements than the solid product.

Point 03: 0

Part B (ii): The point was not earned for stating "the student is incorrect" and incorrectly stating, "All factors including both enthalpy and entropy contribute to the favorability." The response addresses the conceptual relationship between the temperature dependence of ΔG° based on ΔH° and ΔS° , but it does not address the prompt, which asks which factor is the driving force for thermodynamic favorability.

Point 04: 0

Part C (i): The point was not earned because the final answer, while calculated correctly, was not reported to the correct number of significant figures (three instead of two).

Point 05: 0

Part C (ii): The point was not earned due to using an incorrectly calculated number of moles of P_4O_{10} in the setup and calculation for the magnitude of ΔH_{rxn}° . The response uses the molar mass of P_4O_{10} and the moles of H_3PO_4 in the balanced chemical equation instead of calculating the number of moles present in 0.100 g P_4O_{10} .

Point 06: 0

Part C (ii): The point was not earned because the negative sign was omitted on the final answer, which is required to indicate that the reaction is exothermic.

Point 07: 0

Part D: The point was not earned for incorrectly stating "Equal to" and incorrectly discussing that the error "does not affect the change in temperature."

Point 08: 1

Part E: The point was earned for correctly using Hess's law to calculate ΔH_f° for the given reaction.

Point 09: 1

Part F (i): The point was earned for correctly using the particle diagram to determine the partial pressure of each gas and calculating a correct value of K_p . Significant figures are not assessed on this point.

Point 10: 0

Part F (ii): The point was not earned for incorrectly stating that K_p would "increase," and providing an invalid justification based on the relationship between the pressure and temperature of a gas instead of discussing the effect of temperature on the equilibrium position.