

AP Calculus AB

Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 5

- ☑ Scoring Guidelines
- **☑** Scoring Commentary

Part B (AB): Graphing calculator not allowed Question 5

9 points

General Scoring Notes

- The model solution is presented using standard mathematical notation.
- Answers (numeric or algebraic) need not be simplified. Answers given as a decimal approximation should
 be accurate to three places after the decimal point. Within each individual free-response question, at most
 one point is not earned for inappropriate rounding.

Two particles, H and J, are moving along the x-axis. For $0 \le t \le 5$, the position of particle H at time t is given by $x_H(t) = e^{t^2 - 4t}$ and the velocity of particle J at time t is given by $v_J(t) = 2t(t^2 - 1)^3$.

Model Solution Scoring

A Find the velocity of particle H at time t = 1. Show the work that leads to your answer.

$$x_H'(t) = v_H(t) = (2t - 4)e^{t^2 - 4t}$$

Considers x_H' Point 1 (P1)

 $x_H'(1) = v_H(1) = -2e^{-3}$

Answer Point 2 (P2)

Scoring Notes for Part A

- **P1** can be earned by presenting $x_{H}'(t)$, $x_{H}'(1)$, x'(t), x'(1), $(2t-4)e^{t^2-4t}$, or $(2\cdot 1-4)e^{1^2-4\cdot 1}$.
- An unsupported answer of $-2e^{-3}$ earns **P2** but not **P1**.

to the right for 2 < t < 5.

B During what open intervals of time t, for 0 < t < 5, are particles H and J moving in opposite directions? Give a reason for your answer.

From part A, $x_H'(t) = v_H(t) = (2t - 4)e^{t^2 - 4t}$.	Considers sign of	Point 3 (P3)
$x_{H}'(t) = (2t - 4)e^{t^2 - 4t} = 0 \implies t = 2$	$x_H'(t)$ or $v_J(t)$	
$x_{H}'(t) < 0$ for $0 < t < 2$, and $x_{H}'(t) > 0$ for $2 < t < 5$.	Analysis for one particle	Point 4 (P4)
Thus, particle H is moving to the left for $0 < t < 2$ and moving	Answer with reason	Point 5 (P5)

 $v_J(t) = 2t(t^2 - 1)^3 = 0 \text{ for } 0 < t < 5 \implies t = 1$

$$v_J(t) < 0$$
 for $0 < t < 1$, and $v_J(t) > 0$ for $1 < t < 5$.

Thus, particle J is moving to the left for 0 < t < 1 and moving to the right for 1 < t < 5.

Therefore, particles H and J are moving in opposite directions for 1 < t < 2.

Scoring Notes for Part B

- To earn **P3**, a response can do one of the following:
 - o Set $x_H'(t) = 0$, $v_H(t) = 0$, or $(2t 4)e^{t^2 4t} = 0$
 - o Set $v_J(t) = 0$ or $2t(t^2 1)^3 = 0$
 - o Identify t = 2 for particle H and no other values in the interval 0 < t < 5
 - O Identify t = 1 for particle J and no other values in the interval 0 < t < 5
 - o Identify the interval 1 < t < 2
- To earn P4, a response can provide an analysis of signs of velocity or direction of motion on the interval 0 < t < 5 for either particle H or particle J.
- To be eligible for P5, a response must provide correct analyses of signs of velocity or direction of motion on the interval 0 < t < 5 for both particles.
- Only analysis within the interval 0 < t < 5 will be considered in scoring.

It can be shown that $v_J'(2) > 0$. Is the speed of particle *J* increasing, decreasing, or neither at time t = 2? Give a reason for your answer.

$$v_J(2) > 0$$
 and $v_J'(2) > 0$.

Answer with reason Point 6 (P6)

Because $v_J(2)$ and $v_J'(2)$ have the same sign, the speed of particle J is increasing at t = 2.

Scoring Notes for Part C

- An evaluation of $v_J(2)$ is not necessary, but if a value is presented, it must be correct value is $v_J(2) = 108$.
- An evaluation of $v_J'(2)$ is not necessary, but if a value is presented, it must be correct. The correct value is $v_J'(2) = 486$.
- A response can either import the analysis for the sign of $v_J(2)$ from part B or restart.
- A response that stated " $v_J(t) > 0$ for 1 < t < 5" in part B does not need to restate $v_J(2) > 0$ and earns **P6** for " $v_J(2)$ and $v_J'(2)$ have the same sign, so the speed is increasing."
- **D** Particle *J* is at position x = 7 at time t = 0. Find the position of particle *J* at time t = 2. Show the work that leads to your answer.

$$x_J(2) = x_J(0) + \int_0^2 v_J(t) dt = 7 + \int_0^2 2t (t^2 - 1)^3 dt$$

$$= 7 + \left[\frac{1}{4} (t^2 - 1)^4 \right]_0^2$$

$$= 7 + \frac{1}{4} ((3)^4 - (-1)^4) = 7 + \frac{1}{4} (80) = 27$$

Integrand	Point 7 (P7)
Antiderivative	Point 8 (P8)
Answer	Point 9 (P9)

Scoring Notes for Part D

- To earn P7, a response must present an indefinite or definite integral with an integrand of $v_J(t)$ or $2t(t^2-1)^3$. (See below for notes on how to handle a missing differential dt.)
- **P8** is earned for an antiderivative of the form $k(t^2 1)^4$ or equivalent, for k > 0. If $k \neq \frac{1}{4}$, then the response is not eligible to earn **P9**.
- A response of $7 + \frac{1}{4}((3)^4 (-1)^4)$ or equivalent banks **P9** (i.e., subsequent errors in simplification will not be considered in scoring for **P9**).

Note: An ambiguous response, such as $7 + \frac{1}{4}((3)^4 - (-1)^4)$, does not bank **P9** and therefore must go on to resolve the ambiguity with a correct final answer (e.g., $7 + \frac{1}{4}(80)$ or 27) to earn **P9**.

- If the differential dt is missing:
 - Writing $\int_0^2 v_J(t)$ earns **P7** and is eligible to earn **P8** and **P9**.
 - Writing $7 + \int_0^2 v_J(t)$ earns **P7** and is eligible to earn **P8** and **P9**.
 - Writing $\int_0^2 v_J(t) + 7$ introduces an ambiguity for the intended integrand.
 - $\int_0^2 v_J(t) + 7 = \left[\frac{1}{4}(t^2 1)^4\right]_0^2 + 7$ resolves the ambiguity.

Therefore, this earns P7 and P8 and is eligible for P9.

Therefore, this does not earn P7, earns P8, and is not eligible for P9.

- If the ambiguity is not resolved, this does not earn **P7**, **P8**, or **P9**.
- Alternate solution using *u*-substitution:

Let
$$u = t^2 - 1$$
, then $du = 2t dt$.
 $t = 0 \implies u = -1$
 $t = 2 \implies u = 3$
 $x_J(2) = x_J(0) + \int_0^2 v_J(t) dt = 7 + \int_0^2 2t (t^2 - 1)^3 dt$
 $= 7 + \int_{-1}^3 u^3 du = 7 + \left[\frac{1}{4}u^4\right]_{-1}^3$
 $= 7 + \frac{1}{4}((3)^4 - (-1)^4) = 7 + \frac{1}{4}(80) = 27$

• Alternate solution using indefinite integral:

$$\int 2t (t^2 - 1)^3 dt = \frac{1}{4} (t^2 - 1)^4 + C$$

$$x_J(0) = 7 = \frac{1}{4} (0^2 - 1)^4 + C \implies C = \frac{27}{4}$$

$$x_J(t) = \frac{1}{4} (t^2 - 1)^4 + \frac{27}{4}$$

$$x_J(2) = \frac{1}{4} (2^2 - 1)^4 + \frac{27}{4} = \frac{108}{4} = 27$$

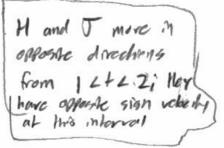
NO CALCULATOR ALLOWED

O5

Answer QUESTION 5 PARTS A and B on this page.

PART A

$$X_{H}(t) = e^{t^{2}-4t}$$
 $V_{H}(t) = (2t-4) \cdot e^{t^{2}-4t}$
 $V_{H}(1) = (2u)-4) \cdot e^{1-4t}$
 $V_{H}(1) = -2e^{-3}$


PART B

V_H(t) =
$$(2t-4) \cdot e^{t^2-4t}$$
; V_H(t) = 0
 $V = (2t-4) \cdot e^{t^2-4t}$
H moves left from 0 to 2
 $V = (2t-4) \cdot e^{t^2-4t}$
 $V = (2t-4) \cdot e^{t^2-4t$

$$V_{J}(t) = 2 + (t^2 - 1)^3$$
; $V_{J}(t) = 0$

H and J more in opposite directions

from $1 \le t \le 2i$ the have opposite sign very at this inhormal

Use a pencil or a pen with black or dark blue ink. Do NOT write your name, Do NOT write outside the box.

0053842

NO CALCULATOR ALLOWED

Q5

Answer QUESTION 5 PARTS C and D on this page.

PART C

ARTC

$$V_{J}(z) = 2(z)((z)^{2}-1)^{3}$$
 $V_{J}(z) = 4(3)^{3}$
 $V_{J}(z) = 6 \text{ positive } (V_{J}(z) \neq 0)$
 $V_{J}(z) = 6 \text{ positive } (V_{J}(z) \neq 0)^{3}$
 $V_{J}(z) = 6 \text{ positive } (V_{J}(z) \neq 0)^{3}$

Since velocity and acceltration have the same sign, the particle is speed in the at $t \neq 2$.

PART D

$$X_{J}(t) = \int V_{f}(t) dt$$

$$(+^{2}-1)(f^{2}-1)$$

$$X_{J}(t) = \int 2t(t^{2}-1)^{3} dt \qquad +^{6}-t^{4}-2t^{4}+2t^{2}+1$$

$$X_{J}(t) = \int 2t(t^{2}-1)^{3} dt \qquad +^{6}-t^{4}-2t^{4}+2t^{2}+1$$

$$X_{J}(t) = \int 2t(t^{6}-3t^{4}+3t^{2}-1).$$

$$X_{J}(t) = \int 2t^{7}-6t^{5}+6t^{3}-2t$$

$$X_{J}(t) = \frac{1}{4}t^{6}-t^{6}+\frac{3}{2}t^{4}-t^{2}+C$$

$$Y_{J}(t) = \frac{1}{4}t^{6}-t^{6}+\frac{3}{2}t^{4}-t^{2}+C$$

$$Y_{J}(t) = \frac{1}{4}(2)^{6}-t^{6}+\frac{3}{2}(2)^{6}-t^{2}-t^{2}+7$$

$$X_{J}(t) = \frac{1}{4}(2)^{6}-t^{6}+\frac{3}{2}(2)^{6}-t^{2}-t^{2}+7$$

$$X_{J}(t) = \frac{1}{4}(2)^{6}-t^{6}+\frac{3}{2}(2)^{6}-t^{2}-t^{2}+7$$

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

NO CALCULATOR ALLOWED

Q5

Answer QUESTION 5 PARTS A and B on this page.

PARTA

Find VH(1)

$$V_{H(1)} = e^{t^2 - 4t}$$

 $V_{H(1)} = e^{1-4}$
 $V_{H(1)} = e^{3}$
 $V_{H(1)} = e^{3}$

PART B

During what open interns for 02625 are H and I moving in apposite directions - VH (t) = V+(t)

Page 12

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

0109932

Q5529/19

NO CALCULATOR ALLOWED

Q5

Answer QUESTION 5 PARTS C and D on this page.

PART C

the speed of particle J is increasing at time t=2. Vj'(2) describer the particles acceleration, and it is said to be >0. If acceleration is positive, speed is increasing.

PART D

$$\begin{array}{lll}
X_{J}(0) &= 7 & \text{Find} & \times_{J}(2) \\
V_{J}(t) &= 2t(t^{2} - 1)^{3} \\
S &= t(t^{2} - 1)^{3} \\
X_{J}(t) &= t(t^{2} - 1)^{4} \\
X_{J}(2) &= t(3)^{4} \\
X_{J}(2) &= t(3)^{4}
\end{array}$$

Page 13

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

NO CALCULATOR ALLOWED

Q5

Answer QUESTION 5 PARTS A and B on this page.

PART A

$$X'_{H}(t) = e^{t^2-4t} \cdot 2t-4$$

 $X'_{H}(t) = e^{t^2-4t} \cdot 2t - 4$
 $X'_{H}(t) = e^{t^2-4t} \cdot 2t - 4$

PART B

$$U_{5}(t) = 2t(t^{2}-1)^{3} = 0 \qquad X'_{H}(t) = 2t = 0 \qquad t = 0 \qquad t = 0$$

on theintental (0,1) the particles are moving in apposite directions "

Page 12

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

0034008

NO CALCULATOR ALLOWED

Q5

Answer QUESTION 5 PARTS C and D on this page.

PART C

PART D

$$\int_{0}^{2} 2t(t^{2}-1)^{3} dt \quad U = t^{3}-1$$

$$\int_{0}^{2} 2t(u)^{3} \frac{du}{dt}$$

$$\int_{0}^{2} 4t(u)^{3} \frac{du}{dt}$$

$$\int_{0}^{2} 4(t^{2}-1)^{3} \int_{0}^{2} = \frac{1}{4}(2^{2}-1)^{3}-\frac{1}{4}(0^{2}-1)^{3}$$

Page 13

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 5

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

NEW for 2025: The question overviews can be found in the *Chief Reader Report on Student Responses* on <u>AP Central</u>.

Sample: 5A

Score: 9 (1-1-1-1-1-1-1)

The response earned 9 points: 2 points in part A, 3 points in part B, 1 point in part C, and 3 points in part D.

In part A the response earned **P1** with the presentation of $(2t-4) \cdot e^{t^2-4t}$ in line 2. The response earned **P2** with the numerical expression $(2(1)-4) \cdot e^{1-4}$ in line 3.

In part B the response earned **P3** with the presentation of $v_H(t) = 0$ in line 1 on the right. The response earned **P4** with a correct analysis of motion of H on the interval 0 < t < 5 in lines 2 and 3 on the right. The response earned **P5** with a correct analysis of motion of J on the interval 0 < t < 5 in lines 4 and 5 on the right and the correct boxed conclusion in lines 6–10 on the right.

In part C the response earned **P6** with a correct answer of " $v_J(2)$ is positive" in line 3, " $v_J'(2)$ is positive" in line 4, and the correct conclusion in lines 5 and 6.

In part D the response earned **P7** on the left with $\int v_J(t) dt$ in line 1. The response earned **P8** with $\frac{1}{4}t^8 - t^6 + \frac{3}{2}t^4 - t^2$ in line 5. The response earned **P9** with the boxed answer $\frac{1}{4}(2)^8 - (2)^6 + \frac{3}{2}(2)^4 - (2^2) + 7$.

Sample: 5B

Score: 4 (1-1-0-0-0-1-1-0)

The response earned 4 points: 2 points in part A, 0 points in part B, 0 points in part C, and 2 points in part D.

In part A the response earned **P1** with the presentation of $e^{t^2-4t} \cdot (2t-4)$ in line 4. The response earned **P2** with the numerical expression $e^{1-4} \cdot (2-4)$ in line 5.

In part B the response did not earn **P3**. The response did not consider the sign of $x_H'(t)$ or $v_J(t)$. The response did not earn **P4** because there was no analysis of signs of velocity or direction of motion for either particle on the interval 0 < t < 5. The response did not earn **P5** because it was not eligible without earning **P4**.

In part C the response did not earn **P6** because only acceleration is considered.

In part D the response earned **P7** with $\int 2t(t^2-1)^3$ in line 3. The response earned **P8** with $\frac{1}{4}(t^2-1)^4$ in line 4. The response did not earn **P9** because the stated answer of $\frac{1}{4}(4-1)^4$ in line 5 is incorrect.

Question 5 (continued)

Sample: 5C

Score: 3 (1-0-1-0-0-1-0-0)

The response earned 3 points: 1 point in part A, 1 point in part B, 0 points in part C, and 1 point in part D.

In part A the response earned **P1** with the presentation of $x_H'(t)$ in line 1. The response did not earn **P2** because the numerical expression $e^{1^2-4(1)} \cdot 2(1) - 4$ in line 2 is missing parentheses and the error is not resolved.

In part B the response earned **P3** with the equation $2t(t^2-1)^3=0$. The response did not earn **P4** because there was no analysis of signs of velocity or direction of motion for either particle on the interval 0 < t < 5. The response did not earn **P5** because it was not eligible without earning **P4**.

In part C the response did not earn **P6** because only acceleration is considered.

In part D the response earned **P7** with $\int_{0}^{2} 2t(t^2-1)^3 dt$ in line 1. The response did not earn **P8**. The exponent in the expression $\frac{1}{4}(t^2-1)^3$ in line 3 on the right is incorrect. The response did not earn **P9** because the stated answer of $\frac{1}{4}(2^2-1)^3-\frac{1}{4}(0^2-1)^3$ in line 3 on the right is incorrect.