2024

AP[°] Physics C: Mechanics

Scoring Guidelines Set 1

© 2024 College Board. College Board, Advanced Placement, AP, AP Central, and the acorn logo are registered trademarks of College Board. Visit College Board on the web: collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

Question 1: Free-Response Question

(a)(i) For a multi-step derivation with an application of the conservation of mechanical energy that 1 point indicates that all of the energy of the system is initially U_s

Example Response

$$E_{\text{initial}} = E_{\text{final}}$$
$$\frac{1}{2}kx_{\text{c}}^{2} = \frac{1}{2}mv^{2}$$

For a correct solution for v

Example Response

$$v = x_{\rm c} \sqrt{\frac{k}{m}}$$

Example Solution

$$E_{\text{initial}} = E_{\text{final}}$$
$$U_s = K$$
$$\frac{1}{2}kx_c^2 = \frac{1}{2}mv^2$$
$$v = \sqrt{\frac{kx_c^2}{m}}$$
$$v = x_c\sqrt{\frac{k}{m}}$$

1 point

For a derivation to solve for the speed at x_2 that includes one of the following:	1 point
An appropriate application of the conservation of energyAn appropriate kinematics equation	
Example Responses	
$K_{\text{initial}} - \Delta E_{\text{friction}} = K_{\text{final}}$ OR $v^2 = v_0^2 + 2a\Delta x$	
For one of the following that is consistent with the previous point in the response fo part (a)(ii):	r 1 point
 A correct expression for the energy dissipated by friction A correct expression for the acceleration of the block in the region with nonnegl friction 	ligible
Example Responses	
$\Delta E_{\text{friction}} = \mu m g D$ OR $a = -\mu g$	
For attempting to derive an expression for $v_{A,B}$ by using the conservation of momen	ntum 1 point
Example Response	
$m_{\text{initial}}v_{\text{initial}} = m_{\text{A},\text{B}}v_{\text{A},\text{B}}$	
For substituting the expression for the speed at x_2 that is consistent with the first po	oint of 1 point
the response in part (a)(ii) and substituting the correct masses into an expression for conservation of momentum	
the response in part (a)(ii) and substituting the correct masses into an expression for conservation of momentum Example Response	

$$v_{\rm A,B} = \frac{m\sqrt{\frac{kx_{\rm c}^2}{m} - 2\mu gD}}{4m}$$

Example Solutions

$$E_{x_{1}} = E_{\text{before collision}}$$

$$K_{x_{1}} - \Delta E_{\text{friction}} = K_{\text{before collision}}$$

$$\frac{1}{2}m\left(\sqrt{\frac{kx_{c}^{2}}{m}}\right)^{2} - \mu mgD = \frac{1}{2}mv_{2}^{2}$$

$$v_{2} = \sqrt{\frac{kx_{c}^{2}}{m} - 2\mu gD}$$
(OR)

$$\Sigma p_{\text{before collision}} = \Sigma p_{\text{after collision}}$$
$$m_{\text{A}}v_{2} = m_{\text{A},\text{B}}v_{\text{A},\text{B}}$$
$$m_{\text{A}}v_{2} = (m+3m)v_{\text{A},\text{B}}$$
$$v_{\text{A},\text{B}} = \frac{m\sqrt{\frac{kx_{\text{c}}^{2}}{m} - 2\mu gD}}{4m}$$

$$v_{\rm A,B} = \frac{1}{4} \sqrt{\frac{k x_{\rm c}^2}{m} - 2\mu g D}$$

$$v_2^2 = v^2 + 2a\Delta x$$

$$v_2^2 = \left(x_c\sqrt{\frac{k}{m}}\right)^2 + 2aD$$

$$v_2 = \sqrt{\frac{kx_c^2}{m}} + 2aD$$

$$\Sigma F_x = -F_f = ma$$

$$-\mu mg = ma$$

$$a = -\mu g$$

$$v_2 = \sqrt{\frac{kx_c^2}{m}} - 2\mu gD$$

$$\Sigma p_{\text{before collision}} = \Sigma p_{\text{after collision}}$$

$$m_A v_2 = m_{A,B} v_{A,B}$$

$$m_A v_2 = (m + 3m) v_{A,B}$$

$$v_{A,B} = \frac{m\sqrt{\frac{kx_c^2}{m}} - 2\mu gD}{4m}$$

$$v_{\rm A,B} = \frac{1}{4} \sqrt{\frac{k x_{\rm c}^2}{m} - 2\mu g D}$$

Total for part (a) 6 points

(b)(i)	For a nonlinear sketch that begins at zero and increases for the entire time interval $0 \le t \le t_1$	1 point
	For a sketch that decreases for the entire time interval $t_1 \le t \le t_2$ but does not go to zero	1 point
	For a sketch that is concave up for the time interval $t_1 \le t \le t_2$	1 point
	For a continuous function for the time interval $t_1 \le t \le t_3$ that has a horizontal line that is	1 point
	greater than zero for the time interval $t_2 \le t \le t_3$	

Example Response

For a correct explanation for why the kinetic energy is increasing, such as **one** of the **1 point** following:

- An increasing graph means positive work is being done on the block.
- An external force is exerted on Block A, causing the velocity of the block to increase and the kinetic energy of the block to increase.
- Mechanical energy is conserved and/or there is no work done for the block-spring system, and the potential energy decreases.

For a correct explanation for why the graph is nonlinear, such as **one** of the following: **1 point**

- The rate at which the slope of the graph changes is related to the rate at which work is being done on the block.
- The external force exerted on Block A is changing, which causes a nonuniform change in the velocity of Block A, which results in a nonuniform change in kinetic energy.

Example Response

From $0 < t < t_1$, the kinetic energy of Block A increases. The force exerted on the block by the compressed spring transfers the elastic potential energy in the block-spring system to the kinetic energy of the block. Because the force exerted by the spring is not applied at a constant rate, the kinetic energy of the block does not increase at a constant rate.

Total for part (b) 7 points

(c)		
	For correctly applying an equation that relates the length of a pendulum to the period or	l point
	frequency of the pendulum	
	Example Response	
	The period of a pendulum is calculated by using $T = 2\pi \sqrt{\frac{l}{g}}$. Therefore, as the length is	
	increased, the period will also increase. Because frequency and period are inversely related, an increase in period will result in a decrease in frequency	

Total for part (c) 2 points

Total for question 1 15 points

Question 2: Free-Response Question

15 points

(a)	For a multi-step derivation that includes Newton's second law of motion	1 point
	For indicating that the net force exerted on the cylinder includes only the gravitational force	1 point

and a drag force

$$F_{\rm net} = F_g - F_{\rm drag}$$

For a correct differential equation that is in terms of the given variables

1 point

Scoring Note: Variables do not have to be separated for this point to be earned.

Example Response

$$m\frac{dv}{dt} = mg - bv^2$$

Example Solution

$$\Sigma F = ma$$

$$F_g - F_{drag} = ma_y$$

$$mg - bv^2 = ma_y$$

$$m\frac{dv}{dt} = mg - bv^2$$

Total for part (a) 3 points

(b)(i) For a vertical line labeled t_1 at the approximate location at which the line becomes horizontal **1 point**

Example Response

(b)(ii)	For relating t_1 to the time at which the velocity versus time graph is constant or the slope of	1 point
	the line is zero	
	For indicating that a constant velocity indicates that the net force is zero	1 point
	Example Response	

Because the sketched line is horizontal after t_1 , the velocity is constant. If the velocity is constant, then the acceleration is zero. Therefore, the net force is zero, which means that the gravitational and drag forces are equal in magnitude.

		Total for part (b)	3 points
(c)	For selecting "Equal to" with an attempt at a relevant justification		1 point
	For a correct justification		1 point

Example Response

At its peak, the cylinder will have a speed of 0 m/s. Therefore, the cylinder would reach the same v_{max} as if the student had dropped the cylinder from rest at that height. Because the cylinder reached v_{max} from the initial drop, the two max speeds are equal.

(d)(ii) For calculating a value for the slope of the line using two points on the best-fit line

Scoring Note: Using data points that fall on the best-fit line is acceptable.

Example Response

slope =
$$\frac{9 \text{ m}^2/\text{s}^2 - 4.5 \text{ m}^2/\text{s}^2}{0.5 \text{ kg} - 0.25 \text{ kg}}$$

For using the correct relationship between the slope of the best-fit line and the value of *b* **1 point**

Example Response

slope =
$$\frac{g}{b}$$

For a calculated value of b that is $0.45 \text{ kg/m} \le b \le 0.75 \text{ kg/m}$

1 point

1 point

Example Response

b = 0.544 kg/m

Example Solution

$$mg - bv^{2} = 0$$

$$bv^{2} = mg$$

$$\frac{v^{2}}{m} = \frac{g}{b}$$

slope = $\frac{g}{b}$

$$b = \frac{g}{\text{slope}}$$

$$b = \frac{9.8 \text{ m/s}^{2}}{\frac{9 \text{ m}^{2}/\text{s}^{2} - 4.5 \text{ m}^{2}/\text{s}^{2}}{0.5 \text{ kg} - 0.25 \text{ kg}}$$

b = 0.544 kg/m

Total for part (d) 4 points

(e)(i)	For indicating that the length of the cylinder should be graphed	1 point
	For indicating that the maximum velocity of the cylinder should be graphed	1 point
(e)(ii)	For describing how the quantities graphed are related to the conclusions of the experiment	1 point

Example Response

The slope of the length vs. maximum velocity graph can be used to determine if length affects terminal velocity.

Total for part (e) 3 points

Total for question 2 15 points

Question 3: Free-Response Question

(a) For drawing and appropriately labeling the downward forces that are exerted on the rod at points P and C

Scoring Note: Labeling the downward force of tension as F_{block} , 3mg, or similar, may earn this point.

For drawing and appropriately labeling a leftward force that is exerted on the rod at Point Q	1 point
For drawing and appropriately labeling a force that is directed up and to the right that is	1 point
exerted on the rod at the pivot, and no extraneous forces are present	

Example Response

Scoring Note: Examples of appropriate labels for the force due to gravity include: F_G , F_g , F_{grav} , W, mg, Mg, "grav force," "F Earth on block," "F on block by Earth," $F_{Earth on block}$, $F_{E,Block}$. The labels G and g are not appropriate labels for the force due to gravity.

Scoring Note: Examples of appropriate labels for the force from the pivot include: F_p , F_{pivot} , F_n , F_N , N, "normal force," "pivot force."

Scoring Note: Examples of appropriate labels for the tension force include F_t , F_T , T,

 F_{string} , and "Force from string."

Total for part (a) 3 points

(b)	For indicating that the net torque exerted on the rod is equal to zero	1 point
	Example Response	

$\Sigma \tau = 0$

For a correct expression for the torque exerted on the rod by the hanging mass **1 point**

Example Response

$$3mg\sin\theta\left(\frac{3L}{8}\right)$$

For a correct expression for the torque exerted on the rod by the gravitational force **1 point**

Example Response

$$mg\sin\theta\!\left(\!\frac{4L}{8}\!\right)$$

For a correct expression for the torque exerted on the rod by the string

Example Responses

$$F_{\rm T}\sin(90^\circ - \theta)\left(\frac{6L}{8}\right)$$
 OR $F_{\rm T}\cos\theta\left(\frac{6L}{8}\right)$

Example Solution

$$\Sigma \tau = 0$$

$$3mg \sin \theta \left(\frac{3L}{8}\right) + mg \sin \theta \left(\frac{4L}{8}\right) - F_{\rm T} \sin(90^{\circ} - \theta) \left(\frac{6L}{8}\right) = 0$$

$$3mg \sin \theta \left(\frac{3L}{8}\right) + mg \sin \theta \left(\frac{4L}{8}\right) - F_{\rm T} \cos \theta \left(\frac{6L}{8}\right) = 0$$

$$\left(\frac{9}{8}\right)mg \sin \theta + \left(\frac{4}{8}\right)mg \sin \theta = \left(\frac{6}{8}\right)F_{\rm T} \cos \theta$$

$$13mg \sin \theta = 6F_{\rm T} \cos \theta$$

$$F_{\rm T} = \frac{13}{6}mg\tan\theta$$

Scoring Note: A maximum of three points may be earned if the trigonometric functions (sin and cos) are reversed for all three torque terms.

Total for part (b) 4 points

1 point

r indicating that the torque exerted on the rod by the string is always the same	1 point
r stating that as the angle between the string and the rod increases, the force exerted on the l by the string decreases	1 point
	r indicating that the torque exerted on the rod by the string is always the same r stating that as the angle between the string and the rod increases, the force exerted on the l by the string decreases

Example Response

 $M = \left(6x + \frac{10x^2}{2} \right) \Big|_{0}^{1.2 \text{ m}}$

M = 14.4 kg

 $M = 6 \text{ kg/m}(1.2 \text{ m}) + \frac{10 \text{ kg/m}^2 (1.2 \text{ m})^2}{2}$

Because the torque exerted on the rod by the string is always the same, as the angle between the string and the rod increases, the tension $F_{T, new}$ must decrease.

	Total for part (c)	2 points
(d)(i)	For indicating the total mass is the sum of differentiable masses along the length of the rod	1 point
	Example Response	
	$M = \int dm$	
	For correctly writing dm in terms of x	1 point
	Example Response	
	$M = \int_0^{1.2} (6+10x) dx$	
	For a correct numeric answer with correct units	1 point
	Example Response	
	M = 14.4 kg	
	Example Solution	
	$M = \int dm$	
	$M = \int \lambda dx$	
	$M = \int_0^{1.2} (6+10x) dx$	

(d)(ii) For a correct substitution of λ into an integral expression of rotational inertia

Example Response

$$I = \int_{0}^{1.2 \text{ m}} (A + Bx)x^2 dx$$

For a correct integration

Example Response

$$I = \left(\frac{Ax^3}{3} + \frac{Bx^4}{4}\right)\Big|_{0}^{1.2 \text{ m}}$$

For a correct numeric answer with correct units

Example Response

$$I = 8.64 \text{ kg} \cdot \text{m}^2$$

Example Solution

$$I = \int r^2 dm \qquad dm = \lambda dr \text{ and } r = x$$

$$I = \int_0^{1.2 \text{ m}} \lambda x^2 dx$$

$$I = \int_0^{1.2 \text{ m}} (A + Bx) x^2 dx$$

$$I = \left(\frac{Ax^3}{3} + \frac{Bx^4}{4}\right) \Big|_0^{1.2 \text{ m}}$$

$$I = \frac{(6.0 \text{ kg/m})(1.2 \text{ m})^3}{3} + \frac{(10.0 \text{ kg/m}^2)(1.2 \text{ m})^4}{4}$$

$$I = 8.64 \text{ kg} \cdot \text{m}^2$$

Total for part (d) 6 points

Total for question 3 15 points

1 point

1 point