2024

AP® Physics C: Electricity and Magnetism

Scoring Guidelines Set 1

© 2024 College Board. College Board, Advanced Placement, AP, AP Central, and the acorn logo are registered trademarks of College Board. Visit College Board on the web: collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

Question 1: Free-Response Question 15 and 15 points

$$
f_{\rm{max}}(x)=\frac{1}{2}x
$$

Example Response

$$
\Phi_E = \frac{Q}{\varepsilon_0}
$$

For the correct numerical answer

Scoring Note: This point can be earned if a negative sign is included in the final answer or if units are missing and/or the units are incorrect.

(a) For using a correct equation for electric flux **1 point**

Example Response

$$
|\Phi_E| = 226 \frac{\text{N} \cdot \text{m}^2}{\text{C}}
$$

Example Solution

$$
\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}
$$
\n
$$
\Phi_E = \frac{Q}{\varepsilon_0}
$$
\n
$$
\Phi_E = \frac{-2.0 \times 10^{-9} \text{ C}}{8.85 \times 10^{-12} \frac{\text{ C}^2}{\text{ N} \cdot \text{ m}^2}}
$$
\n
$$
|\Phi_E| = 226 \frac{\text{ N} \cdot \text{m}^2}{\text{ C}}
$$

Example Response

1 point

(b)(ii) For using an equation that relates the electric field to potential difference

1 point

Scoring Note: This point can be earned if the response begins with a correct relationship between electric field and potential difference in which numerical values are already substituted.

Example Responses

$$
E_x = -\frac{dV}{dx} \qquad \mathbf{OR} \qquad |E_x| = \left| -\frac{dV}{dx} \right| \qquad \mathbf{OR} \qquad |E_x| = \left| -\frac{\Delta V}{\Delta x} \right| \qquad \mathbf{OR} \qquad \Delta V = -\int \vec{E} \cdot d\vec{r}
$$

For correct substitutions of values of electric potential and the distance between equipotential lines that can be used to calculate the approximate magnitude of the electric field at Position B **1 point**

Example Response

$$
|E_x| = \left| -\frac{20.0 \text{ V} - 0.0 \text{ V}}{0.65 \text{ m}} \right|
$$

Example Solution

$$
E_x = -\frac{dV}{dx}
$$

\n
$$
|E_x| = \left| -\frac{dV}{dx} \right|
$$

\n
$$
|E_x| = \left| -\frac{\Delta V}{\Delta x} \right|
$$

\n
$$
|E_x| = \left| -\frac{20.0 \text{ V} - 0.0 \text{ V}}{0.65 \text{ m}} \right|
$$

\n
$$
|E_x| = 31 \frac{\text{V}}{\text{m}}
$$

Total for part (b) 4 points

Example Response

+ *y* . *The direction of an electric field vector is perpendicular to an equipotential line. Because the test charge has a positive charge, the test charge would move from a position of higher electric potential to a position of lower electric potential when an electric force is exerted on the test charge. Therefore, at Position* D , *the electric force is upward because that is the direction that is perpendicular to the equipotential line and in the direction of decreasing electric potential.*

Total for part (c) 3 points

(d)(i) For using an appropriate equation for determining the electric potential from a line of uniform charge **1 point**

Example Responses

$$
V = \frac{1}{4\pi\varepsilon_0} \sum \frac{q_i}{r_i} \qquad \mathbf{OR} \qquad V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r} \qquad \mathbf{OR} \qquad \Delta V = -\int \vec{E} \cdot d\vec{r}
$$

For a correct determination of r, the distance between Point P and a point on the line of uniform charge **1 point**

Example Responses

$$
V_{\mathbf{P}} = k \sum \frac{Q}{x_{\mathbf{P}} - x} \qquad \mathbf{OR} \qquad V_{\mathbf{P}} = k \int \left(\frac{1}{x_{\mathbf{P}} - x}\right) dq
$$

For a correct integral with λ*dx* substituted for *dq* **1 point**

Example Response

$$
V_{\rm P} = k\lambda \int \left(\frac{1}{x_{\rm P} - x}\right) dx
$$

For the correct limits of integration **1 point 1**

Example Response

$$
V_{\rm P} = k\lambda \int_0^{4L} \left(\frac{1}{x_{\rm P} - x}\right) dx
$$

Example Solutions

$$
V = \frac{1}{4\pi\varepsilon_0} \sum \frac{q_i}{r_i}
$$

\n
$$
V_P = k \int \left(\frac{1}{x_P - x}\right) dq
$$

\n
$$
dq = \lambda dx
$$

\n
$$
V_P = k\lambda \int \left(\frac{1}{x_P - x}\right) dx
$$

\n
$$
V_P = k\lambda \int_0^{4L} \left(\frac{1}{x_P - x}\right) dx
$$

\n
$$
V_P = k\lambda \int_0^{4L} \left(\frac{1}{x_P - x}\right) dx
$$

\n
$$
V_P = -k\lambda \ln(r_P - r) \left| \frac{dL}{dr} \right| = k\lambda \ln(r_P - r)
$$

$$
V_{\rm P} = -k\lambda \ln(x_{\rm P} - x) \Big|_{0}^{4L} = k\lambda \ln(x_{\rm P} - x) \Big|_{4L}^{0}
$$

$$
V_{\rm P} = k\lambda \ln\left(\frac{x_{\rm P}}{x_{\rm P} - 4L}\right)
$$

OR

$$
\Delta V = -\int \vec{E} \cdot d\vec{r}
$$

\n
$$
E(x) = \int \frac{k}{r^2} dq
$$

\n
$$
E(x) = \int_0^{4L} \frac{k\lambda}{(x - x')^2} dx' = k\lambda \left(\frac{1}{x - 4L} - \frac{1}{x}\right)
$$

\n
$$
V_P = -\int_{\infty}^{x_P} E(x) dx = -k\lambda \int_{\infty}^{x_P} \left(\frac{1}{x - 4L} - \frac{1}{x}\right) dx
$$

\n
$$
V_P = k\lambda \ln \left(\frac{x_P}{x_P - 4L}\right)
$$

Example Response

Total for part (d) 6 points

Total for question 1 15 points

Question 2: Free-Response Question 15 points

Example Response

(a)(ii) For a procedure that indicates that the voltmeter should be used to measure the potential difference for at least one time **1 point**

For measuring the potential difference from immediately after the switch is closed to when steady-state conditions have been established or during a time interval that would allow the time constant to be determined **1 point**

Example Response

Close the switch. Using the voltmeter, record the potential difference as a function of time until steady-state conditions are established.

Example Response

(b)(ii) For indicating that a curve fit to the graph is that of an exponential function or for correctly relating the area under the curve to the current in the circuit **1 point**

Alternate Solution

For indicating the time on the graph where the potential difference is approximately $0.37\mathcal{E}$, *or* 0.63*& for a curve that starts at the origin and approaches a horizontal asymptote that is consistent with the placement of the voltmeter in the response in part (a)(i)*

For indicating that the coefficient in front of the *t* of the curve-fit equation is equal to $\frac{R}{2l}$ *L* **1 point**

or for correctly relating *R* to *L* and the current

Alternate Solution

For indicating that the time constant is equal to $\frac{2L}{R}$

Example Response

The data in the graph should be fit with an exponential function for the equation

 $V_L = \mathcal{E}\left(e^{-t\frac{R}{2L}}\right)$ $=$ \mathcal{E} | e^{-2L} | $($) \mathcal{E} e ^{2L} . Because $\mathcal E$ and L are known, R can be calculated.

Alternate Example Response

The potential difference at 0.378 along the vertical axis corresponds to the time constant along the horizontal axis. Because the time constant is equal to $\frac{2L}{R}$ *, and L is known, R can be calculated.*

Total for part (b) 6 points

ipie Respo

 $\left(\frac{\overline{}}{2} - \frac{\overline{}}{R}\right)$

 $|\Delta V_2| > |\Delta V_1|$. The potential difference ΔV_1 across the original, ideal inductor is zero at *steady state. The potential difference across the new inductor would be nonzero due to the inductor's nonnegligible resistance. The value of* $|\Delta V_2|$ *would be the product of the steadystate current and the inductor's resistance.*

Total for part (d) 3 points

Total for question 2 15 points

Question 3: Free-Response Question 15 points

Example Response

Scoring Note: A sketch that is reflected across the horizontal axis can earn the four points. **Scoring Note:** The absolute values of the slopes in regions $L < x < 2D$ and $2.5L < x < 3.5L$ are not considered for earning points in the response in part (a).

OR

For indicating the magnetic field due to the induced current will be directed in the +*z* -direction

Example Response

Counterclockwise. The magnetic flux through the loop is increasing in the $−z$ *-direction. Therefore, a magnetic field is induced by the current in the loop to oppose the increasing magnetic flux. To establish this field, the current must be counterclockwise.*

(b)(ii) For a multistep derivation that includes Faraday's law

Scoring Note: The point can be earned if a negative sign is not included**. Example Response**

$$
\mathcal{E} = -\frac{d\Phi_B}{dt} = -\frac{d}{dt}(BA)
$$

For indicating $\frac{dA}{dt}$ is $2Lv$ 1 point

Scoring Note: The point can be earned if a negative sign is included. **Example Response**

$$
\mathcal{E} = B \frac{dA}{dt} = 2BLv
$$

For using Ohm's law, resulting in an expression for I_R that is consistent with the expression determined for the emf $\mathcal E$ **1 point**

Scoring Note: The point can be earned if a negative sign is included.

Example Response

$$
I_{\rm R}\,=\frac{2BLv}{R}
$$

R

Example Solution

$$
\mathcal{E} = -\frac{d\Phi_B}{dt}
$$
\n
$$
\mathcal{E} = -\frac{d}{dt} \left(\int \vec{B} \cdot d\vec{A} \right)
$$
\n
$$
\mathcal{E} = -\frac{d}{dt} (BA) = -\frac{d}{dt} (-B(2L)x)
$$
\n
$$
\mathcal{E} = 2BL \frac{dx}{dt}
$$
\n
$$
\mathcal{E} = 2BLv
$$
\n
$$
I = \frac{\Delta V}{R}
$$
\n
$$
I_R = \frac{\mathcal{E}}{R}
$$
\n
$$
I_R = \frac{2BLv}{R}
$$

(b)(iii) For using a correct general expression for *P* **1 point**

Example Responses

$$
P = I^2 R \qquad \mathbf{OR} \qquad P = \frac{(\Delta V)^2}{R} \qquad \mathbf{OR} \qquad P = I \Delta V
$$

For an expression for P that is consistent with the response in part $(b)(ii)$ that is in terms of the provided quantities only **1 point**

Example Response

$$
P = \frac{4B^2L^2v^2}{R}
$$

Example Solution

R $P = \frac{4B^2L^2v}{R}$

$$
P = I2 R
$$

$$
P = \frac{(2BLv)^{2}}{R}
$$

$$
P = 4B^{2}L^{2}v^{2}
$$

- The change in magnetic flux is greater for the original scenario.
- The induced current occurs for a greater amount of time in the original scenario.
- The induced emf occurs for a greater amount of time in the original scenario.

Example Response

The change in magnetic flux is greater in the original scenario, which produces an emf and current for a longer time. Therefore, $E_{\text{new}} < E_{\text{original}}$.

Total for part (c) 2 points

Scoring Note: A response that is reflected across the horizontal axis earns both points. **Scoring Note:** Any portion of the graph before $x = L$ and after $x = 3L$ are not scored.

> **Total for part (d) 2 points Total for question 3 15 points**