2024

AP[°] Physics 2: Algebra-Based Scoring Guidelines

© 2024 College Board. College Board, Advanced Placement, AP, AP Central, and the acorn logo are registered trademarks of College Board. Visit College Board on the web: collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

Question 1: Paragraph-Length Response

For indicating that $f_{\rm B}$ is least and $f_{\rm C}$ is greatest	
For correctly relating the frequency of a photon to the energy of the photon	1 point
For indicating that the kinetic energy or speed of an ejected electron is inversely related to the	1 point
de Broglie wavelength of the electron	
For indicating one of the following:	1 point
• That a greater photon energy or frequency results in a greater kinetic energy for an ejected electron	
• That the lowest photon energy or frequency is below the work function or threshold frequency which results in no ejected electron	
For a logical, relevant, and internally consistent argument that addresses the required argument or question asked, and follows the guidelines described in the published requirements for the paragraph-length response	1 point
Example Response	
An electron will be ejected if the incident photon has an energy greater than the work	
function of the metal. Because no electrons were ejected using $f_{\rm B}$, the corresponding photon	
energy, and, therefore, frequency must be the least. A photon with greater frequency will result in an ejected electron with more kinetic energy; the kinetic energy of an electron is	

inversely related to the de Broglie wavelength of the electron. Because the de Broglie wavelength of electrons ejected by light of frequency f_A is greater than those ejected by

light of frequency $f_{\rm C}$, $f_{\rm A}$ must be less than $f_{\rm C}$. Therefore, $f_{\rm C}$ is the greatest.

Total for part (a) 5 points

(b) For one of the following:

- Correctly relating electron de Broglie wavelength to a correct expression that includes *h*, *m*, and *v*
- Relating kinetic energy to a correct expression that includes momentum and mass

$$\lambda_e = \frac{h}{mv}$$

OR

$$K = \frac{p^2}{2m}$$

For correctly substituting an algebraic expression in terms of λ_e for the electron speed or **1 point** momentum into a relevant equation for kinetic energy

Scoring Note: This point can be earned for substituting a numerical value for electron speed or momentum into a relevant equation for kinetic energy.

Example Responses

$$K = \frac{1}{2}m\left(\frac{h}{m\lambda_e}\right)^2 \quad \mathbf{OR} \quad K = \frac{\left(\frac{h}{\lambda_e}\right)^2}{2m}$$

For a correct answer with units

1 point

1 point

Example Response

$$K = 5 \times 10^{-19}$$
 J

Example Solution

$$\lambda_{e} = \frac{h}{p} = \frac{h}{mv}$$

$$v = \frac{h}{m\lambda_{e}}$$

$$K = \frac{1}{2}mv^{2} = \frac{1}{2}m\left(\frac{h}{m\lambda_{e}}\right)^{2}$$

$$K = \frac{h^{2}}{2m\lambda_{e}^{2}}$$

$$K = \frac{\left(6.63 \times 10^{-34} \text{ J} \cdot \text{s}\right)^{2}}{2\left(9.11 \times 10^{-31} \text{ kg}\right)\left(6.9 \times 10^{-10} \text{ m}\right)^{2}} = 5 \times 10^{-19} \text{ J}$$

Scoring Note: An answer of 3 eV also earns the final point.

Total for part (b) 3 points

(c)	For indicating that the work function of Metal 1 is less than the work function of Metal 2 with an attempt at a relevant justification	1 point
	For indicating at least two of the following:	1 point
	• The correct relationship between the work function and the difference between hf and K_{max}	
	• The frequency or energy of the incident photons is the same	
	• The de Broglie wavelength is inversely related to the energy of the ejected electrons	
	Example Response	
	The work function of Metal 1 is less than the work function of Metal 2. When light of the same frequency is incident on both metals, the electron ejected by Metal 1 has a smaller de Broglie wavelength than that of Metal 2, so an electron ejected from Metal 1 has more kinetic energy. The work function is the difference between the photon energy and the maximum kinetic energy. Since the photon energy is the same but the maximum kinetic energy is larger for Metal 1, the difference between the energies, and thus the work function, is smaller for Metal 1.	

Total for part (c) 2 points

Total for question 1 10 points

Ques	Question 2: Experimental Design	
(a)	For indicating measurements that could be used to determine the volume of the gas	1 point
	Scoring Note: Responses that include the volume of the heater may earn full credit.	
	For indicating that the sensors should be used to record the temperature and pressure of the gas	e 1 point
	For indicating that multiple different temperature and pressure measurements should be recorded	1 point

Example Response

Measure the length, width, and height of the chamber. Activate the heater. Starting at time t = 0, use the sensors to record the temperature and pressure of the gas every 10 s until t = 60 s.

(b)(i)	For sketching an upward vertical line that never touches the horizontal or vertical axes	1 point

Example Response

Total for part (a)

3 points

(b)(ii) For sketching an upward vertical line that never touches the horizontal or vertical axes

(b)(iii) For a justification that correctly relates the volume of the chamber to the sketch or relates the energy transferred to the gas by the heater to the sketch that is consistent with the sketch in part (b)(ii)

Example Responses

The heater transfers energy to the gas by heating, so the internal energy of the gas increases.

OR

The gas has a constant volume.

	Total for part (b)	3 points
(c)(i)	For indicating quantities that can be plotted on the graph to calculate an experimental value for k	1 point
	Example Response	
	Vertical Axis: $\frac{Q}{\Delta t}$	
	Horizontal Axis: $\Delta T = T_{\rm G} - T_{\rm L}$	
(c)(ii)	For labeling the axes correctly (including units) with a linear scale such that the data fill half the area of the graph	1 point
	For plotting the data points correctly	1 point

1 point

$$k = 0.06 \ \frac{\mathrm{J}}{\mathrm{s} \cdot \mathrm{K} \cdot \mathrm{m}}$$

1 point

Example Solution

slope = $\frac{\Delta y}{\Delta x}$
slope = $\frac{\Delta\left(\frac{Q}{\Delta t}\right)}{\Delta(\Delta T)}$
slope = $\frac{\left(\frac{Q}{\Delta t}\right)_2 - \left(\frac{Q}{\Delta t}\right)_1}{\Delta T_2 - \Delta T_1}$
slope = $\frac{(80 - 44)\frac{J}{s}}{(220 - 120)K}$
slope = $0.36 \frac{J}{s \cdot K}$
$\frac{Q}{\Delta t} = \frac{kA\Delta T}{L}$ $\frac{Q}{\Delta t} = \left(\frac{kA}{L}\right)\Delta T$ slope = $\frac{kA}{L}$
$k = \frac{L}{A}$ (slope)
$k = \frac{0.01 \mathrm{m}}{0.06 \mathrm{m}^2} \left(0.36 \frac{\mathrm{J}}{\mathrm{s} \cdot \mathrm{K}} \right)$
$k = 0.06 \frac{\mathrm{J}}{\mathrm{s} \cdot \mathrm{K} \cdot \mathrm{m}}$

Total for part (d) 2 points

Total for question 2 12 points

Question 3: Quantitative/Qualitative Translation

(a)(i) For correctly determining the total resistance R_{total} of the circuit 1 point

Example Response

$$R_{\text{total}} = \frac{5R}{3}$$

For a multi-step derivation that includes correct substitutions of \mathcal{E} and R_{total} into the **1 point** equation that describes Ohm's law, consistent with the first point of part (a)(i)

Example Response

$$I_1 = \frac{3\mathcal{E}}{5R}$$

Example Solution

Determine the total resistance of the circuit.

The resistance of the right-most branch containing resistors connected in series:

$$R_{s} = \sum_{i} R_{i}$$
$$R_{s} = R + R$$
$$R_{s} = 2R$$

The resistance of parallel branches that contain resistors:

$$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$$
$$\frac{1}{R_p} = \frac{1}{R} + \frac{1}{2R} = \frac{3}{2R}$$
$$R_p = \frac{2R}{3}$$

The total resistance of the circuit:

$$R_s = \sum_i R_i$$
$$R_{\text{total}} = R + \frac{2R}{3} = \frac{5R}{3}$$

The total current in the circuit:

$$I = \frac{\Delta V}{R} = \frac{3\mathcal{E}}{5R}$$

12 points

(a)(ii) For applying a result of Kirchhoff's law and/or Ohm's law that relates the current in R₃ to 1 point one of the following:

- The current in or potential difference across R₁
- The current in or potential difference across R₂
- The potential difference across R₃

Example Responses

One-third of the total current in the circuit is in R_3 : $I_3 = \frac{I_1}{3}$

OR

 $I_1 = I_2 + I_3$

OR

 $\Delta V_2 = \Delta V_3 + \Delta V_4$

For a correct expression from a multi-step derivation that is consistent with the final expression in part (a)(i)

Example Response

$$I = \frac{\mathcal{E}}{5R}$$

Example Solutions

$$I_{1} = I_{2} + I_{3}$$

$$\Delta V_{2} = \Delta V_{3} + \Delta V_{4}$$

$$I_{2}R_{2} = I_{3}(R_{3} + R_{4})$$

$$I_{2}R = I_{3}(2R)$$

$$I_{2} = 2I_{3}$$

$$I_{1} = 2I_{3} + I_{3}$$

$$I_{3} = \frac{I_{1}}{3}$$

$$I_{3} = \frac{\left(\frac{3\mathcal{E}}{5R}\right)}{3}$$

$$I_{3} = \frac{\mathcal{E}}{5R}$$

OR

One-third of the total current in the circuit is in R_3 . Therefore, $I_3 = \frac{\mathcal{E}}{5R}$.

Total for part (a) 4 points

1 point

(b) For drawing a bar that indicates that the potential difference across R_3 is nonzero and is **1 point** equal to the potential difference across R_4

For drawing a bar that indicates that the potential difference across R_2 is nonzero and is	1 point
equal to the sum of the potential differences across R_3 and R_4	

Example Response

Total for part (b) 3 points

(c) For indicating that the equation is correct or incorrect, consistent with the derivations in part (a) or the bar chart from part (b), with an attempt at a relevant justification

For a justification that correctly relates *P* to at least **one** of the following:

1 point

1 point

- The potential difference across the battery
- The current in the battery
- R_1 , R_2 , R_3 , and R_4

For a justification that relates the equation $P = \frac{3\mathcal{E}^2}{5R}$ to at least **one** of the following:

- The bar chart from the response in part (b)
- The derivations in the responses to parts (a)(i) and (a)(ii)

Scoring Note: The justification must be consistent with the derivations in part (a) or the bar chart from part (b).

Example Solution

The equation is correct. The equation for P, which is power, can be written as

 $P = \frac{(\Delta V)^2}{R}$. According to the bar chart in part (b), the potential difference across the

battery is \mathcal{E} . The total resistance of the circuit is $\frac{5R}{3}$, according to the derivation from

part (a)(i). Therefore,
$$P = \frac{(\Delta V)^2}{R} = \frac{(\mathcal{E})^2}{\left(\frac{5R}{3}\right)} = \frac{3\mathcal{E}^2}{5R}$$
.

	Total for part (c)	3 points
(d)	For selecting that $P_{\text{new}} < P_{\text{original}}$ with an attempt at a relevant justification	1 point
	For a correct justification that indicates at least one of the following:	1 point

- The current in R₁ is less in the new circuit than in the original circuit
- The potential difference across R₁ is less in the new circuit than in the original circuit

Example Response

 $P_{\text{new}} < P_{\text{original}}$. Since the emf of the battery is the same in the new circuit and the total resistance of the new circuit is greater, the current in R_1 is less in the new circuit. Therefore, P_{new} is less than P_{original} .

Total for part (d) 2 points

Total for question 3 12 points

Question 4: Short Answer/Other

10 points

(a) For indicating that the final kinetic energy of a particle is equal to $|q\Delta V|$

Scoring Note: Explicit indication of an absolute value is not required for this point to be earned.

Example Response

2

For
$$\frac{K_2}{K_1} =$$

1 point

1 point

Example Solution

$$E_{0} = E_{f}$$

$$\Delta U + \Delta K = 0$$

$$-\Delta U_{E} = \Delta K$$

$$|q\Delta V| = K$$

$$K_{1} = |-Q\Delta V| = Q\Delta V$$

$$K_{2} = |+2Q\Delta V| = 2Q\Delta V$$

$$\frac{K_{2}}{K_{1}} = \frac{2Q\Delta V}{Q\Delta V}$$

$$\frac{K_{2}}{K_{1}} = 2$$

	Total for part (a)	2 point
	Scoring Note: Parts (b)(i) and (b)(ii) can be scored together.	
(b)(i)	For a correct expression for the speed of Particle 2 in terms of K_2 and M	1 point
	Example Response	
	$v = 2\sqrt{\frac{K_2}{M}}$	
	Example Solution	
	$K = \frac{1}{2}mv^2$	
	$K_2 = \frac{1}{2} \left(\frac{M}{2}\right) v^2$	
	$v = 2\sqrt{\frac{K_2}{M}}$	

(b)(ii) For substituting an appropriate expression for the magnetic force exerted on a moving 1 point charged particle in a magnetic field into a Newton's second law equation

Example Response

$$\vec{a}_c = \frac{q\vec{v} \times \vec{B}}{m}$$

For correct substitutions of the mass, charge, and speed of Particle 2 from the response in **1 point** part (b)(i) into an appropriate expression

Example Response

$$r = \frac{\left(\frac{M}{2}\right)\left(2\sqrt{\frac{K_2}{M}}\right)}{2QB_0}$$

For indicating that $\Delta x = 2r$

1 point

Example Solution

$$\vec{a} = \frac{\sum \vec{F}}{m}$$
$$\vec{a}_c = \frac{q\vec{v} \times \vec{B}}{m}$$
$$\frac{v^2}{r} = \frac{qvB}{m}$$
$$r = \frac{mv}{qB}$$
$$r = \frac{\left(\frac{M}{2}\right)\left(2\sqrt{\frac{K_2}{M}}\right)}{2QB_0}$$
$$r = \frac{\sqrt{K_2M}}{2QB_0}$$
$$\Delta x = 2r$$

$$\Delta x = \frac{\sqrt{K_2 M}}{Q B_0}$$

Total for part (b) 4 points

(c)	For drawing a path for Particle 1 that is concave up and to the right	1 point
	For drawing a path for Particle 2 that is concave up and in the opposite direction of Particle 1	1 point
	For drawing the path for Particle 1 with a larger radius of curvature than the path for Particle 2	1 point

Example Response

	Total for part (c)	3 points
(d)	For indicating one of the following:	1 point
	 That the electric field is directed in the +x -direction A direction of the electric field that is consistent with the path of Particle 1 drawn in part (c) 	
	Example Response	
	+ <i>x</i> -direction	

Total for part (d) 1 point

Total for question 4 10 points