
© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Chief Reader Report on Student Responses:
2024 AP® Computer Science Principles Performance Task

Set 2

• Number of Students Scored 175,261
• Number of Readers 680
• Score Distribution Exam Score N %At
 5 19,105 10.9
 4 34,979 20.0
 3 58,034 33.1
 2 35,542 20.3
 1 27,601 15.7
• Global Mean 2.90

The following comments on the 2024 performance task for AP® Computer Science Principles were
prepared by the Chief Reader, Thomas Cortina (Carnegie Mellon University). They give an overview
of the Computer Science Principles performance task and of how students performed on the task,
including typical student errors. General comments regarding the skills and content that students
frequently have the most problems with are included. Some suggestions for improving student
preparation in these areas are also provided. Teachers are encouraged to attend a College Board
workshop to learn strategies for improving student performance in specific areas.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Create Performance Task

The written response prompts for the AP Computer Science Principles exam are centered around the Create
Performance Task, in which students dedicate at least nine hours of class time to develop a computer
program that addresses a need, concern, personal interest, or creative expression. Students may use any
programming language, including text-based languages (e.g. Python, JavaScript) or block-based languages
(e.g. Scratch, Snap!) to create their program. They are allowed to work with partner(s), use starter code, and
use AI tools (with citation through comments in the program code component). Students individually create
a short video that demonstrates the running of their program, illustrating input, functionality, and output.
They also prepare a Personalized Project Reference sheet with screenshots of program code (without any
comments). Their Personalized Project Reference includes a student-developed procedure definition with at
least one explicit parameter and a call to the included procedure, as well as how data are stored in a list or
collection and how the data in the list or collection are used in the program.

Students use the Personalized Project Reference sheet during the administration of the AP exam to answer
four written response prompts about their program. The video, program code, and written response answers
account for 30% of the total score for the AP Computer Science Principles exam.

Each prompt addresses at least one of the listed learning objectives for that prompt:

Written Response 1: Program Design, Function, and Purpose

• CRD-2.A: Describe the purpose of a computing innovation.
• CRD-2.B: Explain how a program or code segment functions.
• CRD-2.C: Identify input(s) to a program.,
• CRD-2.D: Identify output(s) produced by a program.
• CRD-2.E: Develop a program using a development process.
• CRD-2.F: Design a program and its user interface.
• CRD-2.G: Describe the purpose of a code segment or program by writing documentation.

Written Response 2(a): Algorithm Development

• CRD-2.B: Explain how a program or code segment functions.
• AAP-2.E.b: Evaluate expressions that use relational operators.
• AAP-2.F.b: Evaluate expressions that use logic operators.
• AAP-2.H.b: Determine the result of conditional statements.
• AAP-2.J: Express an algorithm that uses iteration without using a programming language.
• AAP-2.K.b: Determine the result or side effect of iteration statements.
• AAP-2.L: Compare multiple algorithms to determine if they yield the same side effect or

result.
• AAP-2.M.a: Create algorithms.
• AAP-2.M.b: Combine and modify existing algorithms.

Written Response 2(b): Errors and Testing

• CRD-2.I.a: Identify the error.
• CRD-2.I.b: Correct the error.
• CRD-2.J: Identify inputs and corresponding expected outputs or behaviors that can be used to

check the correctness of an algorithm or program.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Written Response 2(c): Data and Procedural Abstraction

• AAP-1.D.a: Develop data abstraction using lists to store multiple elements.
• AAP-1.D.b: Explain how the use of data abstraction manages complexity in program code.
• AAP-2.O.a: Write iteration statements to traverse a list.
• AAP-2.O.b: Determine the result of an algorithm that includes list traversals.
• AAP-3.B: Explain how the use of procedural abstraction manages complexity in a program.

Students should design their program carefully based on the Exam Information given in the Course and
Exam Description so that it meets all the requirements. Meeting all the requirements in their program code
gives students the best opportunity to answer the prompts given on the exam.

In the following sections, each question is addressed in more detail, including what is expected based on
the requirements and written prompts. This is followed by examples of responses from the actual exam that
show misconceptions compared with responses that demonstrate correct understanding of the requirements
or written prompt. Suggested tips on helping teachers prepare to improve student performance and
available resources are presented at the end of this report.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Question 1

Task: Video, Program Requirements, and Written Response 1
Topic: Course project and program design, function, and purpose

Max Points: Mean Score:
Video: 1 0.94
Program Requirements: 1 0.78
Written Response 1: 1 0.77

What were the responses to this question expected to demonstrate?

The responses to this question were expected to demonstrate that the student could:

• demonstrate the program input, functionality, and output in a short video (Course Project: Video),
• develop a working program that includes a student-developed procedure including sequencing,

selection and iteration, and the creation and use of at least one list or collection (Course Project:
Program Requirements), and

• explain at least one valid program input and how the program uses the input to perform its
functionality (Written Response 1: Program Design, Function, and Purpose).

Students were asked to record a video demonstrating their program’s functionality including input and output.
Input could be user input (e.g. mouse clicks, text-entry) or file or database input. The source of the input can
be verified by examining the program code if the video did not clearly capture the input.

The students were then asked to provide, on their Personalized Project Reference sheet, segments of code
from their program that demonstrated a student-developed procedure which utilized selection and iteration
appropriately, along with segments of code showing the creation of a list (or collection) and use of the same
list (or collection) to contribute to the purpose of the program. Designing a program that includes these core
features is critical to understanding basic programming in any language.

In Written Response 1, students were asked to identify the expected users of the program and to explain how
the program addresses a concern or need of those users.

How well did the responses address the course content related to this question? How well did the
responses integrate the skill(s) required on this question?

• Students were generally able to develop a working program and to demonstrate program input,
functionality, and output in the submitted video responses. In some cases, the program code had to be
referred to when the input was a touch screen or data source, but most students demonstrated user-
generated input from a mouse click or text entered into a prompt box.

• Some students submitted programs based on example programs from content providers, but the
stronger submissions were original programs coded by the student or in some cases, co-authored with
a partner. Students were also permitted to use generative AI tools as supplementary resources. In
these cases, students identified those sections of code in which they collaborated with partners or used
AI in the program code component.

• Students were asked to provide code segments demonstrating a student-developed procedure which
included sequencing, selection and iteration, and code segments demonstrating the creation and use of
a list or another collection type. The response required that these be essential to the program’s

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

functionality. The use of selection and iteration should not be trivial. Additionally, when implementing
iteration, students should make sure there is a way of exiting the loop when some condition is met.

• Most students correctly developed and called a defined procedure that fulfilled expectations. For some
students, particularly those using block-based programs, event handlers were often used instead of
student-developed procedures.

• There was a variety of collection types used, and the use of lists and collections varied across
programs. Some used lists as collections of data to be retrieved for a user, and some used lists to store
user responses or scores in the case of game programs. Overall, most students used a list or collection
in a way that was appropriate for the purpose of their program. Some students submitted code that
could have been designed more efficiently if a list had been used instead of repeated conditional
statements or submitted code that identified a set of individual variables as the list even though these
were not stored in a list or collection. This suggests that their understanding of lists and their uses is
still developing.

• Students were asked to identify the expected users of the program and to explain how their program
addresses a concern or need of those users. Most students identified some group of users that would
reasonably be using their program and what concern or issue that program addressed for these users.
Some students identified a group of users, but then identified concerns of the programmer rather than
those users. Some students identified the group of users as everyone, which is too broad an answer.
Some students focused on the functionality of the program instead of how the program is useful for the
users it is designed for.

What common student misconceptions or gaps in knowledge were seen in the responses to this
question?

Common Misconceptions/Knowledge Gaps Responses that Demonstrate Understanding

Course Project Video

• Not having input to the program while it is
running. For example, a video shows the
program running and characters interacting, but
input to the program is not demonstrated in the
video.

• High scoring responses show the program
receiving and responding to graphical input
such as mouse clicks or menu selections. For
example, the video shows the user selecting
Mercury from a dropdown menu and then
clicking a button labeled “get information,” at
which point the user interface displays facts
about Mercury.

• Not showing the program running but instead
explaining how the program runs. For example,
a video that shows a slide show explaining the
program.

• High scoring responses show the program
running. For example, a video that shows a user
entering grades in response to a prompt and
then shows the program displaying the GPA
based on the grades the user entered.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Program Requirements

• Lack of a student-developed procedure. For
example, the response provides program code
that includes an event handler instead of a
student-developed procedure. Although event
handlers collect a sequence of instructions, they
are built-in structures and are therefore not
student-defined. They also cannot be called
throughout the program. For example:

when this sprite clicked:
 repeat 25:
 change size by -5
 if message = True:
 say "Goodbye" for 2 seconds

• High scoring responses include a student-
developed procedure that contains selection and
iteration, which is called in the program. For
example:

def sortChoices(listSearch):
 global choices
 i = len(choices) - 1
 while i >= 0:
 if choices[i] not in listSearch:
 del choices[i]
 i -= 1

which is called here:

sortChoices(selectedList)

• Lack of use of iteration. For example, the
response provides program code that uses a
series of conditional statements, but no loop
structures. For example:

if (position[0] == "prize") {
 answer = 0;
}
else if (position[1] == "prize") {
 answer = 1;
}
else if (position[2] == "prize") {
 answer = 2;
}
else if (position[3] == "prize") {
 answer = 3;
}
else {
 answer = 4;
}

• High scoring responses use iteration to
accomplish something meaningful in the
program. For example:

for (var i = 0; i < list1.length;
 i++)
{
 if (formatList[i]== formatString)
{
 catIndex = i;
 }
}

This iteration statement uses a loop and a
conditional to select a cat that matches the user’s
input.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

• Inclusion of a list that was not used in the
operation of the program. For example, the
program code creates a list of six elements, and
then immediately assigns six variables to the
values of the elements in the list. The code then
uses the variables and not the list in the
program. For example:

var colors = ["red", "green",
"blue", "yellow", "cyan",
"magenta"];

var color0 = "red";
var color1 = "green";
var color2 = "blue";
var color3 = "yellow";
var color4 = "cyan";
var color5 = "magenta";

print("Choose from these colors:\n");
print(color0 + "\n");
print(color1 + "\n");
print(color2 + "\n");
print(color3 + "\n");
print(color4 + "\n");
print(color5 + "\n");

• High scoring responses define and use a list (or
other collection type) in a meaningful way
within the program code. For example, a
response defines:

var lines = [
["eb1", "eb2", "eb3"],
["eb4", "eb5", "eb6"],
["eb7", "eb8", "eb9"],
["eb1", "eb4", "eb7"],
["eb2", "eb5", "eb8"],
["eb3", "eb6", "eb9"],
["eb1", "eb5", "eb9"],
["eb3", "eb5", "eb7"]
];

and then uses lines as follows:

for (var i = 0; i < lines.length;
 i++)
{
 var a = lines[i][0];
 var b = lines[i][1];
 var c = lines[i][2];
 if (getText(a) !== "."
 && getText(a) === getText(b)
 && getText(a) === getText(c))
 {
 if (getText(a) === player)
 {
 showElement("uWin");
 }
 else
 {
 showElement("cWin");
 }
 ...

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Written Response 1: Program Design, Function, and Purpose

• Describing the program functionality instead of
how the program addresses a concern or interest
of users. For example, “The purpose of this
program is to create a quiz that will test the user
on their knowledge of Taylor Swift songs.”

• High scoring responses clearly identify the user,
a user concern, and how the program addresses
this need or concern. For example,
“My program is a calculator that is used to find
the values of velocity and momentum after a
specific collision. The targeted group of users
would be students or engineers who need to
find these values outputted (final velocities and
final momentums) after the collision... Examples
of this would be a teacher asking you to find the
velocity and momentum of a ball after it hits a
wall, and an engineer trying to find out how
much speed a baseball travels after being hit by
a bat.”

• Not clearly identifying a user or user group. For
example, “The group of users that are inteded
with my program is extremely broad as it is open
and avalible to anyone.”

• High scoring responses clearly identify the user
or user group. For example, “The expected
group of users of my program is teachers. My
program addresses the interest of the teachers
via making a platform for teachers to sort and
add student grades in a list.”

• Identifying concerns of the program developer
instead of a concern or interest of a user of the
program. For example, “1 concern i do have is
the user will get confused ...”

• High scoring responses clearly identify user
concerns. For example, “My program is targeted
at anyone who seeks to learn how to properly
use roman numerals, as well as those who want
to test their knowledge. For those looking to
learn, there is a mode designed to teach the user
with the assistance of a chart that details each
number and it’s corresponding numeral, as well
as a mode that allows the user to practice
converting number to roman numerals, and vice
versa. For users who want to test their
knowledge, there is a mode where the user has
a set number of lives and must solve as many
problems as they can correctly before running
out of lives.”

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Question 2

Task: Written Response 2
Topic: Algorithm development, errors and testing, and data and procedural abstraction

 Max Points: Mean Score:
Written Response 2(a): 1 0.56
Written Response 2(b): 1 0.20
Written Response 2(c): 1 0.25

What were the responses to this question expected to demonstrate?

Responses to this question were expected to demonstrate that the student could:

• explain how a code segment functions, including evaluating expressions that use logic and relational
operators and determining the result of a conditional statement. (Written response 2(a): Algorithm
Development),

• identify inputs and corresponding expected outputs or behaviors that can be used to check the
correctness of an algorithm or program (Written response 2(b): Errors and Testing), and

• explain how the use of procedural abstraction manages complexity in a program (Written response
2(c): Data and Procedural Abstraction).

Written response 2(a) asked students to describe their conditional statement including its Boolean expression
and what the procedure does in general when the Boolean expression is false. Students were required to
identify a conditional statement (i.e. a selection statement), evaluate its Boolean expression, and explain how
it functions in one of two cases.

Written response 2(b) asked students to describe the outcome of the procedure call they identified in the
Personalized Project Reference, demonstrating that they could identify the inputs and corresponding outputs
of a procedure call. It then asked students to write a new procedure call with at least one different argument
that produces the same outcome (or to state why it was not possible to do so). This ability is critical to
identifying and correcting errors in code in two ways. First, for students to determine if their procedure is
functioning correctly, they must first understand the procedure’s expected behavior for a given input so that
they can match the expected output to the observed output when they run the procedure. Second, it is
important to recognize when two different tests produce the same behavior, or to recognize that no two calls
can produce the same behavior, to ensure that all test cases do not test the same functionality of the
procedure.

Part (c) asked students to identify the parameters of their procedure and explain how these parameters use
abstraction to manage complexity in their program. The use of parameters to generalize the functionality of a
procedure is a key aspect of procedural abstraction, allowing a single procedure to be called using a variety of
data values to solve multiple instances of the same problem. In this part, students were expected to show that
they understood this specific aspect of procedural abstraction, beyond procedural abstraction as a general
concept to simply reduce the amount of code written.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

How well did the responses address the course content related to this question? How well did the
responses integrate the skill(s) required on this question?

Written response 2(a): Algorithm Development - Explain how a code segment functions, including evaluating
expressions that use logic and relational operators and determining the result of a conditional statement.

• Most students were able to identify a conditional statement and describe the statement and its
Boolean expression.

• Most students were able to determine the result of the conditional statement in the case where the
Boolean expression was false. Some responses explicitly identified the path the code would take if the
Boolean expression evaluated to false, and then described what that path would do in general. Others
described the behavior of the code in the else block, or following the conditional statement in the
cases that there was no else block.

Written response 2(b): Errors and Testing - Identify inputs and corresponding expected outputs or behaviors
that can be used to check the correctness of an algorithm or program.

• When students provided a procedure call that used specific arguments, they generally were able to
identify the outcome their procedure call was intended to produce and provide a separate procedure
call that produced the same outcome. In other cases, students provided a call to their procedure that
used variables as arguments. In these cases, students generally were able to address the first part of
the prompt by describing the output of their procedure in terms of generalized values of the variables
(e.g., “shows the desired information corresponding to the user’s choice”). However, this often created
a challenge in answering the second part of the prompt as there was no specific outcome against
which to compare the outcome of their second procedure call. Some students handled this challenge
by specifying hypothetical values for their parameters for the call given in the Personalized Project
Reference, and then providing a second call with different specific arguments.

• Many students were able to identify and explain situations where it was not possible to write a
different call to the procedure that produced the same outcome. Most of the time, this was when the
procedure was written to lead to a specific outcome for each individual possible argument (e.g. for a
procedure with a parameter named choice, the code if choice == 1: print "You win" can
only print "You win" when choice is 1.)

• This prompt revealed a misunderstanding about arguments and procedure calls for some students.
This misunderstanding was demonstrated by two prominent incorrect response patterns. First, many
students misinterpreted the prompt to “write a new procedure call with at least one different
argument” as having to rewrite their code in one of two ways: (1) to change the procedure call in their
code or (2) to rewrite the procedure body to do something different. Second, some responses changed
the name of the variable in their given procedure call rather than providing a different argument.

Written response 2(c): Data and Procedural Abstraction - Explain how the use of procedural abstraction
manages complexity in a program.

• Most students correctly identified the parameters to their procedure, though some confused
arguments with parameters. Many students correctly described how the parameters used abstraction
to managed complexity in their program by explaining how the parameters allowed the procedure to
be called with different values depending on user input or in various locations in their program. Some
responses that did not earn the point included explanations of how procedures in general helped
manage complexity in the program by allowing the code to be run multiple times without being copied
but failed to link this explanation to the parameters. Other responses confused procedural abstraction
with data abstraction. This confusion was particularly likely to happen when the parameter was a list,
with responses indicating that the list reduced the number of parameters, rather than focusing on why

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

the parameters themselves allowed for the procedure to be used to solve a broad set of instances of
the same problem.

What common student misconceptions or gaps in knowledge were seen in the responses to this
question?

Common Misconceptions/Knowledge Gaps Responses that Demonstrate Understanding

Written Response 2(a): Algorithm Development

• Not describing the conditional statement
adequately. For example, “The first part of my
code conditional statements would be the
movement. In order for my movement to function
i had to code in some kind of gravity so that way
the character in the game doesn’t always float
and so with this new part of the code I had to now
make my character move. I did this using {If}
commands, so if the player had used a specific
arrow key on the keyboard that would make my
character move a certain distance.” This
response describes aspects of the procedure’s
behavior but does not specifically describe the
conditional statement.

• High scoring responses describe the conditional
statement and Boolean expression clearly. For
example, “My conditional statement checks if the
user’s lunch order is greater than or equal to
their cash.”

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

• Misidentifying other control structures such as
procedures or loops as conditional statements.
For example:

function findServiceRating(filler)
{
 while(true){
 let serviceRating =
 readLine("rate your service");
 if (serviceRating == "excellent"
 || serviceRating == "good"
 ...)
 {
 return serviceRating;
 }
 else
 {
 console.log("Invalid input")
 }
 }
}

The response states, “My first conditional
statement starts my whole process of finding the
tip percent they want. When true it prompts the
user to enter what you wold rate their service. ... If
these conditional statement was to be false the
program would not execute and nothing would
happen.” This statement describes the
while(true) structure as the conditional
statement.

• High scoring responses correctly describe if-
statements or try/catch blocks as conditional
statements. For example, “This conditional
statement is a statement within a loop that keeps
a timer running for the length of the game and
stops the timer when the player’s "health" runs
out and the game ends. The Boolean expression
is "true" when the health runs out and "false" if
the health has not ran out. If the Boolean
expression is false, then the timer will keep
running and the conditional statement will be
executed again since it is looped.”

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

• Not describing the first conditional statement
when there were multiple conditional statements
in the provided procedure. For example:

def hangman(chosen_word):
 global current_streak
 split_word = list(chosen_word)
 player_progress = []
 strikes = 6
 for i in range(len(split_word)):
 player_progress.append(" _ ")
 for i in range(len(split_word)):
 if str(" ")==str(split_word[i]):
 player_progress[i] = str(" ")

 print((" ").join(player_progress))
 strike_verification_num = 0
 print(" ")
 while True:
 if player_progress == split_word:
 print("Congatulations!")
 print("You guessed the word
with " + str(strikes) + " strikes
remaining")
 current_streak=current_streak+1
 break
...

The response describes the second if statement
stating, “My first conditional statement tests if the
player has gotten the word correct. It uses the if
statement "if player_progress == split_word:" in
order to determine a true or false value.”

• High scoring responses describe the first
conditional statement when there are multiple
conditional statements included in the
procedure. For example:

function filterMountains(range) {
 minRange = [];
 if (range == "23,000 - 24,000") {
 for (var i = 0;
 i < mNames.length; i++) {
 if (mHeights[i] >= 23000 &&
 mHeights[i] <= 24000) {
 appendItem(minRange,
 mNames[i]);
 }
 }
 }
...

The response describes the first if-statement as,
“The first conditional statement in the procedure
asks if the parameter, "range," is equal to the
string "23,000 - 24,000."”

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Written Response 2(b): Errors and Testing

• Describing how to rewrite the procedure or
change the number of parameters to the
procedure instead of providing a procedure call
with different arguments. For example, “A new
procedure which could be called upon to have the
same outcome would be to collect the same data
from before rather this time inside of the
procedure when giving corresponding values to
letters, we could add the word "else:" which
would tell the computer anything else that cant be
assigned a value will be given the value of zero so
final_gpa will be set equal to itself plus 0 so we
can still know any undefined variables which
cant be assigned values will correspong to
nothing.”

• High scoring responses describe a second call to
the same procedure with different arguments
that produces the same outcome. For example,
consider a response where the identified
procedure takes two parameters, functionJob
and mode, and the body contains an outer if-
statement that depends on the value of
functionJob only. The first procedure call
given uses the arguments "display" and
"normal". The response states, “One procedure
call to check/displayPattern that would produce
the same outcome would be if I passed in
"display," and the string "reverse" instead of
"normal." The reason why this procedure call
produces the same outcome is because the mode
parameter (normal/reverse as arguments) is only
utilized when check/displayPattern is passed
check, not display, as an argument for the
functionJob. When the call including ...
"display," and "reverse" arguments is called, the
procedure runs the second section of itself which
does not use the mode parameter. By passing in
"reverse" instead of "normal" as the mode, this
call would produce the same outcome as long as
the functionJob parameter is still "display."”

• Changing the names of the parameters or the
variables that are used as arguments instead of
passing different arguments. For example, “I am
able to write a new procedure with the same
outcome by changing the argument names. Dusk
and Dawn are arguments defind by me, I could
simply change their name to night and morning
which would produce the same output.”

• High scoring responses describe the argument
instead of the parameters. For example, consider
a response that provides a
checkAnswer(guess) where guess is a
character. The procedure checkAnswer
returns true if the guess is in the secret word
and false otherwise. The response states,
“Two procedure calls with different arguments
can produce the same outcome as long as the
argument is an incorrect letters. For example, if
the word was "ORANGE", the procedure will
produce the same output if the user guess the
letter "S" (checkAnswer("S");) or the letter "C"
(checkAnswer("C");) which both result in the
user losing a life.”

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

• Describing why it is not possible to write another
procedure call with the same outcome when it is.
For example:

function nbaDivisionInfo(teamName) {
 var allTeams = getColumn("NBA
Teams", "Team");
 var allDivisions = getColumn("NBA
Teams", "Division");
 for (var i = 0; i <
allTeams.length; i++) {
 if (allTeams[i] == teamName) {
 return (allDivisions[i]);
 }
 }
}

The response explains, “A new procedure call, in
my case, may not be produced, as without the
dropdown variable grabbing the strings and the
team names inside of the dropdown, the function
will not work as intended, leading to errors in the
code that will not allow for the program to be
run.” However, it is possible to write more than
one procedure call to produce the same outcome
because different NBA Teams are in the same
division.

• High scoring responses correctly recognize when
it is not possible for two procedure calls to have
the same outcome and describe the reason
correctly. For example:

def checkPriority(priority):
 print("\n \n \n")
 count=0
 for i in range(len(Taskboard)):
 if(priority ==
 userPriorities[Taskboard[i]]):
 count+=1
 return("You have "+str(count)+"
task(s) with "+str(priority)+"
priority")

The response states, “If we include a different value
for the priority parameter each time, then the output
will be different as the return value includes the
priority in it.” This explanation describes why the
outcome will always change depending on the value
of the argument.

Written Response 2(c): Data and Procedural Abstraction

• Confusing data abstraction with procedural
abstraction for managing complexity. Many
responses describe the use of lists to manage
complexity within their procedure. For example,
“This parameter uses abstraction to manage
complexity in my program as the parameter is a
list. So, the parameter stores all of the user’s
responses in one organized format. If one did not
have the "user_responses" list, one would use
variables to store each of the user’s responses.”

• High scoring responses describe procedural
abstraction. For example, “These identified
parameters use abstraction to manage
complexity in my program because they allow
me to insert any two lists and a string into the
procedure, meaning that instead of writing a new
algorithm each time I want to find the value of a
list at the same index at which the value of a
different list is equal to the value of a string, I
can just insert the appropriate arguments into
my procedure. I don’t need to fully understand
how these parameters are used in my function
when I call it, because the parameters enable me
to enter any two lists and a string I would like
to.”

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

• Describing procedural abstraction without
relating it to the parameters specifically. For
example, “The parameter used in this procedure
is "num" which would be the radical of a
quadratic equation. This parameter uses
abstraction to manage the complexity in my
program because instead of doing all this
calculations inside of a single statement, I can
take it out as a procedure that takes in a
parameter to make my code more simple and
easier to read. The procedure also helped me
break down what I needed to do into steps to
sucessfully simplify a radical.” This explanation
does not relate the benefits of using a procedure
(e.g., “make my code simpler and easier to read”
or “helped me break down with I needed to do
into steps”) to the parameter.

• High scoring responses describe procedural
abstraction based directly on the parameters. For
example, “The parameters used in this procedure
are x and y. These parameters, because they are
not defined, allow for many different arguments
to be plugged when the procedure is called. This
helps manage the complexity of my program
because it allows me to reuse the same code and
plug in different values into the same code.
Without these parameters, I would need to create
a code segment for each possible set of
arguments in order to produce the same
outcome.”

• Identifying arguments instead of parameters to
the procedure. For example:
function dogMatching(temperment,
weight, lifespan)
and the procedure call:
dogMatching(selectedT, selectedW,
selectedLS)
The response states, “The parameters used in
this procedure are (selectedT, selectedW,
selectedLS).”

• High scoring responses name the parameter and
not the argument that is passed to the procedure
call. For example:
printColleges(colleges)
and the procedure call:
printColleges(gpa4).
The response states, “The parameter used in the
procedure for this program was identified as the
word, colleges, which was found in parentheses
in my procedure call.”

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Based on your experience at the AP® Reading with student responses, what advice would you offer
teachers to help them improve student performance on the exam?

In order for students to respond to the prompts given on the exam, it is critically important that their program
segments include the required elements as described in the Course Exam Description. Use examples from AP
Central to highlight well-constructed answers and show students how the program segments include all of the
various procedural, algorithmic and list elements so that answering the prompts becomes easier to do.

When creating the videos to demonstrate input, program functionality, and output, the video should be as
clear as possible as to where the input is coming from. If the input is coming from a file, from the keyboard, or
from a device like a mouse, and there is no text input box or mouse pointer visible, it is recommended that the
video include a caption that explains where the input is coming from to make it easier for the Reader to
evaluate the video correctly.

When preparing the Personalized Program Reference, remind students that the provided code should be clear
to read for the Reader, and the code segments should not include any documentation of any kind.

To help students practice writing for the written response questions (Questions 1, 2(a), 2(b), and 2(c)), provide
students with good examples of Personalized Program Reference sheets from examples on AP Central and
have them practice writing their own answers to the provided prompts. Also, have students review each
other’s answers to help them understand why some explanations are better than others. Finally, provide some
examples from AP Central where the responses scored low, and ask students to write why the responses are
incorrect.

Here are some specific issues to address that tie to the expected learning objectives of this performance task:

• Review data abstraction with students carefully since this topic is difficult to understand for most
students when they begin to write programs. Give examples of programs where the amount of data to
process can vary (e.g. the number of survey responses from a community of users running a popular
phone app) so students see the reason why a list can help simplify the computation and allow an
arbitrary amount of data to be processed. Also give examples of programs where storing data in a list
makes it easier to use (e.g. the names of songs in a playlist that can be stored and sorted as one
collection).

• Review procedural abstraction and the role parameters play in this abstraction. Provide examples to
discuss where a program has code repeated several times and show how much easier it is to read and
maintain if these copies of code are replaced with a single procedure. Provide examples that show how
a procedure can use a parameter to compute the same computation for many different values. For
example, discuss a procedure that computes the distance of a projectile above the ground every second
as a function of the initial velocity and the angle the projectile is shot into the air. Additionally, an
example like this uses iteration and can also use selection if the parameters are out of range (e.g. if the
initial velocity is negative). For this example, show how a program can include this procedure and call
it with various arguments to solve a set of these problems.

• Review the difference between parameters and arguments with respect to procedures and have
students trace the results of a procedure for specific arguments, predicting what the output (or return
value) should be. If an argument is a variable, have students consider possible values this variable can
have when the procedure is called. Provide exercises where students must determine values for the
arguments that will, as a group, cause all procedure instructions to be tested for correctness.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

What resources would you recommend to teachers to better prepare their students for the content
and skill(s) required on this question?

• The AP CSP Course and Exam Description and AP Classroom have several written response prompts
for students to practice writing throughout the school year. Teachers are encouraged to use these
prompts to have students write about their in-class programs and about their Create Performance
Task. Once the Create Task is submitted as final to the AP Digital Portfolio, teachers can give
feedback to their students on the practice responses before exam day.

• AP Classroom also offers a variety of Daily Videos by high school faculty and University Faculty
Lectures. These can be used to supplement existing curriculum as student needs arise. Particularly
useful topics for preparing for the Create Performance are the following:

o Design Process: CRD-2: University Faculty Lecture
o Input and Output: 1.2: Daily Video 2
o Selection: 3.6: Daily Video 3
o Iteration: 3.8: Daily Video 2
o Procedures, Parameters, Arguments, and Returns: 3.12: Daily Video 1

• AP Classroom also offers Daily Videos specific to preparing for the Create Task. To access these
videos, students can navigate to the Course Guide section in the left navigation pane of the AP
Classroom homepage, select the Overview page, and then click on the Student Resources header to
expand the list of available resources.

o Create Performance Task: Overview
o Create Performance Task: Categories and Questions
o Create Performance Task: Guidelines
o Create Performance Task: Pacing Your Project
o Create Performance Task: Scoring Guidelines and Sample Written Response Answers

https://apclassroom.collegeboard.org/d/16tjsuek73?sui=103,0
https://apclassroom.collegeboard.org/d/2ih5qxmn8h?sui=103,1
https://apclassroom.collegeboard.org/d/fx4ejgipe9?sui=103,3
https://apclassroom.collegeboard.org/d/mueuhaiizk?sui=103,3
https://apclassroom.collegeboard.org/d/8ledrnnh70?sui=103,3

	Chief Reader Report on Student Responses:
	2024 AP® Computer Science Principles Performance Task Set 2
	What were the responses to this question expected to demonstrate?
	What common student misconceptions or gaps in knowledge were seen in the responses to this question?
	Max Points: Mean Score:
	Written Response 2(a): 1 0.56
	Written Response 2(b): 1 0.20
	Written Response 2(c): 1 0.25
	What were the responses to this question expected to demonstrate?
	What common student misconceptions or gaps in knowledge were seen in the responses to this question?
	Based on your experience at the AP® Reading with student responses, what advice would you offer teachers to help them improve student performance on the exam?
	What resources would you recommend to teachers to better prepare their students for the content and skill(s) required on this question?

