
© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Chief Reader Report on Student Responses:
2024 AP® Computer Science A Free-Response Questions

• Number of Students Scored 98,136
• Number of Readers 494
• Score Distribution Exam Score N %At
 5 25,137 25.6
 4 21,038 21.4
 3 19,754 20.1
 2 10,613 10.8
 1 21,594 22.0
• Global Mean 3.18

The following comments on the 2024 free-response questions for AP® Computer Science A were
written by the Chief Reader, Don Blaheta, Associate Professor of Computer Science at Longwood
University. They give an overview of each free-response question and of how students performed on
the question, including typical student errors. General comments regarding the skills and content
that students frequently have the most problems with are included. Some suggestions for improving
student preparation in these areas are also provided. Teachers are encouraged to attend a College
Board workshop to learn strategies for improving student performance in specific areas.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Question 1

Task: Methods and Control
Topic: Bird Feeder
Max Score: 9
Mean Score: 4.83

What were the responses to this question expected to demonstrate?

This question tested the student’s ability to:

• Write program code to create objects of a class and call methods (Skill 3.A).
• Write program code to define a new type by creating a class (Skill 3.B).
• Write program code to satisfy method specifications using expressions, conditional statements, and

iterative statements (Skill 3.C).

More specifically, this question assessed the ability to generate random numbers (both to produce
probabilities and to generate an integer within a given range), to call instance methods from other instance
methods of the same class, to determine when a proper stopping condition has been met, and to report a
counted amount.

In part (a) students were asked to determine the amount of food consumed from a bird feeder depending
upon a 5% chance of a bear coming along and eating all the food in the feeder. When a bear is present, all
the food is consumed, leaving currentFood at 0. In the other case, the birds eat an amount randomly
generated in the integer range from 10 to 50 grams. Should there not be enough food for all the birds, the
response should guard against consuming more food than is available, leaving currentFood at 0 rather
than letting it become negative.

In part (b) students were asked to simulate a period of days where the feeder is visited daily, counting and
returning the number of days that the food lasts within a given maximum number of days, numDays, and
with a given regular group of birds, numBirds. Students were expected to consider the possibility of
starting the test period with no food, running out of food before the end of the test period, or ending the test
period with food remaining.

How well did the responses address the course content related to this question? How well did the
responses integrate the skills required on this question?

Write program code to create objects of a class and call methods (Skill 3.A).

Both parts of this question involved calling methods, and most responses did so successfully. In part (a),
responses needed to call Math.random(), a static non-void method with no parameters. In part (b),
responses needed to call simulateOneDay(numBirds), a void method within the same class, with one
parameter. In both cases, over two-thirds of responses did so correctly.

Among responses that called the random method incorrectly, the most common error was to incorrectly
place parameters in the call—apparently in an attempt to control the output range. There are other Java
classes, outside the subset described in the Course and Exam Description (CED), that provide that
functionality, and a small number of responses used them successfully, earning credit. The exam never

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

requires the use of such classes and methods; responses that use them incorrectly will not earn the
associated points. A small number of responses in part (b) did not include the parameter for the
simulateOneDay method or passed in something incorrect (e.g., numDays). Additionally, a fair number
of responses treated the simulateOneDay method as if it returned information, when it is defined to be a
void method.

Write program code to define a new type by creating a class (Skill 3.B).

Although this skill is primarily tested in Q2 (Class Design), in part (b) this question did involve
understanding that providing the result of the computation is done through a return statement, and that
a method must return a value of the correct type and must return something in all cases.

While a majority of responses did so successfully, a number of them returned in one case (e.g., inside the
loop when food runs out) but not another (e.g., when the loop terminates with food still remaining), or the
response printed the result instead of returning the result.

Write program code to satisfy method specifications using expressions, conditional statements, and iterative
statements (Skill 3.C).

This question primarily tested this skill, both in individual expressions and statements and in their
assembly into larger algorithms. Both parts of this question involved using expressions to perform
mathematical computations and conditional logic to control the operations, and the second part required
iteration. The first part required devising an algorithm involving two unrelated conditions using nested or
sequential if statements, and the second part required a counting algorithm, modified to avoid
miscounting when the feeder is empty.

In part (a), responses needed to implement a 95% probability of birds visiting the feeder versus a 5%
probability of a bear emptying it. This was possible to accomplish by a direct comparison of a random value
to a constant such as 0.05, but many responses attempted to first map the random number to a suitable
integer range, a slightly more difficult strategy that sometimes led to problems, such as improperly casting
or failing to cast. Less frequently, responses used an inappropriate constant or comparison to generate the
5% probability. Responses also needed to randomly choose an integer amount of grams of bird food in the
inclusive range [10, 50], which turned out to be the single most difficult aspect of this question, in
either part; only about one-third of the responses did so successfully. Casting to an integer was frequently
either performed incorrectly or not at all. Other responses had difficulty generating a value in the correct
range. While the correct range expression should have been (int)(Math.random() * 41 + 10) or the
equivalent, many responses miscalculated the range, multiplying by 40, 50, or 51, adding instead of
multiplying, or otherwise mis-arranging the required expression. Many responses that handled either
random case or both random cases incorrectly were still able to assemble the algorithm correctly (and earn
credit for it), but many did not, most commonly by failing to check for or prevent the case where
currentFood is negative when the method exits.

In part (b), responses needed to loop over the single-day simulation no more than numDays times and
count the ones that actually update the class variable currentFood, while also handling the cases when
there is no food at the outset, when there is an abundance of food, and when the feeder dispenses all its
food before the end of numDays iterations. Responses were generally stronger in part (b), but many had
difficulty navigating the complex conditions for terminating the loop and keeping a correct count of days to
return. Broadly, most responses did call the simulation method in a loop (although many responses did not

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

iterate the correct number of times), and most responses checked whether there was food remaining, but a
majority of responses had trouble combining those parts into a counting algorithm that didn’t over- or
undercount. Responses that maintained an explicit counter, which was incremented exactly when the
part (a) method was called, were often cleaner and more likely to be correct; responses that used a more
general loop counter needed more careful logic and/or arithmetic to compute the count correctly (and many
did not do so). In addition, many responses failed to handle the case where the feeder was empty to begin
with (or did so incorrectly), and some responses increased the day count each day regardless of whether
food was consumed.

What common student misconceptions or gaps in knowledge were seen in the responses to
this question?

Common Misconceptions/Knowledge Gaps

Write program code to create objects of a class
and call methods.

Responses that Demonstrate Understanding

Some responses incorrectly called
Math.random() using a parameter when
needing to get a range.

Math.random(41)

Math.random() * 41

Some responses called simulateOneDay with
no parameter or on another object.

simulateOneDay()
food.simulateOneDay(numBirds)

simulateOneDay(numBirds)

Common Misconceptions/Knowledge Gaps

Write program code to define a new type by
creating a class.

Responses that Demonstrate Understanding

Some responses returned a value only in some
cases.

for (...)
{
 if (currentFood == 0)
 {
 return count;
 }
 ...
}

for (...)
{
 if (currentFood == 0)
 {
 return count;
 }
 ...
}
return numDays;

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Common Misconceptions/Knowledge Gaps

Write program code to satisfy method
specifications using expressions, conditional
statements, and iterative statements.

Responses that Demonstrate Understanding

Some responses did not correctly consider the
precedence of the cast operator when casting a
double to an int.

(int)Math.random() * 100

(int)(Math.random() * 100)

Some responses incorrectly set the range of a
random number.

(int)(Math.random() * 101)
(int)(Math.random() * 100)

Some responses computed 5% and 95%
probabilities incorrectly.

int ch = (int)(Math.random() * 100);
if (ch <= 5) ...

OR

double ch = Math.random();
if (ch < 0.5) ...

int ch = (int)(Math.random() * 100);
if (ch < 5) ...

OR

double ch = Math.random();
if (ch < 0.05) ...

Some responses did not guard against leaving a
negative quantity of food in the feeder.

currentFood -= totalEaten;

if (totalEaten > currentFood)
{
 currentFood = 0;
}
else
{
 currentFood -= totalEaten;
}

Some responses incorrectly set the loop bounds.

for (int x = 0; x <= numDays; x++)

for (int x = 0; x < numDays; x++)

OR

for (int x = 1; x <= numDays; x++)

Some responses incorrectly used a void method
as if it returned a value.

int food = simulateOneDay(numBirds);

simulateOneDay(numBirds);

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Some responses always counted the first day,
even if there was no food in the feeder to begin
with.

for (int d = 1; d <= numDays; d++)
{
 simulateOneDay(numBirds);
 if (currentFood == 0)
 {
 return d;
 }
}

// before loop:
if (currentFood == 0)
{
 return 0;
}

OR

for (int d = 0; d < numDays; d++)
{
 if (currentFood == 0)
 {
 return d;
 }
 simulateOneDay(numBirds);
}

Some responses used a standard loop variable
as a day counter without accounting for an off-
by-one error or keeping a separate counter.

for (int j = 0; j < numDays; j++)
{
 simulateOneDay(numBirds);
 if (currentFood == 0)
 {
 return j;
 }
}

if (currentFood == 0)
{
 return 0;
}
for (int j = 0; j < numDays; j++)
{
 simulateOneDay(numBirds);
 if (currentFood == 0)
 {
 return j + 1;
 }
}

OR

int count = 0;
for (int j = 0; j < numDays; j++)
{
 if (currentFood > 0)
 {
 simulateOneDay(numBirds);
 count++;
 }
}
return count;

Some responses counted simulation days only if
they ended with a nonzero amount of food.

for (int j = 0; j < numDays; j++)
{
 simulateOneDay(numBirds);
 if (currentFood > 0)
 {
 count++;
 }
}

for (int j = 0; j < numDays; j++)
{
 if (currentFood > 0)
 {
 count++;
 }
 simulateOneDay(numBirds);
}

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Based on your experience at the AP® Reading with student responses, what advice would you offer
teachers to help them improve student performance on the exam?

• Practice using Math.random() to generate integer ranges that do not begin with 0 or 1.

• Practice using Math.random() to determine specified probabilities, and reinforce that this

application of randomness does not generally require conversion to int.

• If students are inclined to use parts of Java outside the subset described in the CED (for instance, the
Random class), remind them that unless they are very sure of what they are doing it is safer to only

use the Java subset covered in the course. If you teach some of the non-CED parts of Java (as many
teachers do, very successfully), make sure the students also are comfortable with the testable classes
and methods.

• Emphasize appropriate use of casting and order of operations.
• Practice using concrete examples involving edge case scenarios (e.g., “what if the food starts at 0”,

“what if the very first call leaves the food at 0”) to trace and test code to prevent off-by-one errors.

What resources would you recommend to teachers to better prepare their students for the content
and skill(s) required on this question?

• Progress checks from units 2, 3, and 4 would be helpful to scaffold students’ understanding for the
Methods and Control free-response questions.

• The following AP Daily Videos and corresponding Topic Questions can be found in AP Classroom to
support this Methods and Control free-response question:

o Write program code to create objects of a class and call methods. Topics 2.3, 2.4, 2.5, and 2.9.
o Write program code to define a new type by creating a class. Topic 2.5.
o Write program code to satisfy method specifications using expressions, conditional

statements, and iterative statements. Topics 1.5, 2.9, 3.2, 3.3, 3.4, 4.1, and 4.2.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Question 2

Task: Class Design
Topic: ScoreBoard
Max Score: 9
Mean Score: 5.70

What were the responses to this question expected to demonstrate?

This question tested the student’s ability to:

• Write program code to define a new type by creating a class (Skill 3.B).
• Write program code to satisfy method specifications using expressions, conditional statements, and

iterative statements (Skill 3.C).

This question assessed the ability to design an entire class, with constructor, instance variables, and methods
that access and update them; to maintain and update the state of the object according to a specified algorithm;
and to build a specified string based on the state of the object.

Students were asked to design a class, Scoreboard, to hold and modify data for a game with two teams.
This class must contain instance variables to store the names of each team, the scores of each team, and an
indicator of which team is current. It also requires a constructor and two methods, each matching a provided
specification. In designing the Scoreboard class, students were expected to understand and demonstrate
how to construct appropriate headers for the class itself and for its instance methods. Students were also
expected to understand and correctly use instance variables, including declaration of the variables,
initialization of the variables, and use of the variables inside the constructor and methods.

The prompt specifications and example code of the class required students to implement two methods. The
first method specified, recordPlay, is passed a single parameter representing points scored by the active
team. If the point count is positive, then the active team’s score variable is increased. If the point count is zero,
then the active team is switched to the other team. The method must determine which team is the active team
and increase the score for that team only and must successfully update the indicator of the current team,
correctly in either direction and only when zero points are scored. The second method, getScore,
constructs and returns a specified String that contains team scores, string literals (hyphens), and the name
of the active team (which may already be stored in a variable or may be chosen in a conditional statement).

How well did the responses address the course content related to this question? How well did the
responses integrate the skills required on this question?

Write program code to define a new type by creating a class (Skill 3.B).

The headers for the class, the constructor, and both required methods were tightly constrained by the prompt
and the examples, and a large majority of responses wrote them correctly, including the class keyword,
named identifiers, return types, parameters, and declaration as public. No error was especially common
here, but some responses omitted one or more of the required lines entirely, and some combined the class
header with the constructor header, adding parentheses (and sometimes parameters) in the class header itself.

Declaring and initializing instance variables was more challenging, although a majority of responses were still
successful at doing so. Most responses successfully declared the instance variables inside the class and

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

outside of any method or constructor. A few responses omitted the private access modifier, while several
incorrectly attempted to declare instance variables in the constructor. Most responses correctly initialized the
instance variables inside the constructor. Some students declared and initialized instance variables on the
same line (inside the class but outside the constructor), which is correct when the initial value is a literal (like
0 or false) but will not work to initialize with constructor parameters (such as the team names). Some
responses correctly used the this keyword to permit the constructor parameter name to match the instance
variable name, but others used the same name for constructor parameters and instance variables without
adjustment, preventing the initialization from working.

A large majority of the responses accessed and modified the declared instance variables appropriately (e.g., to
update the score). A few incorrectly attempted to use the name of the class to access instance variables (e.g.,
Scoreboard.team1). Some responses declared local variables and incorrectly attempted to use them as
persistent instance data available to subsequent method calls.

Write program code to satisfy method specifications using expressions, conditional statements, and iterative
statements (Skill 3.C).

As is often the case with the class design question, the algorithm implementation is not entirely contained
within the method bodies but is also affected by design choices involving the types and initial values of
instance variables. In particular, any correct response to this question needs to store the team names and
updatable integer scores but can track the active team in a variety of ways, affecting how the active team
variable(s) are both accessed and updated. Both methods thus require devising algorithms, one to update
scores or switch the active team, and the other to decide which team name to build into the score string.

Successful responses used a variety of approaches to keep track of the active team. Most responses used a
String or an int to track the active team, and a small number of responses used a boolean variable.
Many responses saved the name of the active team as a String and correctly called the equals method to
compare the active team name to one of the team name instance variables to determine which of the two
teams was active—and this approach made the second algorithm simpler, as no conditional statement was
required. However, some responses unnecessarily used two String variables to simultaneously track the
active and inactive teams, and responses that used this approach often failed to update one of the two
variables. Some responses used an integer instance variable to track the active team and toggled that integer
between two values (e.g., 1 and 2), similar to the canonical solution shown in the Scoring Guidelines. Some
used a boolean instance variable, which simplified the update-or-switch algorithm (particularly the “toggle”
part) but required that the instance variable be carefully initialized correctly.

Broadly, almost all non-blank responses followed some clear strategy in this respect, and a large majority of
responses correctly used a conditional statement to detect that the recordPlay parameter’s value was
nonzero, update a score if so, and initiate a change of active team otherwise. But nearly half of the responses
didn’t assemble the algorithm correctly, either updating the incorrect score (in at least some cases) or failing to
switch teams (in at least some cases).

The getScore method needed to construct and return an appropriate string. About half of the responses
successfully returned the appropriate string. Some incorrect responses chose the team name incorrectly, some
constructed a string that did not follow the specification, and some failed to return the constructed string or
incorrectly printed the string.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

What common student misconceptions or gaps in knowledge were seen in the responses to
this question?

Common Misconceptions/Knowledge Gaps

Write program code to define a new type by creating
a class.

Responses that Demonstrate Understanding

Some responses used incorrect syntax to declare
the class, and some combined the class header
and constructor.

public class Scoreboard()

OR

public class Scoreboard(String t1,
 String t2)

public class Scoreboard

Some responses failed to declare their instance
variables with private access or included a
different modifier.

public String t1Name;

OR

private static int t1Score;

OR

boolean t1isActive;

private String t1Name;

private int t1Score;

private boolean t1isActive;

Some responses only declared instance variables
for storing the constructor parameters, failing to
allocate variables for the scores and active team.

private String t1Name;
private String t2Name;

private String t1Name;
private String t2Name;
private int t1Score;
private int t2Score;
private String activeTeam;

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Some responses did not set the instance data
correctly from the constructor’s parameters,
reversing the assignment statement and thereby
assigning the instance variable values to the
parameters.

public Scoreboard(String t1, String t2)
{
 t1 = t1Name;
 t2 = t2Name;
}

public Scoreboard(String t1, String t2)
{
 t1Name = t1;
 t2Name = t2;
}

Some responses incorrectly determined whether
the recordPlay method’s parameter value was
zero or positive.

if (points < 0)

OR

if (points >= 0)

if (points == 0)
 // switch active team

OR

if (points > 0)
 // add points to active team
else
 // switch active team

Some responses incorrectly used local variables
instead of instance variables to hold a team’s
score.

public void recordPlay(int points)
{
 int scoreT1 = 0;
 if (points > 0 && t1Activ)
 {
 scoreT1 += points;
 }
 ...
}

private int scoreT1;

public void recordPlay(int points)
{
 if (points > 0 && t1Activ)
 {
 scoreT1 += points;
 }
 ...
}

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Common Misconceptions/Knowledge Gaps

Write program code to satisfy method specifications
using expressions, conditional statements, and
iterative statements.

Responses that Demonstrate Understanding

Some responses incorrectly changed the
active team.

1) active team is set and reset in same call

if (t1Active == 0)
{
 t1Active = 1;
}
if (t1Active == 1)
{
 t1Active = 0;
}

2) active team is switched for only one team

if (points > 0)
{
 t1score += points;
}
else
{
 t1Active = 0;
}

3) active team is switched even when the
recordPlay parameter is positive

t1Active = !t1Active;

4) active team is always changed to the same
value (instead of toggling)

t1Active = true;

if (t1Active == 0)
{
 t1Active = 1;
}
else
{
 t1Active = 0;
}

if (points > 0)
{
 if (t1Active == 0)
 {
 t1score += points;
 }
 else
 {
 t2score += points;
 }
}
else
{
 if (t1Active == 0)
 {
 t1Active = 1;
 }
 else
 {
 t1Active = 0;
 }
}

if (points == 0)
{
 t1Active = !t1Active
}

t1Active = !t1Active;

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Some responses failed to build and return the
specified string.

1) leaves off the hyphens or builds the string with
incorrect data

return t1Score + t2Score +
 activeTeamName;

2) prints to standard output in addition to
returning the string or instead of returning the
string

System.out.println(t1Score + "-" +
 t2Score + "-" + activeTeamName);

3) incorrectly determines the active team

if (activeTeam == "Team 1")
{
 return t1Score + "-" + t2Score + "-" +
 activeTeamName;
}

return t1Score + "-" + t2Score + "-" +
 activeTeamName;

return t1Score + "-" + t2Score + "-" +
 activeTeamName;

if (activeTeam.equals(team1Name))
{
 return t1Score + "-" + t2Score + "-" +
 activeTeamName;
}

Based on your experience at the AP® Reading with student responses, what advice would you offer
teachers to help them improve student performance on the exam?

• Have students write complete FRQs including a class header, constructor, instance data, and
methods in addition to modifier and accessor methods. Use previously released FRQs from the
College Board AP website.

• Practice with FRQs requiring data design, where the instance variables required to implement
correct behavior may be more or different than just the constructor parameters.

• Practice using boolean variables to represent two states, toggling from one state to another (e.g.,
boolVariable = !boolVariable).

• Practice concatenating strings with numbers, multiple variables, and literals.
• Practice using compound conditionals with && and || operators.

What resources would you recommend to teachers to better prepare their students for the content
and skill(s) required on this question?

• Progress checks from units 3 and 5 would be helpful to scaffold students’ understanding for the
Class Design free-response questions.

• The following AP Daily Videos and corresponding Topic Questions can be found in AP Classroom to
support this Class Design free-response question:

o Write program code to define a new type by creating a class. Topics in unit 5.
o Write program code to satisfy method specifications using expressions, conditional

statements, and iterative statements. Topics 1.3, 3.1, 3.2, and 3.3.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Question 3

Task: Array/ArrayList
Topic: WordChecker
Max Score: 9
Mean Score: 4.33

What were the responses to this question expected to demonstrate?

This question tested the student’s ability to:

• Write program code to satisfy method specifications using expressions, conditional statements, and
iterative statements (Skill 3.C).

• Write program code to create, traverse, and manipulate elements in 1D array or ArrayList objects

(Skill 3.D).

Students were asked to write two methods of a WordChecker class. The class contains an ArrayList of
String objects that is already populated. Students were expected to traverse and manipulate the existing
ArrayList and construct a new one, and to access and manipulate String values.

In part (a) students were asked to write a method that determines whether the stored list represents a “word
chain.” Doing so requires a traversal capable of accessing all adjacent pairs in the list and comparing those
adjacent strings, generally using indexOf to determine whether an element of the list contained a previous
element. Looking for pairs that do not have the property, the method must return false when it finds an
invalid pair (and true at the end if none of the pairs are invalid).

In part (b) students were asked to write an unrelated method. This method needs to construct, build, and
return a new ArrayList with contents derived from the stored list. To do so, the method must traverse the
wordList and check if each string element starts with a target string (using either indexOf or a guarded
call to substring), and if so, extract the remainder of the string and add the result to the constructed
ArrayList.

How well did the responses address the course content related to this question? How well did the
responses integrate the skills required on this question?

Write program code to satisfy method specifications using expressions, conditional statements, and iterative
statements (Skill 3.C).

In both parts (a) and (b) this skill was assessed specifically with respect to manipulation of String objects,
with three specific tasks: determining whether one string contains another, determining whether one string
starts with another, and extracting the second part of a string after a known prefix. All three proved
challenging.

The first two string-related tasks were most straightforwardly solved using the indexOf method and an
appropriate comparison, but many responses used the method substring instead. In part (a) this approach
was much more difficult (generally requiring a nested loop to do correctly) and usually caused the responses
to not earn the point, but many students were somewhat familiar with the indexOf pattern for this one, and
about half of the responses were successful. In part (b) the use of indexOf was much less common. Using

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

the substring approach required an extra guard on the length of target that was frequently forgotten;
only about one-fourth of all responses were successful at determining whether the target value was a prefix of
the current string. The most successful responses used indexOf when identifying whether an element of
the list contained target at the beginning of the element.

The third string-related task was to extract the “remainder” of a string, typically requiring the use of the
length method and the use of the one-parameter substring method. Many responses were able to
remove the correct number of initial characters from a String, although unguarded calls to the one-
parameter substring method were also common and, because they trigger an exception, did not earn the
associated point.

Write program code to create, traverse, and manipulate elements in 1D array or ArrayList objects (Skill 3.D).

This question primarily tests this skill; some individual points assess narrowly the required skills, and one
point in each part assesses the ability to assemble the pieces into a correct algorithm. The first part requires
devising an algorithm to identify adjacent pairs with a certain property (though it is related to both the
“consecutive pairs” algorithm and the “all elements” algorithm). The second part requires a modified filter
algorithm.

Most responses in part (a) used a traditional for loop to traverse the elements of the list, but many
responses did not construct the bounds correctly to access consecutive pairs. By contrast, in part (b), a large
majority of responses were successful in the various mechanical aspects: traversing (using either kind of for
loop), constructing, accessing, and adding to the list.

As expected, assembling the algorithms in each part was a bit more challenging, but for each algorithm
roughly half of the responses were successful in identifying what parts were needed and how to piece them
together.

What common student misconceptions or gaps in knowledge were seen in the responses to
this question?

Common Misconceptions/Knowledge Gaps

Write program code to satisfy method
specifications using expressions, conditional
statements, and iterative statements.

Responses that Demonstrate Understanding

Many responses called substring with
parameters that would access characters
outside the string bounds.

int len = target.length();

String prefix = cur.substring(0, len);
String remainder = cur.substring(len);
if (prefix.equals(target)) {...}

int len = target.length();
if (cur.length() >= len)
{
 String prefix = cur.substring(0, len);
 String remainder = cur.substring(len);
 if (prefix.equals(target)) {...}
}

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Several responses used the result of indexOf
incorrectly.

if (cur.indexOf(target) > 0)
 ...

if (cur.indexOf(target) == 0)
 ... // target is prefix of cur

OR

if (cur.indexOf(target) != -1)
 ... // target is in cur somewhere

Several responses attempted to reimplement
indexOf using substring and a loop.

boolean match = false;
for (int j = 0;
 j <= cur.length() - prev.length();
 j++)
{
 if (!cur.substring(j,
 j + prev.length()).equals(prev))
 {
 match = true;
 }
}

if (!match)
 ... // works but very difficult

if (current.indexOf(target) == -1)
 ... // demonstrates understanding

Some responses called methods that do not
exist on String objects.

String newStr = cur.remove(target);

String newStr =
 cur.substring(target.length());

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Common Misconceptions/Knowledge Gaps

Write program code to create, traverse, and
manipulate elements in 1D array or ArrayList
objects.

Responses that Demonstrate Understanding

Many responses accessed elements of an
ArrayList using array notation.

String current = wordList[i];

String current = wordList.get(i);

Some responses failed to compare adjacent
pairs of elements from an ArrayList.

int sz = wordList.size();
for (int i = 0; i < sz; i++)
{
 String cur = wordList.get(i);
 String cmp = wordList.get(0);
 if (cur.indexOf(cmp) == -1) ...
}

int sz = wordList.size();
for (int i = 1; i < sz; i++)
{
 String cur = wordList.get(i);
 String prev = wordList.get(i - 1);
 if (cur.indexOf(prev) == -1) ...
}

Many responses used bounds that did not
account for accessing an adjacent element.

int sz = wordList.size();
for (int i = 0; i < sz; i++)
{
 String cur = wordList.get(i);
 String prev = wordList.get(i - 1);
 if (cur.indexOf(prev) == -1) ...
}

OR

int sz = wordList.size();
for (int i = 0; i < sz; i++)
{
 String next = wordList.get(i + 1);
 String cur = wordList.get(i);
 if (next.indexOf(cur) == -1) ...
}

int sz = wordList.size();
for (int i = 1; i < sz; i++)
{
 String cur = wordList.get(i);
 String prev = wordList.get(i - 1);
 if (cur.indexOf(prev) == -1) ...
}

OR

int sz = wordList.size();
for (int i = 0; i < sz - 1; i++)
{
 String next = wordList.get(i + 1);
 String cur = wordList.get(i);
 if (next.indexOf(cur) == -1) ...
}

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Some responses attempted to return inside the
loop in both cases (or failed to return a value in
some case).

for (...)
{
 ...
 if (cur.indexOf(prev) == -1)
 {
 return false;
 }
 else
 {
 return true;
 }
}

OR

for (...)
{
 ...
 if (cur.indexOf(prev) == -1)
 {
 return false;
 }
}

for (...)
{
 ...
 if (cur.indexOf(prev) == -1)
 {
 return false;
 }
}
return true;

Some responses used an alias of wordList
(rather than constructing a new list) and then
modified it, destroying persistent data.

ArrayList<String> result = wordList;
for (int i = 0; i < result.size(); i++)
{
 if (... != 0)
 {
 result.remove(i);
 }
}

ArrayList<String> result =
 new ArrayList<String>();
for (String word : wordList)
{
 if (... == 0)
 {
 result.add(...);
 }
}

Based on your experience at the AP® Reading with student responses, what advice would you offer
teachers to help them improve student performance on the exam?

• Reinforce the difference between ArrayList objects and arrays, specifically when it comes to

accessing elements from each.
• Reinforce creating loop headers to obtain adjacent elements from a collection.
• Encourage students to use available methods from the Quick Reference Guide rather than using

methods that don’t exist.
• Reinforce how to create an ArrayList of objects.

• Continue practicing using String methods to find strings in different locations of other strings: at

the beginning, at the end, and at various positions in between.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

• Continue practicing returning values from methods and emphasize not to print when asked to return
a value.

• Continue practicing different algorithms regarding ArrayList values.

What resources would you recommend to teachers to better prepare their students for the content
and skill(s) required on this question?

• Progress checks from unit 7 would be helpful to scaffold students’ understanding for the
ArrayList free-response questions.

• The following AP Daily Videos and corresponding Topic Questions can be found in AP Classroom to
support this Array/ArrayList free-response question:

o Write program code to satisfy method specifications using expressions, conditional
statements, and iterative statements. Topics 2.5, 2.7, 3.3, 4.2, and 5.6.

o Write program code to create, traverse, and manipulate elements in 1D array or ArrayList
objects. Topics 7.1, 7.2, 7.3, and 7.4.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Question 4

Task: 2D Array
Topic: Grid Path
Max Score: 9
Mean Score: 3.20

What were the responses to this question expected to demonstrate?

This question tested the student’s ability to:

• Write program code to create objects of a class and call methods (Skill 3.A).
• Write program code to satisfy method specifications using expressions, conditional statements, and

iterative statements (Skill 3.C).
• Write program code to create, traverse, and manipulate elements in 2D array objects

(Skill 3.E).

This question involved the traversal of a two-dimensional (2D) array of int values, accessing variables
and methods within the class being written, and creating and accessing instances of a separate, provided
class representing grid coordinate pairs. In addition to an unusual traversal pattern, the algorithms required
careful understanding of boundaries in a 2D array as well as writing code to guard against out-of-bounds
access.

In part (a) students were asked to write a non-void method, getNextLoc, which has two integer
parameters, row and col, and returns a Location object that represents the smaller of two neighbors
of the grid element at row and col. The neighbors to be considered are the grid elements below and
to the right of row and col. The method must verify that a neighbor exists before accessing it to perform
a comparison: if only one of the neighbors exists (because the other would be out of bounds), the Location
of the existing neighbor is returned. The precondition of the method guarantees that row and col are not
the bottom-right corner of the grid, so at least one neighbor always exists.

In part (b) students were asked to write a non-void method, sumPath, which computes and returns the
sum of all values on a particular path in grid. The path begins with the element at the location indicated
by parameters row and col and is determined by successive calls to the getNextLoc method written
in part (a). The path ends when the element in the last row and the last column of grid is reached. Again,
the precondition of the method guarantees that row and col are not the bottom-right corner of the grid,
so there will always be at least two positions in the path to traverse; the method must ensure that both the
starting value and the ending value are included in the sum (and must not violate any method preconditions
along the way).

How well did the responses address the course content related to this question? How well did the
responses integrate the skills required on this question?

Write program code to create objects of a class and call methods (Skill 3.A).

In part (a) most responses were able to create Location objects. Some responses omitted the new
keyword in invoking the constructor or failed to create a Location object at all. In part (b) most responses
were able to call getNextLoc, though some responses did so with incorrect syntax (e.g., omitting the

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

parameters). About half of the responses correctly called the accessor methods getRow and getCol.
Some responses had problems forming syntactically correct method calls, and others made no attempt to
call the accessors at all.

Write program code to satisfy method specifications using expressions, conditional statements, and iterative
statements (Skill 3.C).

This skill is assessed at a somewhat more sophisticated level here than in other questions. In part (a)
guarding the method from accessing or returning any out-of-bounds values requires identifying at least
three cases (a complete correct algorithm probably requires four) and building appropriate multi-way
if/else selection to handle it (or possibly a complex compound Boolean expression with similar effect).
Less than a third of the responses did so successfully, although most had some kind of conditional
structure; the difficulty typically lay in writing expressions to correctly identify the last row or the last
column in grid. Writing conditionals in the context of a specification involving 2D array boundaries is (as
expected) a more challenging application of this skill.

In part (b) responses were generally more successful in declaring, initializing, and updating a sum variable,
but still almost half failed to do so. Some omitted the declaration, or did not initialize the local variable,
while others incorrectly produced a sum of Location objects instead of a sum of integers from grid.

Write program code to create, traverse, and manipulate elements in 2D array objects (Skill 3.E).

This is the question that explicitly assesses this skill, both at the basic level of accessing the 2D array and
at the more sophisticated level of assembling algorithms to process them. This question required three such
algorithms. Part (a) required devising an algorithm to choose the correct neighbor in each of two boundary
cases and two non-boundary cases, as well as the building and return of the associated Location object.
Part (b) required two interacting algorithms: first, an algorithm to find the path, involving repeatedly
generating and then unpacking a Location object (and stopping at the correct time); and second, a
modified sum algorithm where either the first or last element in the sum (or in some designs, both) needs to
be specially handled.

When it came to directly accessing an element of the 2D array, the responses were largely successful. A
large majority did so correctly in part (a), and about half did so correctly in part (b).

The algorithms required for this question proved very challenging. On the neighbor-choosing algorithm
from part (a), about one-third of responses were successful. While miscalculating the boundary condition
was assessed elsewhere, a number of responses failed to guard the access at all, treating it as a simple two-
way conditional choice (an incorrect choice of algorithm). Others identified the four cases but returned the
incorrect value in some of them. On the sum algorithm from part (b), again roughly one-third of responses
were successful, and the overwhelming majority of errors came from failing to include either the first or the
last element in the computed sum.

The third algorithm, the pathfinding algorithm, was the single most challenging element among all the free-
response questions, with about one in eight responses implementing it successfully. Most responses
struggled with writing code to correctly traverse grid, because the traversal did not follow any traditional
pattern. Many responses correctly used a while loop controlled by successive calls to getNextLoc to
traverse grid but used an incorrect loop condition. Many responses incorrectly handled moving from

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

position to position within the grid, even when correctly using getNextLoc to determine the next position
in the traversal.

A substantial minority of students observed, correctly, that the method in part (b) lent itself very naturally to
a recursive implementation. While recursive code is never required in a free-response question, responses
that use recursion are certainly permitted, and are eligible for full credit if they work correctly. Among
responses using a recursive strategy, most responses were basically successful, although in many of them
either the recursive call itself or the call to the other method violated the methods’ preconditions.

What common student misconceptions or gaps in knowledge were seen in the responses to
this question?

Common Misconceptions/Knowledge Gaps

Write program code to create objects of a class
and call methods.

Responses that Demonstrate Understanding

Some responses attempted to use
constructors from the Location class that
were not given or were not called
appropriately.

return new Location();

OR

return Location(row, col + 1);

return new Location(row, col + 1);

Some responses did not create objects of the
Location class when required.

return grid[row][col + 1];

return new Location(row, col + 1);

Some responses did not call Location
methods correctly.

r = Location.getRow();

OR

r = grid[row][col].getRow();

r = getNextLoc(row, col).getRow();

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Some responses did not call getNextLoc
correctly.

n = GridPath.getNextLoc(r, c);

OR

n = grid.getNextLoc(r, c);

OR

n = getNextLoc();

n = getNextLoc(r, c);

Common Misconceptions/Knowledge Gaps

Write program code to satisfy method
specifications using expressions, conditional
statements, and iterative statements.

Responses that Demonstrate Understanding

Some responses failed to correctly determine
if row was the last row of grid.

if (row == grid.length)

OR

if (grid[row + 1][col] == null)

if (row == grid.length - 1)

OR

if (row + 1 == grid.length)

Some responses failed to correctly determine
if col was the last column of grid.

if (col == grid[0].length)

OR

if (grid[row][col + 1] == null)

if (col == grid[0].length - 1)

OR

if (col + 1 == grid[0].length)

Some responses incorrectly produced a sum
of Location objects instead of integers
from grid.

int sum = 0;
...
sum += getNextLoc(row, col);

int sum = 0;
...
Location loc = getNextLoc(row, col);
sum +=
 grid[loc.getRow()][loc.getCol()];

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

Common Misconceptions/Knowledge Gaps

Write program code to create, traverse, and
manipulate elements in 2D array objects.

Responses that Demonstrate Understanding

Most responses used an incorrect loop
condition to stop the loop when row and
col indicated the bottom-right corner of
grid.

while (row < grid.length – 1 &&
 col < grid[0].length - 1)

OR

while (row < grid.length &&
 col < grid[0].length)

OR

while (grid[row][col] != null)

while (row < grid.length – 1 ||

 col < grid[0].length - 1)

OR

while (!(row == grid.length – 1 &&
 col == grid[0].length - 1))

Many responses incorrectly handled moving
from position to position within the grid.

while (row < grid.length – 1 ||
 col < grid[0].length - 1)
{
 ...
 getNextLoc(row, col);
}

while (row < grid.length – 1 ||
 col < grid[0].length - 1)
{
 ...
 Location loc = getNextLoc(row, col);
 row = loc.getRow();
 col = loc.getCol();
}

Many responses incorrectly handled the
requirement to sum all the values along the
path.

int sum = 0;
while (...)
{
 sum += grid[row][col];
 Location loc =
 getNextLoc(row, col);
 row = loc.getRow();
 col = loc.getCol();
}
return sum; // omits last value

OR

int sum = 0;
while (...)
{
 sum += grid[row][col];
 Location loc =
 getNextLoc(row, col);
 row = loc.getRow();
 col = loc.getCol();
}
return sum + grid[row][col];

OR

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

int sum = 0;
while (...)
{
 Location loc =
 getNextLoc(row, col);
 row = loc.getRow();
 col = loc.getCol();
 sum += grid[row][col];
}
return sum; // omits first value

OR

int sum = grid[row][col];
while (...)
{
 Location loc =
 getNextLoc(row, col);
 row = loc.getRow();
 col = loc.getCol();
 sum += grid[row][col];
}
return sum + grid[row][col];
 // adds last value twice

int sum = grid[row][col];
while (...)
{
 Location loc =
 getNextLoc(row, col);
 row = loc.getRow();
 col = loc.getCol();
 sum += grid[row][col];
}
return sum;

Based on your experience at the AP® Reading with student responses, what advice would you offer
teachers to help them improve student performance on the exam?

• Practice accessing an array element near or past the defined dimensions of the array. Reinforce that
accessing an array element out-of-bounds does not return null, but results in an
ArrayIndexOutOfBoundsException being thrown. This could be done through either coding
assignments or multiple-choice questions.

• Practice accessing an array using different types of traversals other than row-major or column-major
order. Consider assigning free-response questions (from a prior year or from AP Classroom) that use
non-traditional traversals. Assign open-ended problems where students create their own traversal
algorithms through an array.

• When discussing loops, emphasize that the loop condition determines when the loop continues to
iterate, not when the loop terminates. Programmers often recognize the loop termination condition
first; practice how to convert a termination condition into a continuation condition (e.g., by negating
the entire expression or by applying DeMorgan’s laws).

What resources would you recommend to teachers to better prepare their students for the content
and skill(s) required on this question?

• Progress checks from unit 8 would be helpful to scaffold students’ understanding for the 2D array
free-response questions.

© 2024 College Board.
Visit College Board on the web: collegeboard.org.

• The following AP Daily Videos and corresponding Topic Questions can be found in AP Classroom to
support this 2D array free-response question:

o Write program code to create objects of a class and call methods. Topics 2.2 and 2.5.
o Write program code to satisfy method specifications using expressions, conditional

statements, and iterative statements. Topics 3.1, 3.3, 3.4, 3.5, and 4.1.
o Write program code to create, traverse, and manipulate elements in 2D array objects. Topics

8.1 and 8.2.

	Chief Reader Report on Student Responses:
	2024 AP® Computer Science A Free-Response Questions
	What were the responses to this question expected to demonstrate?
	How well did the responses address the course content related to this question? How well did the responses integrate the skills required on this question?
	What common student misconceptions or gaps in knowledge were seen in the responses to this question?
	What resources would you recommend to teachers to better prepare their students for the content and skill(s) required on this question?
	What were the responses to this question expected to demonstrate?
	How well did the responses address the course content related to this question? How well did the responses integrate the skills required on this question?
	What common student misconceptions or gaps in knowledge were seen in the responses to this question?
	Based on your experience at the AP® Reading with student responses, what advice would you offer teachers to help them improve student performance on the exam?
	What resources would you recommend to teachers to better prepare their students for the content and skill(s) required on this question?
	What were the responses to this question expected to demonstrate?
	How well did the responses address the course content related to this question? How well did the responses integrate the skills required on this question?
	What common student misconceptions or gaps in knowledge were seen in the responses to this question?
	Based on your experience at the AP® Reading with student responses, what advice would you offer teachers to help them improve student performance on the exam?
	What were the responses to this question expected to demonstrate?
	How well did the responses address the course content related to this question? How well did the responses integrate the skills required on this question?
	What common student misconceptions or gaps in knowledge were seen in the responses to this question?

