2024

AP[°] Physics 2: Algebra-Based

Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 4

- ☑ Scoring Guidelines
- ☑ Student Samples
- **☑** Scoring Commentary

© 2024 College Board. College Board, Advanced Placement, AP, AP Central, and the acorn logo are registered trademarks of College Board. Visit College Board on the web: collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

Question 4: Short Answer/Other

10 points

(a) For indicating that the final kinetic energy of a particle is equal to $|q\Delta V|$

Scoring Note: Explicit indication of an absolute value is not required for this point to be earned.

Example Response

$q\Delta V$	= <i>K</i>		

For
$$\frac{K_2}{K_1} =$$

1 point

1 point

Example Solution

2

$$E_{0} = E_{f}$$

$$\Delta U + \Delta K = 0$$

$$-\Delta U_{E} = \Delta K$$

$$q\Delta V = K$$

$$K_{1} = |-Q\Delta V| = Q\Delta V$$

$$K_{2} = |+2Q\Delta V| = 2Q\Delta V$$

$$\frac{K_{2}}{K_{1}} = \frac{2Q\Delta V}{Q\Delta V}$$

$$\frac{K_{2}}{K_{1}} = 2$$

	Total for part (a)	2 point
	Scoring Note: Parts (b)(i) and (b)(ii) can be scored together.	
(b)(i)	For a correct expression for the speed of Particle 2 in terms of K_2 and M	1 point
	Example Response	
	$v = 2\sqrt{\frac{K_2}{M}}$	
	Example Solution	
	$K = \frac{1}{2}mv^2$	
	$K_2 = \frac{1}{2} \left(\frac{M}{2}\right) v^2$	
	$v = 2\sqrt{\frac{K_2}{M}}$	

(b)(ii) For substituting an appropriate expression for the magnetic force exerted on a moving **1 point** charged particle in a magnetic field into a Newton's second law equation

Example Response

$$\vec{a}_c = \frac{q\vec{v} \times \vec{B}}{m}$$

For correct substitutions of the mass, charge, and speed of Particle 2 from the response in **1 point** part (b)(i) into an appropriate expression

Example Response

$$r = \frac{\left(\frac{M}{2}\right)\left(2\sqrt{\frac{K_2}{M}}\right)}{2QB_0}$$

For indicating that $\Delta x = 2r$

1 point

Example Solution

$$\vec{a} = \frac{\sum \vec{F}}{m}$$
$$\vec{a}_c = \frac{q\vec{v} \times \vec{B}}{m}$$
$$\frac{v^2}{r} = \frac{qvB}{m}$$
$$r = \frac{mv}{qB}$$
$$r = \frac{\left(\frac{M}{2}\right)\left(2\sqrt{\frac{K_2}{M}}\right)}{2QB_0}$$
$$r = \frac{\sqrt{K_2M}}{2QB_0}$$
$$\Delta x = 2r$$

$$\Delta x = \frac{\sqrt{K_2 M}}{Q B_0}$$

Total for part (b) 4 points

(c)	For drawing a path for Particle 1 that is concave up and to the right	1 point
(()	For drawing a path for Particle 2 that is concave up and in the opposite direction of Particle 1	1 point
	For drawing the path for Particle 1 with a larger radius of curvature than the path for Particle 2	1 point

Example Response

	Total for part (c)	3 points
(d)	For indicating one of the following:	1 point
	 That the electric field is directed in the +x -direction A direction of the electric field that is consistent with the path of Particle 1 drawn in part (c) 	
	Example Response	
	+ <i>x</i> -direction	

Total for part (d) 1 point

Total for question 4 10 points

Question⁴4

Begin your response to QUESTION 4 on this page.

4. (10 points, suggested time 20 minutes)

Q5243/11

Two particles, 1 and 2, have different mass and charge as described by the following.

- Particle 1 has mass M and negative charge -Q.
- Particle 2 has mass $\frac{M}{2}$ and positive charge +2Q.

In separate trials, a device is used to accelerate each particle in the -y-direction from rest through a potential difference of absolute value $|\Delta V|$. The polarity of the potential difference can be adjusted so that a particle with either positive charge or negative charge can be accelerated in the -y-direction by the device. Gravitational effects are negligible.

After moving through the potential difference, particles 1 and 2 exit the device with kinetic energies K_1 and K_2 , respectively.

(a) Calculate the ratio
$$\frac{K_2}{K_1}$$
.
 $\mathcal{U}(1 = Q \Delta V = -Q \Delta V)$
 $\mathcal{U}(2 = Q \Delta V = -2 Q \Delta V)$
 $\frac{\mathcal{U}(2 = Q \Delta V)}{K_1} = \frac{2 Q \Delta V}{Q \Delta V} = -\frac{2}{1}$
Unauthorized copying or reuse of this page is lifegal.
Unauthorized copying or reuse of this page is lifegal.
Deg 11 **GO ON TO THE NEXT PAGE**.
Use a pencil or a pen with black or dark blue link. Do NOT write your name. Do NOT write outside the box.

P2 Q4 Sample A p2 of 3

Q5243/12

Question 4

Figure 1

After exiting the device, the particles enter a large region of constant uniform magnetic field of magnitude B_0 that is directed in the +z-direction (out of the page), as shown in Figure 1. Each particle is moving in the -y-direction when entering the region, and each particle is moving in the +y-direction when exiting the region.

(b)

i. Determine an expression for the speed of Particle 2 in the region. Express your answer in terms of M, K_2 , and physical constants, as appropriate.

2 GEMOUL = K2

ii. Derive an expression for the horizontal distance Δx between the locations where Particle 2 enters and leaves the region. Express your answer in terms of M, Q, K_2 , B_0 , and physical constants, as appropriate. $(2Q) \lor B = F_m = F_c = \frac{2M}{2} + \frac{2M$

P2 Q4 Sample A p3 of 3

P2 Q4 Sample B p1 of 3

Question 4

Begin your response to **QUESTION 4** on this page.

4. (10 points, suggested time 20 minutes)

Two particles, 1 and 2, have different mass and charge as described by the following.

- Particle 1 has mass M and negative charge -Q.
- Particle 2 has mass $\frac{M}{2}$ and positive charge +2Q.

In separate trials, a device is used to accelerate each particle in the -y-direction from rest through a potential difference of absolute value $|\Delta V|$. The polarity of the potential difference can be adjusted so that a particle with either positive charge or negative charge can be accelerated in the -y-direction by the device. Gravitational effects are negligible.

After moving through the potential difference, particles 1 and 2 exit the device with kinetic energies K_1 and K_2 , respectively.

(a) Calculate the ratio $\frac{K_2}{K_1}$. $K = \Delta U_e = Q \Delta V$ $k = \frac{1}{2} m v^2$ $\frac{K_2}{K_1} = \frac{(+2Q)\Delta V}{(-Q)\Delta V} = 2$

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Page 11

Unauthorized copying or reuse of this page is illegal.

P2 Q4 Sample B p2 of 3

P2 Q4 Sample B p3 of 3

P2 Q4 Sample C p1 of 3

Question 4

Begin your response to **QUESTION 4** on this page.

4. (10 points, suggested time 20 minutes)

Two particles, 1 and 2, have different mass and charge as described by the following.

• Particle 1 has mass M and negative charge -Q.

• Particle 2 has mass $\frac{M}{2}$ and positive charge +2Q.

In separate trials, a device is used to accelerate each particle in the -y-direction from rest through a potential difference of absolute value $|\Delta V|$. The polarity of the potential difference can be adjusted so that a particle with either positive charge or negative charge can be accelerated in the -y-direction by the device. Gravitational effects are negligible.

After moving through the potential difference, particles 1 and 2 exit the device with kinetic energies K_1 and K_2 , respectively. $\Delta V = \hat{Q} / \hat{C}$

(a) Calculate the ratio $\frac{K_2}{K_1}$. $\frac{K_2}{K_1} \stackrel{=}{\rightarrow} \frac{\frac{1}{2}}{M_2} \frac{MV^2}{M_1} \stackrel{=}{\rightarrow} \frac{\frac{1}{2}}{\frac{1}{2}} \frac{M}{M_2} \left(\frac{ZQ}{C}\right)^2}{\frac{1}{2}} \stackrel{=}{\rightarrow} \frac{\frac{M}{2}}{M_2} \left(\frac{ZQ^2}{C^2}\right) \frac{M}{M_2} \left(\frac{-Q^2}{C^2}\right) \stackrel{=}{\rightarrow} \frac{M}{M_2} \left(\frac{-Q^2}{C^2}\right) \stackrel{=}$

Unauthorized copying or reuse of this page is illegal.

Q5243/11

Page 11

GO ON TO THE NEXT PAGE.

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

P2 Q4 Sample C p2 of 3

GO ON TO THE NEXT PAGE.

Q5243/12

Page 12 Use a penoli or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Unauthorized copying or reuse of this page is lilegal.

P2 Q4 Sample C p3 of 3

Question 4

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The responses were expected to demonstrate the ability to:

- Relate the kinetic energies of two charged particles that are accelerated from rest through an electric potential difference as a ratio.
- Determine an expression for the speed of a particle using its kinetic energy.
- Derive an expression for the speed of a charged particle in the presence of a magnetic field using Newton's second law of motion.
- Sketch the path of a charged particle moving through a uniform magnetic field.
- Determine the direction of an electric field that would allow a charged particle to move through a magnetic field with a constant velocity.

Sample: 4A Score: 10

Part (a) earned 2 points. The first point was earned for correctly indicating that the final kinetic energy of a particle is equal to $|q\Delta V|$. The second point was earned for giving the correct ratio between K_2 and K_1

 $(\frac{K_2}{K_1} = 2)$. Part (b) earned 4 points. The first point was earned for determining a correct expression for v in terms

of K_2 and M. The second point was earned for correctly substituting an expression for magnetic force into a Newton's second law equation. The third point was earned for correctly substituting the mass, charge, and speed of Particle 2 from part (b)(i) into an appropriate expression. The fourth point was earned for correctly indicating that $\Delta x = 2r$. Part (c) earned 3 points. The first point was earned for correctly drawing the path for Particle 1 as concave up and to the right. The second point was earned for correctly drawing the path for Particle 2 as concave up and in the opposite direction as the path for Particle 1. The third point was earned for correctly drawing the path of Particle 1 with a larger radius of curvature than the path for Particle 2. Part (d) earned 1 point for correctly indicating that the electric field is directed in the +x-direction.

Sample Identifier: 4B Score: 7

Part (a) earned 2 points. The first point was earned for correctly indicating that the final kinetic energy of a particle is equal to $|q\Delta V|$. The second point was earned for giving the correct ratio between K_2 and K_1

 $(\frac{K_2}{K_1} = 2)$. Part (b) earned 2 points. The first point was not earned because the response determines an incorrect

expression for v that is not in terms of K_2 and M. The second point was earned for correctly substituting an expression for the magnetic force into a Newton's second law equation. The third point was not earned because the response does not correctly substitute the mass, charge, and speed of Particle 2 from part (b)(i) into an appropriate expression. The fourth point was earned for correctly indicating that $\Delta x = 2r$. Part (c) earned 2 points. The first point was earned for correctly drawing the path for Particle 1 as concave up and to the right. The second point was earned for correctly drawing the path for Particle 2 as concave up and in the opposite direction as the path for Particle 1. The third point was not earned because the response does not draw the path of Particle 1 with a larger radius of curvature than the path for Particle 2. Part (d) earned 1 point for correctly indicating that the electric field is directed in the +x-direction.

Question 4 (continued)

Sample: 4C Score: 2

Part (a) did not earn any points. The first point was not earned because the response does not indicate that the final kinetic energy of a particle is equal to $|q\Delta V|$. The second point was not earned because the response does not

give the correct ratio between K_2 and K_1 ($\frac{K_2}{K_1} = 2$). Part (b) did not earn any points. The first point was not

earned because the response did not determine a correct expression for v in terms of K_2 and M. The second point was not earned because the response does not substitute an expression for magnetic force into a Newton's second law equation. The third point was not earned because the response does not substitute the mass, charge, and speed of Particle 2 from part (b)(i) into an appropriate expression. The fourth point was not earned because the response does not indicate that $\Delta x = 2r$. Part (c) earned 1 point. The first point was not earned because the response correctly draws the path for Particle 1 as concave up but incorrectly to the left rather than to the right. The second point was not earned because the response draws the path for Particle 2 as concave up but not in the direction opposite the path of Particle 1. The third point was earned for correctly drawing the path of Particle 1 with a larger radius of curvature than the path for Particle 2. Part (d) earned 1 point for correctly indicating that the electric field is directed in the +x-direction.