2023

AP[°] Physics C: Mechanics

Scoring Guidelines Set 2

© 2023 College Board. College Board, Advanced Placement, AP, AP Central, and the acorn logo are registered trademarks of College Board. Visit College Board on the web: collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

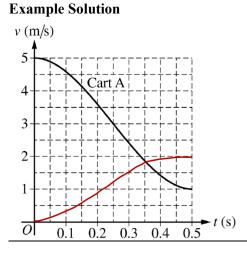
Question 1: Free-Response Question15 points(a)(i)For stating that the area bounded by the curve is the displacement1 point(a)(ii)For indicating momentum is conserved1 pointExample Response1 $\Sigma p_0 = \Sigma p_f$ $m_A v_{A0} + m_B v_{B0} = m_A v_{Af} + m_B v_{Bf}$ $m_A v_{A0} - m_A v_{Af} = m_B v_{Bf}$ For the correct answer for speed with units (2 m/s)1 point

Example Solution

$$m_{\rm A}v_{\rm A0} + m_{\rm B}v_{\rm B0} = m_{\rm A}v_{\rm Af} + m_{\rm B}v_{\rm Bf}$$
$$m_{\rm A}v_{\rm A0} - m_{\rm A}v_{\rm Af} = m_{\rm B}v_{\rm Bf}$$
$$v_{\rm Bf} = \frac{m_{\rm A}}{m_{\rm B}}(v_{\rm A0} - v_{\rm Af})$$
$$\rightarrow v_{\rm Bf} = \frac{1000 \text{ kg}}{2000 \text{ kg}}(5 \text{ m/s} - 1 \text{ m/s})$$

 $\therefore v_{\rm Bf} = 2 \, {\rm m/s}$

(a)(iii)	For a graph that starts at $(0,0)$ and ends at $(0.5,2)$ or value consistent with (a)(ii)	1 point
	For a smooth, continuous curve that transitions from concave up to concave down	1 point



Total for part (a) 5 points

(b)(i) For indicating the derivative of the velocity function is the acceleration of the cart

1 point

Example Response

$$a(t) = \frac{dv}{dt}$$

$$\rightarrow a(t) = \frac{d(64t^3 - 48t^2 + 5)}{dt}$$

$$\therefore a(t) = 192t^2 - 96t$$

For setting the derivative of the previously derived expression for acceleration equal to zero **1 point**

Example Response

$$\frac{d}{dt}a(t) = 0$$
$$0 = 384t - 96$$

For indicating the maximum acceleration is 12 m/s^2 or maximum acceleration occurs at time **1 point** t = 0.25 s

Example Response

0 = 384t - 96 $\therefore t_{\text{max}} = 0.25 \text{ s}$

For substituting the time at which the acceleration is a maximum or the maximum1 pointacceleration into an expression of Newton's second law to calculate the value of the
maximum force1

Example Response

$$F(t) = ma(t)$$

$$F_{\text{max}} = ma(0.25 \text{ s})$$

Example Solution

$$a(t) = \frac{dv}{dt}$$

$$\rightarrow a(t) = \frac{d(64t^3 - 48t^2 + 5)}{dt}$$

$$\therefore a(t) = 192t^2 - 96t$$

$$\frac{d}{dt}a(t) = 0$$

$$\frac{d(192t^2 - 96t)}{dt} = 0$$

$$\rightarrow 0 = 384t - 96$$

$$\therefore t_{max} = 0.25 \text{ s}$$

$$F(t) = ma(t)$$

$$F_{max} = ma(0.25 \text{ s})$$

$$F_{max} = (1000 \text{ kg})(192(0.25 \text{ s})^2 - 96(0.25 \text{ s}))$$

$$\therefore |F_{max}| = 12,000 \text{ N}$$

Alternate Solution	
For indicating the derivative of the momentum function is the force exerted on the cart	1 point
Alternate Example Response	
$F(t) = \frac{dp}{dt}$	
$F(t) = \frac{d}{dt}(64000t^3 - 48000t^2 + 5000)$	
For setting the derivative of the previously derived expression for force equal to zero	1 point
Alternate Example Response	
$\frac{d}{dt}F(t) = 0$	
$\frac{d}{dt} \left(192000t^2 - 96000t \right) = 0$	
For indicating the maximum force occurs at time $t = 0.25$ s	1 point
Alternate Example Response	
0 = 384000t - 96000	
$\therefore t_{\text{max}} = 0.25 \text{s}$	
For substituting the time at which the force is at a maximum into an expression for	1 point
momentum to calculate the value of the maximum force	
Alternate Example Response	
$F(t) = \frac{d}{dt}p(t)$	
$F_{\rm max} = \frac{d}{dt} p(0.25 \rm s)$	

Alternate Example Solution

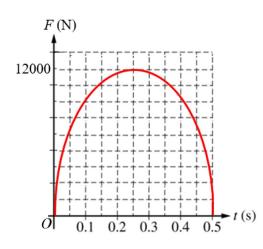
$$p(t) = mv(t)$$

 $\rightarrow p(t) = (1000 \text{ kg})(64t^3 - 48t^2 + 5)$
 $\therefore p(t) = 64000t^3 - 48000t^2 + 5000$
 $F(t) = \frac{dp}{dt}$
 $\rightarrow F(t) = \frac{d}{dt}(64000t^3 - 48000t^2 + 5000)$
 $\therefore F(t) = 192000t^2 - 96000t$
 $\frac{d}{dt}F(t) = 0$
 $\frac{d}{dt}(192000t^2 - 96000t) = 0$
 $\rightarrow 0 = 384000t - 96000$
 $\therefore t_{\text{max}} = 0.25 \text{ s}$
 $F(t) = \frac{d}{dt}p(t)$
 $F_{\text{max}} = \frac{d}{dt}p(0.25 \text{ s})$

 $F_{\text{max}} = 192000(0.25 \text{ s})^2 - 96000(0.25 \text{ s})$ $\therefore |F_{\text{max}}| = 12,000 \text{ N}$

(b)(ii)	For a curve that increases and then decreases in value that is only concave down	1 point
	For a labeled maximum value consistent with the calculated value in part (b)(i)	1 point
	For the graph having values of 0 N at $t = 0$ s and $t = 0.5$ s	1 point

Example Solution



	Total for part (b)	7 points
(c)	For selecting $F_1 < F_2$ with an attempt at a relevant justification	1 point
	For indicating that the impulse or change in momentum of each cart in both collisions is the same	1 point
	For indicating that decreasing the time of collision means the average force must be greater	1 point
	Example Solution	

Since the initial and final velocities are the same for both collisions, Δp is the same for both collisions; as a result, the impulse is the same for both collisions. So, if Δt is smaller, F_{avg} is larger.

Total for	r part (c)	3 points
Total for q	uestion 1	15 points

Question 2: Free-Response Question

(a) For indicating the equivalent spring constant k_{eq} is the sum of the spring constants of all the **1 point** springs arranged in parallel

Example Response

$$k_{\rm eq} = Nk$$

For a correct expression for period consistent with k_{eq} above

Example Response

$$T = 2\pi \sqrt{\frac{m}{Nk}}$$

Example Solution

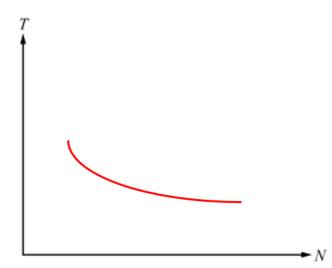
$$k_{eq} = \sum_{i=1}^{N} k_i$$

$$k_{eq} = Nk$$

$$T = 2\pi \sqrt{\frac{m}{Nk}}$$

	Total for part (a)	2 points
(b)	For a graph that increases or decreases with N consistent with the expression derived in part (a)	1 point
	For a concavity that is consistent with the expression derived in part (a)	1 point

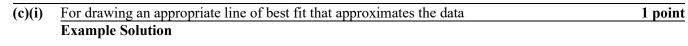
Example Solution

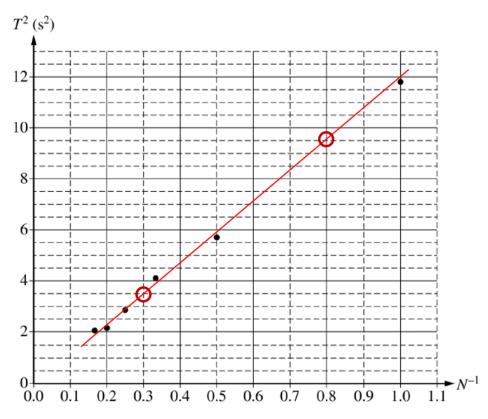


Scoring Note: The student is not required to label N = 1 on the horizontal axis, so the curve can start at the vertical axis, implying that N = 1 is at the origin.

Scoring Note: Discrete points following the appropriate curve will earn this point.

15 points





(c)(ii) For using two points from the best-fit line to calculate slope

Scoring Note: Using data points that fall on the best-fit line is acceptable. **Example Response**

slope =
$$\frac{\Delta(T^2)}{\Delta(N^{-1})}$$

slope = $\frac{(9.5 \text{ s}^2 - 3.5 \text{ s}^2)}{(0.8 - 0.3)}$
∴ slope = 12 s^2

For relating the slope of the line of the T^2 vs. N^{-1} graph consistent with the expression **1** point derived in part (a)

Example Response

$$T^{2} = 4\pi^{2} \frac{m}{Nk}$$

slope = $T^{2}N$
slope = $4\pi^{2} \frac{m}{k}$

For a calculated answer that has units of N/m

Example Response

 $\frac{k = 4.93 \text{ N/m}}{\text{Example Solution}}$

$$T^{2} = 4\pi^{2} \frac{m}{Nk}$$

slope = $4\pi^{2} \frac{m}{k}$
 $k = \frac{4\pi^{2}m}{\text{slope}}$
 $k = \frac{4\pi^{2}(1.5 \text{ kg})}{\frac{(9.5 \text{ s}^{2} - 3.5 \text{ s}^{2})}{(0.8 - 0.3)}}$
 $\rightarrow k = \frac{4\pi^{2}(1.5 \text{ kg})}{12 \text{ s}^{2}}$
 $k = 4.93 \text{ N/m}$

(c)(iii) For indicating a source of error that could result in the observed difference with an attempt at a relevant justification 1 point

Examples include:

- Experimental uncertainties in the mass of the system
- Motion detector miscalibration
- Timing error due to reaction time

For a correct justification that links the source of experimental error to the smaller experimental value of k

Examples include:

- Experimental uncertainties in the mass of the system (e.g., mass of block is too small, not accounting for the mass of the spring)
- Calibration of the motion sensor produces a graph from which too large a period is measured
- A larger period due to measurement error will result in a smaller value of k

		Total for part (c)	6 points
(d)(i)	For indicating that the slope would not change with an attempt at a relevant	nt justification	1 point
	For a justification that the period depends on the mass and spring constant unchanged	which remain	1 point

OR

For a justification that indicates that the period is independent of gravitational force **Example Solution**

The period of oscillation of the spring-block system depends on the mass and the effective spring constant, $T = 2\pi \sqrt{\frac{m}{Nk}}$. The slope is equal to the square of the period over the inverse number of identical springs, Slope = $\frac{T^2}{N^{-1}}$. This means that the slope is proportional

to the mass divided by the spring constant. Since neither the mass nor the spring constant change, the slope will remain unchanged.

OR

The period of oscillation of the spring-block system depends on the mass and the effective spring constant, $T = 2\pi \sqrt{\frac{m}{Nk}}$. The slope is equal to the square of the period over the inverse number of identical springs, $Slope = \frac{T^2}{N^{-1}}$. Since the period is independent of the gravitational force, and the only change was arranging the block-spring system horizontally instead of vertically, the period is not affected by the change in the orientation of the system. Therefore, the slope will remain unchanged.

(d)(ii)	For a relationship between v_{max} and N that is consistent with the expression from part (a)	1 point
	with an attempt at relevant justification	
	For using energy conservation to justify the relationship	1 point

OR

For using the relationship between v_{max} and ω to justify the relationship

For indicating that the effective spring constant changes the elastic potential energy of the spring block system U_s therefore changing v_{max} in a manner consistent with the expression from part (a)

OR

For an inverse relationship between ω and period, indicating a change in v_{max} consistent with the expression from part (a)

Example Solution

An increase in the number of identical springs attached in parallel to each other causes the

effective spring constant to increase, $k_{eff} = \sum_{i=1}^{N} k_i$. Since the effective spring constant is

proportional to potential energy of the block-spring system, $U_s = \frac{1}{2}k_{eff}x^2$, an increase in

the effective spring constant causes the potential energy of the block-spring system to increase for a given displacement. Therefore, based on conservation of energy,

 $\frac{1}{2}k_{\text{eff}}x^2 = \frac{1}{2}mv_{\text{max}}^2$, an increase in the potential energy will cause an increase in the kinetic

energy, resulting in a greater maximum velocity. Therefore, the maximum velocity will increase with an increase in the number of springs added.

OR

An increase in the number of identical springs attached in parallel to each other causes the effective spring constant to increase, $k_{\text{eff}} = \sum_{i=1}^{N} k_i$. Since the effective spring constant is

inversely proportional to the period of oscillation of the block-spring system, $T = 2\pi \sqrt{\frac{m}{k_{\text{eff}}}}$, an increase in the effective spring constant causes the period to decrease. Since the period is inversely proportional to the angular frequency of the block-spring system, $\omega = \frac{2\pi}{T}$, the

angular frequency increases. Since the maximum velocity is proportional to the angular frequency, $v_{max} = x_0 \omega$, this results in an increase in the maximum velocity. Therefore, the maximum velocity will increase with an increase in the number of springs added.

Total for part (d) 5 points

Total for question 2 15 points

Question 3: Free-Response Question

(a) For stating the parallel axis theorem 1 point

Example Response

$$I_{\text{blade}} = I_{\text{CM}} + Md^2$$

For using correct substitutions of the rotational inertia of one blade about its center of mass **1 point** and substituting the distance from the center of mass

Example Response

$$I_{\text{blade}} = \frac{1}{18}ML^2 + M\left(\frac{L}{3}\right)^2$$

For multiplying the rotational inertia of one blade by 3

1 point

15 points

Example Response

$$I_{\rm rotor} = 3I_{\rm blade} = \frac{1}{2}ML^2$$

Example Solution

$$I_{\text{blade}} = I_{\text{CM}} + Md^2$$
$$I_{\text{blade}} = \frac{1}{18}ML^2 + M\left(\frac{L}{3}\right)^2$$
$$I_{\text{blade}} = \frac{1}{6}ML^2$$
$$I_{\text{rotor}} = 3I_{\text{blade}} = \frac{1}{2}ML^2$$

Total for par	rt (a)	3 points

(b)	For calculating the correct answer with correct units $(2.4 s)$	1 point
-----	---	---------

Example Solution

$$v = r\omega$$

$$v = L\omega_0$$

$$\frac{d}{t} = L\omega_0$$

$$t = \frac{d}{L\omega_0} = \frac{2\pi L}{L\omega_0} = \frac{2\pi}{\omega_0}$$

$$t = \frac{2\pi}{(2.6 \text{ rad/s})}$$

$$\therefore t = 2.4 \text{ s}$$

Total for part (b) 1 point

(c)(i) For indicating that the total initial rotational kinetic energy is dissipated

1 point

Example Response

$$\Delta K_{\rm rot} = E_{\rm dis}$$
$$0 - \frac{1}{2} I \omega_0^2 = E_{\rm dis}$$

For substituting correct values for the rotational inertia and initial angular speed of the system **1 point**

Example Response

$$E_{\rm dis} = -\frac{1}{2} (6.7 \times 10^6 \text{ kg} \cdot \text{m}^2) (2.6 \text{ rad/s})^2$$

For an answer consistent with substitutions above and with correct units

1 point

Example Response

$$E_{\rm dis} = -2.3 \times 10^7 \, {\rm J}$$

Example Solution

$$\Delta K_{\text{rot}} = E_{\text{dis}}$$

$$0 - \frac{1}{2} I \omega_0^2 = E_{\text{dis}}$$

$$E_{\text{dis}} = -\frac{1}{2} (6.7 \times 10^6 \text{ kg} \cdot \text{m}^2) (2.6 \text{ rad/s})^2$$

$$E_{\text{dis}} = -2.3 \times 10^7 \text{ J}$$

Scoring Note: A response may earn full credit for positive or negative values of dissipated energy.

(c)(ii)	For using Newton's second law in rotational form	1 point
	For attempting to differentiate the equation for ω	1 point

Example Response

$$\tau = I_{\rm sys} \frac{d}{dt} \Big(\omega_0 e^{-\beta_0 t} \Big)$$

For a correct expression for the torque on the system

Example Response

$$\tau = -\beta_0 I_{\rm sys} \omega_0 e^{-\beta_0 t}$$

Example Solution

$$\tau = I\alpha$$

$$\tau = I_{\text{sys}} \frac{d\omega}{dt}$$

$$\tau = I_{\text{sys}} \frac{d}{dt} (\omega_0 e^{-\beta_0 t})$$

$$\therefore \tau = -\beta_0 I_{\text{sys}} \omega_0 e^{-\beta_0 t}$$

(c)(iii) For attempting to integrate the expression for angular speed

Example Response

$$\Delta\theta = \int \omega(t) dt$$

For using the correct limits of integration

Example Response

$$\Delta\theta = \int_{0}^{t} \omega_{0} e^{-\beta_{0} t} dt$$

For a correct expression for angular displacement

Example Response

$$\Delta\theta = \frac{\omega_0}{\beta_0} \left(1 - e^{-\beta_0 t}\right)$$

Example Solution

$$\Delta \theta = \int \omega(t) dt$$

$$\Delta \theta = \int_{0}^{t} \omega_{0} e^{-\beta_{0}t} dt$$

$$\Delta \theta = \left(-\frac{\omega_{0}}{\beta_{0}} e^{-\beta_{0}t} \right) \Big|_{0}^{t} = -\frac{\omega_{0}}{\beta_{0}} e^{-\beta_{0}t} + \frac{\omega_{0}}{\beta_{0}} (1)$$

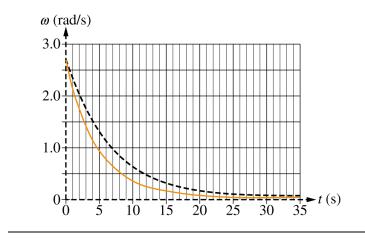
$$\therefore \Delta \theta = \frac{\omega_{0}}{\beta_{0}} (1 - e^{-\beta_{0}t})$$

Total for part (c) 9 points

1 point

(d)	For drawing a continuous curve showing an exponential decay	1 point
	For starting at $\omega = 2.6$ rad/s and drawing a curve below the original curve	1 point

Example Solution



Total for part (d) 2 points

Total for question 3 15 points