AP Physics C: Electricity and Magnetism
 Scoring Guidelines Set 1

Question 1: Free-Response Question

15 points
(a) For correctly drawing and labeling the electrostatic force directed to the right

1 point
For drawing the force of tension up and to the left and the gravitational force in the 1 point downward direction
Scoring Note: A maximum of 1 point may be earned if extraneous forces are included.

Example Response

(b) For equating the horizontal component of tension to the electrostatic force

Example Response
$F_{E}=F_{T} \sin (\theta)$
For equating the vertical component of tension to the gravitational force $\mathbf{1}$ point
Example Response
$F_{g}=F_{T y}$
$M g=F_{T} \cos \theta$
For an attempt to simultaneously solve the equations $\mathbf{1}$ point
Example Response
$\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{d^{2}} \frac{1}{\sin \theta} \cos \theta=M g$
Example Solution
$\Sigma F_{y}=0$
$F_{T y}=F_{g}$
$F_{T} \cos \theta=M g$
$F_{T x}=F_{E}$
$F_{T}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{d^{2}} \frac{1}{\sin \theta}$
$\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{d^{2}} \frac{1}{\sin \theta} \cos \theta=M g$
$d^{2}=\frac{Q q \cos \theta}{4 \pi \varepsilon_{0} M g \sin \theta}$
$d=\sqrt{\frac{Q q}{4 \pi \varepsilon_{0} M g \tan \theta}}$
(c) For applying Coulomb's law to determine tension $\quad \mathbf{1}$ point

Scoring Note: This point may be earned if the student used the vertical component of tension.

Example Response

$F_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{d^{2}}=F_{T} \sin (\theta)$
For correct substitution into an expression for tension consistent with part (b) or a correct
expression for tension
Example Solution
$\Sigma F=0$
$F_{E}-F_{T x}=0$
$F_{E}=F_{T x}$
$\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{d^{2}}=F_{T} \sin (\theta)$
$F_{T}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{d^{2} \sin (\theta)}$
$F_{T}=\frac{1}{4 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)} \frac{\left(6.0 \times 10^{-8} \mathrm{C}\right)^{2}}{(0.057 \mathrm{~m})^{2} \sin \left(12^{\circ}\right)}$
$F_{T}=0.048 \mathrm{~N}$
Total for part (c) 2 points

(d)(i)	For a line that approximates the trend of the data	1 point
Example Response		

Scoring Note: Points of data may be used only if points of data are located directly on the line.

Example Response

Slope $=\frac{\Delta y}{\Delta x}$
Slope $=\frac{\Delta\left(d^{2}\right)}{\Delta\left(\frac{1}{\tan (\theta)}\right)}$
Slope $=\frac{\left(0.0075 \mathrm{~m}^{2}-0.001 \mathrm{~m}^{2}\right)}{(10.5-2)}$
Slope $=7.647 \times 10^{-4} \mathrm{~m}^{2}$
For correctly relating the slope of the graph to the equation $d=\sqrt{\frac{Q q}{4 \pi \varepsilon_{0} M g \tan \theta}} \quad$ 1 point

Example Response

$d=\sqrt{\frac{Q q}{4 \pi \varepsilon_{0} M g \tan \theta}}$
$d^{2}=\frac{Q q}{4 \pi \varepsilon_{0} M g \tan \theta}$
$d^{2}=\left(\frac{Q q}{4 \pi \varepsilon_{0} M g}\right) \frac{1}{\tan \theta}$
slope $=\left(\frac{Q q}{4 \pi \varepsilon_{0} M g}\right)$
For substituting the value of the slope of the graph into the equation $\varepsilon_{0}=\frac{Q q}{4 \pi M g(\text { slope })}$ to calculate an experimental value of ε_{0}

Example Solution

$$
\begin{aligned}
& \text { slope }=\frac{Q q}{4 \pi \varepsilon_{0} M g} \\
& \varepsilon_{0}=\frac{Q q}{4 \pi M g(\text { slope })} \\
& \varepsilon_{0}=\frac{\left(6.0 \times 10^{-8} \mathrm{C}\right)^{2}}{4 \pi(0.005 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(7.647 \times 10^{-4} \mathrm{~m}^{2}\right)} \\
& \varepsilon_{0}=7.6 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}
\end{aligned}
$$

(e)(i) For a " + " drawn on the left side of the sphere

Example Response

Sphere 3

(e)(ii) For a statement that indicates correct charge rearrangement on Sphere 3 due to the electric forces from the charges on Sphere 2
Example Response

The negative charges on Sphere 3 move to the right due to the attractive forces from the positive charges on Sphere 2, leaving a net positive charge on the left side of Sphere 3 .
(e)(iii) For selecting " $\theta_{2}<\theta_{1}$ " with an attempt at a relevant justification

For statement that indicates one of the following:

- The average distance between the repulsive charges is greater.
- The electrostatic or repulsive force is less.

Scoring Note: Points 1 and 2 of part (e)(iii) can be earned with an answer that is consistent with the location of the excess positive charges drawn in part (e)(i).

Example Response

Excess charges on Sphere 3 are now free to move, so excess like charges will be concentrated on the far ends of Sphere 3 when the spheres are in static equilibrium. The excess like charges, located on opposite sides of Sphere 3, repel with less force than if the excess charges were located at the centers of Sphere 3. Thus, the downward force due to gravity on Sphere 2 causes the center of Sphere 2 to hang closer to the center of Sphere 3.

Total for part (e) 4 points
Total for question $1 \quad 15$ points

Question 2: Free-Response Question

(a) For drawing an arrow pointing to the left with no extraneous arrows $\quad 1$ point

Example Response

[^0](b)(i) For using Faraday's law to calculate the value of the induced emf $\quad \mathbf{1}$ point

Scoring Note: This point may be earned without the negative sign or a numerical answer.

Example Response

$\mathcal{E}=-\frac{d \Phi_{B}}{d t}$
$\varepsilon=-\frac{d(B L x)}{d t}$
For a correct substitution of v for $\frac{d x}{d t} \quad 1$ point
Scoring Note: A student can earn points 1 and 2 of part (b)(i) by starting with the expression
$\varepsilon=B L v$.

Example Response

$\varepsilon=-B L\left(\frac{d x}{d t}\right)$
$B L \frac{d x}{d t}=B L v$
For substituting the correct resistance into an equation for Ohm's law to solve for the current
Example Solution
$\varepsilon=-\frac{d \Phi_{B}}{d t}$
$\varepsilon=-\frac{d(B L x)}{d t}$
$\varepsilon=-B L \frac{d x}{d t}$
$\varepsilon=-B L v$
$\varepsilon=-(0.50 \mathrm{~T})(0.40 \mathrm{~m})(2.5 \mathrm{~m} / \mathrm{s})$
$\mathcal{E}=-0.50 \mathrm{~V}$
$I=\frac{\Delta V}{R}$
$I=\frac{|\mathcal{E}|}{R}$
$I=\frac{|-0.50 \mathrm{~V}|}{0.30 \Omega}=1.7 \mathrm{~A}$
(b)(ii) For substituting the current or an expression for the current obtained from part (b)(i) into an $\mathbf{1}$ point appropriate equation that is related to the magnetic force exerted on the bar
Example Responses
$\vec{F}=\int I d \vec{\ell} \times \vec{B}$
$F=I L B$
$F=(1.7 \mathrm{~A})(0.4 \mathrm{~m})(0.5 \mathrm{~T})$
$F=0.33 \mathrm{~N}$

OR
$\vec{F}=\int I d \vec{\ell} \times \vec{B}$
$F=I L B$
$F=\left(\frac{B L v}{R}\right) L B$
$F=\frac{B^{2} L^{2} v}{R}$
$F=\frac{(0.5 \mathrm{~T})^{2}(0.4 \mathrm{~m})^{2}(2.5 \mathrm{~m} / \mathrm{s})}{0.3 \Omega}$
$F=0.33 \mathrm{~N}$

Total for part (b) 4 points

(c) For drawing a curve that starts at the origin, is increasing, and is concave down from $t=0 \quad 1$ point to t_{1}

For drawing a horizontal line from t_{1} to t_{2}	$\mathbf{1}$ point
For drawing a curve that is decreasing and concave up from t_{2} to t_{4}	$\mathbf{1}$ point
For drawing a curve that is differentiable at t_{3} with a nonzero slope	$\mathbf{1}$ point

Example Response

(d)(i) For a correct answer with units $(0.15 \Omega) \quad 1$ point

Scoring Note: This point can be earned without supporting calculations.

Example Response

$\frac{1}{R_{p}}=\sum_{i} \frac{1}{R_{i}}$
$\frac{1}{R_{p}}=\frac{1}{0.3 \Omega}+\frac{1}{0.3 \Omega}$
$\frac{1}{R_{p}}=\frac{2}{0.3 \Omega}$
$R_{p}=0.15 \Omega$
(d)(ii) For a statement that correctly describes the inverse relationship between resistance and

1 point current (e.g., as resistance decreases current increases)
For a statement that describes the direct relation between current and force (e.g., as current $\mathbf{1}$ point increases force increases)
For a statement that describes the direct relation between force and acceleration (e.g., as $\mathbf{1}$ point force increases acceleration increases)
Scoring Note: Full credit can be earned with a justification that is consistent with the resistance calculated in part (d)(i).

Example Response

Since there is less resistance in the new circuit, there will be more current in the new circuit, so a larger force on the bar. Thus, since the force on the bar is larger, the new acceleration is greater than the original acceleration.
(e) For correctly indicating one of the following, with an attempt at a relevant justification: 1 point

- Decreasing B
- Decreasing L
- Increasing m

For correctly justifying the identified modification that will result in a smaller induced $\mathbf{1}$ point potential difference across the original resistor

Example Responses

The potential difference due to the induced emf across the original resistor is described by the equation $\mathcal{E}=-B L v$. Induced potential difference \mathcal{E} is proportional to B. Therefore, if the magnitude of the magnetic field is smaller than $B=0.5 \mathrm{~T}$ in the new scenario compared to the original scenario, \mathcal{E} would be smaller.

OR

The potential difference due to the induced emf across the original resistor is described by the equation $\mathcal{E}=-B L v$. The induced potential difference \mathcal{E} is proportional to L, which represents the distance the conducting rails are separated. Therefore, if L is smaller than $L=0.4 \mathrm{~m}, \mathcal{E}$ would be smaller .

OR

The potential difference due to the induced emf across the original resistor is described by the equation $\mathcal{E}=-B L v$. If the mass of the bar is greater, the velocity entering the magnetic field is less. The induced potential difference \mathcal{E} is proportional to v. Therefore, a smaller v due to a greater mass will induce a smaller \mathcal{E}.

Question 3: Free-Response Question

(a) For a loop rule expression that includes terms for the equivalent resistance $\frac{R}{2}$ and the potential difference across the battery
For an expression that includes charge Q in the term relating the potential difference across
the capacitor and includes charge per unit time $\frac{d Q}{d t}$ in the term relating the potential difference across the pair of resistors
Example Response
$\mathcal{E}-\Delta V_{C}-\Delta V_{R, e q}=0$
$\mathcal{E}-\frac{Q}{C}-\frac{R}{2} \frac{d Q}{d t}=0$

Total for part (a) 2 points

(b) For sketching a concave down and increasing curve on the graph σ as a function of $t \quad \mathbf{1}$ point

For sketching a curve that is concave up and decreasing on the graph of P as a function of $t \quad \mathbf{1}$ point For sketching both curves that approach a slope of zero as time increases $\quad \mathbf{1}$ point
Scoring Note: The third point can be earned even if the first two points are not earned.

Example Response

(c)(i) For a correct justification that could include one of the following:

- An indication that the current is to the right with a justification that includes a statement that indicates that positive charge has accumulated on the top plate of Capacitor 1 and/or negative charge has accumulated on the bottom plate of Capacitor 1 when the switch was closed to Position A
- An indication that the current is to the right with a justification that includes a statement that indicates that the value of the electric potential of the top plate of Capacitor 1 is larger than the electric potential of the bottom plate of Capacitor 1 when the switch was closed to Position A

Example Responses

The current is directed towards the right because the top plate of Capacitor 1 is positively charged, meaning conventional current will flow clockwise.

OR

Toward the right. Current flows from high to low potential so it will flow from the top plate up and right through the switch.
(c)(ii) For indicating that the total charge on the positive plate of Capacitor 2 is $\frac{2}{3} Q_{0}$

Scoring Note: This point can be earned without supporting calculations.

Example Response

The potential difference across Capacitor 1 is equal to the potential difference across Capacitor 2. Capacitor 2 has twice the capacitance of Capacitor 1. Therefore, Capacitor 2 stores twice the charge that is stored on Capacitor 1. Due to conservation of charge,
Capacitor 2 stores an amount of charge equal to $\frac{2}{3} Q_{0}$.
(c)(iii) For an indication that the total energy dissipated by the resistors is the difference between an initial electric potential energy stored in one or both capacitors at time $t=t_{1}$ and a final
electric potential energy stored on one or both capacitors after the new steady state conditions have been reached

Example Response

$E_{R}=U_{C}-U_{0 C}$
For indicating that only Capacitor 1 stores nonzero electric potential energy initially and both $\mathbf{1}$ point capacitors store nonzero electric potential energy after the new steady state conditions have been reached, or alternative consistent with part (c)(ii)
Example Response
$U_{0 C}=U_{01}$
$U_{C}=U_{1}+U_{2}$
For correct substitutions for the charges stored on the capacitors after the new steady state conditions have been reached consistent with part (c)(ii)

Example Response

$\Delta E_{R}=U_{C}-U_{0 C}$
$\Delta E_{R}=\left(\frac{1}{2}\left(\frac{1}{C}\right)\left(\frac{Q_{0}}{3}\right)^{2}+\frac{1}{2}\left(\frac{1}{2 C}\right)\left(\frac{2 Q_{0}}{3}\right)^{2}\right)-\frac{1}{2} \frac{Q_{0}^{2}}{C}$

Example Solution

$\Delta E_{R}=U_{C}-U_{0 C}$
$\Delta E_{R}=\left(\frac{1}{2}\left(\frac{1}{C}\right)\left(\frac{Q_{0}}{3}\right)^{2}+\frac{1}{2}\left(\frac{1}{2 C}\right)\left(\frac{2 Q_{0}}{3}\right)^{2}\right)-\frac{1}{2} \frac{Q_{0}^{2}}{C}$
$\Delta E_{R}=\frac{Q_{0}^{2}}{6 C}-\frac{1}{2} \frac{Q_{0}^{2}}{C}$
$\Delta E_{R}=-\frac{Q_{0}^{2}}{3 C}$
(d) For indicating that the potential difference across each capacitor is the same or that the 1 point charge stored on each capacitor in steady state is the same
Example Responses
$\Delta V_{1}=\Delta V_{2}$

OR
$Q_{1}=Q_{2}$
For recognizing that the capacitance of each capacitor is now the same in the new $\mathbf{1}$ point configuration

Example Response

After steady state conditions are reached, both capacitors have the same potential difference. The new capacitance of Capacitor 2 is equal to the capacitance of Capacitor 1 because the capacitance of a capacitor is inversely related to the distance between the plates of a capacitor. Therefore, since $U_{C}=\frac{1}{2} C(\Delta V)^{2}, \frac{U_{2}}{U_{1}}=1$.
(e)(i) For a loop rule that includes the terms for the emf of the battery, the potential difference $\mathbf{1}$ point across the pair of resistors, and the potential difference across Capacitor 1
Example Response
$\varepsilon-\Delta V_{R}-\Delta V_{C}=0$
For a correct answer
Example Response
$I=\frac{Q_{0}}{R C}$
Example Solution
$\mathcal{E}-\Delta V_{R}-\Delta V_{C}=0$
$\varepsilon-I\left(\frac{R}{2}\right)-\left(\frac{Q_{0}}{2 C}\right)=0$
$\frac{Q_{0}}{C}-I\left(\frac{R}{2}\right)-\left(\frac{Q_{0}}{2 C}\right)=0$
$\frac{Q_{0}}{2 C}-I\left(\frac{R}{2}\right)=0$
$\frac{Q_{0}}{2 C}=I\left(\frac{R}{2}\right)$
$\frac{Q_{0}}{C}=I R$
$I=\frac{Q_{0}}{R C}$
(e)(ii) For indicating that the current is zero

[^0]: Total for part (a) 1 point

