AP' Chemistry Scoring Guidelines

Question 1: Long Answer

(a) (i) For the correct answer:

Accept one of the following:

- $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$
- $\quad[\mathrm{Ar}] 4 s^{2} 3 d^{5}$
(ii) For the correct answer, consistent with part (a)(i):

1 point
$4 s$
Total for part (a) 2 points
(b) For the correct calculated value: $\mathbf{1}$ point
$62.673 \mathrm{~g}-61.262 \mathrm{~g}=1.411 \mathrm{~g} \mathrm{Cl}$
(c) For the correct calculated value, consistent with part (b): $\mathbf{1}$ point
$1.411 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}=0.03980 \mathrm{~mol} \mathrm{Cl}$
(d) For the correct answer, consistent with part (c):

1 point
$\frac{0.03980 \mathrm{~mol} \mathrm{Cl}}{0.0199 \mathrm{~mol} \mathrm{Mn}}=\frac{2 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Mn}} \Rightarrow \mathrm{MnCl}_{2}$
(e) For the correct answer and a valid justification:

Less than. If some of the mass of aqueous $\mathrm{Mn}_{x} \mathrm{Cl}_{y}$ is lost due to splattering, the final mass of the dry beaker and $M n_{x} C l_{y}$ will be decreased, which will decrease the calculated mass and number of moles of chlorine in the dry solid.
(f) (i) For the correct balanced equation:
$2 \mathrm{MnO}_{2}(s)+\mathrm{H}_{2} \mathrm{O}(l)+2 e^{-} \rightarrow \mathrm{Mn}_{2} \mathrm{O}_{3}(s)+2 \mathrm{OH}^{-}(a q)$
$\mathrm{Zn}(s)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{ZnO}(s)+\mathrm{H}_{2} \mathrm{O}(l)+2 e^{-}$ $2 \mathrm{MnO}_{2}(s)+\mathrm{Zn}(s) \rightarrow \mathrm{Mn}_{2} \mathrm{O}_{3}(s)+\mathrm{ZnO}(s)$
(ii) For the correct calculated value, consistent with part (f)(i):

$$
E_{\text {cell }}^{\circ}=0.15 \mathrm{~V}-(-1.28 \mathrm{~V})=1.43 \mathrm{~V}
$$

(iii) For the correct calculated value, consistent with part (f)(ii):
$\Delta G^{\circ}=-n F E^{\circ}=-\frac{2 \mathrm{~mol} \mathrm{e}^{-}}{1 \mathrm{~mol}_{r x n}} \times \frac{96,485 \mathrm{C}}{1 \mathrm{~mol} \mathrm{e}^{-}} \times \frac{1.43 \mathrm{~J}}{1 \mathrm{C}} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=-276 \mathrm{~kJ} / \mathrm{mol}_{r x n}$
(iv) For the correct answer and a valid justification:

Accept one of the following:

- Disagree. The battery is enclosed, so no change in the total mass will occur.
- Disagree. All reactants and products are in the solid phase, so the mass of the sealed battery will remain the same (no gases enter or exit the battery).

Total for part (f) 4 points
Total for question $1 \quad 10$ points

Question 2: Long Answer

(a) For the correct calculated value reported with the correct number of significant figures: 1 point
$1.25 \mathrm{~mol} \mathrm{AlCl} 3 \times \frac{3 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{AlCl}_{3}} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=133 \mathrm{~g} \mathrm{Cl}$
(b) For the correct algebraic manipulation of either ΔH_{2}° or ΔH_{4}° (may be implicit):

Accept one of the following:

- Reversing reaction 2 :

$$
\mathrm{AlCl}_{3}(g) \rightarrow \mathrm{Al}(s)+\frac{3}{2} \mathrm{Cl}_{2}(g) \quad \Delta H_{r x n}^{\circ}=-(-583)=+583 \mathrm{~kJ} / \mathrm{mol}_{r x n}
$$

- Multiplying reaction 4 by $\frac{3}{2}$:
$\frac{3}{2}\left(\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}(g)\right) \quad \Delta H_{r x n}^{\circ}=\frac{3}{2}(+243)=+365 \mathrm{~kJ} / \mathrm{mol}_{r x n}$
For the correct calculated value:
$\Delta H_{1}^{\circ}=-\Delta H_{2}^{\circ}+\Delta H_{3}^{\circ}+1.5\left(\Delta H_{4}^{\circ}\right)=-(-583)+326+1.5(243)=1274 \mathrm{~kJ} / \mathrm{mol}_{r x n}$

		Total for part (b)	$\mathbf{2}$ points
(c) (i)	For the correct answer:	$\mathbf{1}$ point	
	200 picometers $(\pm 10 \mathrm{pm})$		
(ii)	For a curve with a minimum at an internuclear distance of $220 \pm 10 \mathrm{pm}:$	$\mathbf{1}$ point	
	See sample curve below		

For a curve with a minimum energy value of $-425 \pm 20 \mathrm{~kJ} / \mathrm{mol}$ that approaches zero as the $\mathbf{1}$ point internuclear distance approaches 500 pm :

(d) (i) For the correct answer and a valid justification:

Diagram 2. Al has four electron domains in Diagram 2, which would be trigonal pyramidal, not trigonal planar.
(ii) For the correct answer and a valid justification:

Diagram 1. All atoms in diagram 1 have a formal charge of zero, whereas atoms in diagrams 2 and 3 have nonzero formal charges.

Total for part (d) $\mathbf{2}$ points
(e) For the correct answer:

1 point

$$
K_{p}=\frac{P_{\mathrm{Al}_{2} \mathrm{Cl}_{6}}}{\left(P_{\mathrm{AlCl}_{3}}\right)^{2}}
$$

(f) For the correct calculated value, consistent with part (e):

1 point

$$
K_{p}=\frac{\chi_{\mathrm{Al}_{2} \mathrm{Cl}_{6}}\left(P_{\text {total }}\right)}{\left(\chi_{\mathrm{AlCl}_{3}}\left(P_{\text {total }}\right)\right)^{2}}=\frac{\frac{3}{10}(22.1)}{\left(\frac{7}{10}(22.1)\right)^{2}}=0.0277
$$

(a) For the correct balanced equation (state symbols not required): $\mathbf{1}$ point

Accept one of the following:

- $\mathrm{CaCO}_{3}(s)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{Ca}^{2+}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
- $\mathrm{CaCO}_{3}(s)+2 \mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow \mathrm{Ca}^{2+}(a q)+\mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$
(b) For a correct explanation:

Accept one of the following:

- Even though the concentration of HCl is greater in trial 5 than in trial 2, the reaction time is significantly longer. Both trial 2 and 5 occur under otherwise identical conditions. The trend for trial 1 and 4 indicates that the higher concentration of HCl results in a shorter time of reaction.
- The time of reaction in trial 5, with small chunks of calcium carbonate, is longer than trial 6 with large chunks. Both trial 5 and 6 occur under otherwise identical conditions. The trend for trials 1, 2, and 3 shows that larger chunks of the solid result in longer time of reaction.
(c) For a correct explanation of the effect of surface area on reaction time:

The time of reaction in trial 2 is shorter than that in trial 3 because the calcium carbonate in trial 2 has a larger surface area (meaning that more particles of calcium carbonate are exposed to the H^{+}particles in the solution).

For a correct explanation of the effect of particle collisions on reaction rate:
The larger interface between the two reacting substances means there will be more collisions between the particles in a given amount of time, and thus, a higher frequency of successful collisions in which the particles react to form the products.
Total for part (c) 2 points
(d) For the correct answer and a valid justification:

Accept one of the following:

- Disagree. If the reaction was zeroth order with respect to HCl , then changing the concentration of HCl would not affect the rate of reaction, and the time of reaction would be the same for trials in which the only difference was $[\mathrm{HCl}]$. The student's data for trials 1 and 4 (likewise for 3 and 6) show that changing [HCl] significantly alters the time of reaction.
- Disagree. The reaction appears to be first order, not zeroth order, with respect to $[\mathrm{HCl}]$. Tripling $[\mathrm{HCl}]$ results in a reaction time that is $1 / 3$ of that when $[\mathrm{HCl}]=$ 1.00 M, which means the reaction rate has also tripled, indicating a first-order process.
(e) For the correct calculated moles of HCl reacted (may be implicit):

1 point
$1.00 \mathrm{~g} \mathrm{CaCO}_{3} \times \frac{1 \mathrm{~mol}}{100.09 \mathrm{~g}}=0.00999 \mathrm{~mol} \mathrm{CaCO}_{3}$
$0.00999 \mathrm{~mol} \mathrm{CaCO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}^{1}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}=0.0200 \mathrm{~mol} \mathrm{HCl}$ reacted
For the correct calculated $[\mathrm{HCl}]$ remaining, consistent with the number of moles reacted:
1 point
$0.0500 \mathrm{~L} \times \frac{1.00 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~L}}=0.0500 \mathrm{~mol} \mathrm{HCl}$ initially present
$0.0500 \mathrm{~mol}-0.0200 \mathrm{~mol}=0.0300 \mathrm{~mol}$ remaining
$\frac{0.0300 \mathrm{~mol}}{0.0500 \mathrm{~L}}=0.600 \mathrm{M} \mathrm{HCl}$ remaining
Total for part (e) 2 points
(f) For the correct answer and a valid justification:

1 point
Exothermic. The solution temperature increases as the reaction proceeds.
(g) (i) For the correct calculated value (sign not required):

1 point
$q_{\text {surr }}=m c \Delta T=(51.0 \mathrm{~g})\left(4.0 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}\right)\left(21.90^{\circ} \mathrm{C}-21.20^{\circ} \mathrm{C}\right)=140 \mathrm{~J}$
(ii) For the correct calculated value, consistent with (g)(i), and the correct sign, consistent with $\mathbf{1}$ point (f):
$q_{\text {sys }}=-q_{\text {surr }}=-140 \mathrm{~J}=-0.14 \mathrm{~kJ}$
$1.00 \mathrm{~g} \mathrm{CaCO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{100.09 \mathrm{~g} \mathrm{CaCO}_{3}} \times \frac{1 \mathrm{~mol}_{r x n}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}=0.00999 \mathrm{~mol}_{r x n}$
$\Delta H_{r x n}^{\circ}=\frac{-0.14 \mathrm{~kJ}}{0.00999 \mathrm{~mol}_{r x n}}=-14 \mathrm{~kJ} / \mathrm{mol}_{r x n}$

Question 4: Short Answer

(a) For the correct calculated value:
$0.00250 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl} \times \frac{67.52 \mathrm{~g}}{1 \mathrm{~mol}}=0.169 \mathrm{~g}$
(b) For a correct description of step 1: $\mathbf{1}$ point

Accept one of the following:

- Use the spatula, balance, and weighing paper to measure out exactly 0.169 g of $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}(s)$.
- Use the balance to weigh out the mass of solid in part (a).

For a correct description of step 4:
Rinse the buret with a small amount of $0.100 \mathrm{CH}_{3} \mathrm{NH}_{2}($ aq $)$, drain, and refill with $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}(a q)$.

Total for part (b) 2 points
(c) For the correct answer and a valid justification:

Equal to. The ratio of weak acid to conjugate base is still 1:1.

Question 5: Short Answer

(a) (i) For the correct calculated value:
$n=\frac{P V}{R T}=\frac{(7.45 \mathrm{~atm})(6.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(296 \mathrm{~K})}=1.84 \mathrm{~mol}$
(ii) For the correct calculated value:

Accept one of the following:

- $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
$P_{2}=\frac{\left(P_{1}\right)\left(T_{2}\right)}{T_{1}}=\frac{(7.45 \mathrm{~atm})(271 \mathrm{~K})}{296 \mathrm{~K}}=6.82 \mathrm{~atm}$
- $\quad P=\frac{n R T}{V}=\frac{(1.84 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(271 \mathrm{~K})}{6.00 \mathrm{~L}}=6.82 \mathrm{~atm}$
(b) For a correct drawing:

The drawing should show three water molecules with a hydrogen atom (dark circle) oriented towards the Cl^{-}ion.

(c) For the correct answer and a valid justification:
HNO_{2}. The diagram shows most of the molecules in their un-ionized form, indicating a weak acid with a K_{a} value less than 1, which is consistent with HNO_{2}.

Question 6: Short Answer

(a) For the correct answer: $\mathbf{1}$ point
$\operatorname{HBr}(l)$: London dispersion forces, dipole-dipole attractions
$\mathrm{HF}(l)$: London dispersion forces, dipole-dipole attractions, hydrogen bonding
(b) (i) For a correct explanation: 1 point
$\Delta H_{\text {vap }}^{\circ}$ is greater for $\mathrm{HF}(l)$ than $\operatorname{HBr}(l)$ because the overall intermolecular forces in
$\mathrm{HF}(l)$ are stronger than those in $\mathrm{HBr}(l)$ due to hydrogen bonding attractions present in $\mathrm{HF}(l)$, so more energy is required to separate the molecules in $\mathrm{HF}(l)$.
(ii) For the correct calculated value:

1 point
$6.85 \mathrm{~g} \mathrm{HF} \times \frac{1 \mathrm{~mol}}{20.01 \mathrm{~g}} \times \frac{25.2 \mathrm{~kJ}}{1 \mathrm{~mol}}=8.63 \mathrm{~kJ}$
(c) For a correct explanation:

Br has two additional occupied electron shells ($n=3$ and $n=4$) compared to $\mathrm{F}(n=2)$.
The extra electron shells increase the distance between the H and Br nuclei, giving HBr the greater bond length.

Question 7: Short Answer

(a) For a correct answer:

Accept one of the following:

- The student's drawing shows an incorrect ratio of Sr^{2+} and OH^{-}ions.
- The student's drawing is not charge-balanced.
(b) (i) For the correct calculated value: $\mathbf{1}$ point
$\frac{0.043 \mathrm{~mol} \mathrm{Sr}^{2+}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{Sr}^{2+}}=0.086 \mathrm{M} \mathrm{OH}^{-}$
(ii) For the correct calculated value, consistent with (b)(i):

1 point
$K_{s p}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=(0.043)(0.086)^{2}=3.2 \times 10^{-4}$

	Total for part (b)	$\mathbf{2}$ points
(c) For the correct answer and a valid justification:	$\mathbf{1}$ point	

Less than. Because the $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}(a q)$ solution already contains a common ion, $\mathrm{Sr}^{2+}(a q)$, the solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ will be decreased, resulting in a lower value of $\left[\mathrm{OH}^{-}\right]$.

Total for question $7 \quad 4$ points

