
© 2023 College Board.
Visit College Board on the web: collegeboard.org.

Chief Reader Report on Student Responses:
2023 AP® Computer Science Principles Performance Task

• Number of Students Scored 164,505
• Number of Readers 499
• Score Distribution Exam Score N %At
 5 18,925 11.50
 4 33,834 20.57
 3 51,094 31.06
 2 33,699 20.49
 1 26,953 16.38
• Global Mean 2.90

The following comments on the 2023 performance task for AP® Computer Science Principles were
written by the Chief Reader, Tom Cortina, Carnegie Mellon University. They give an overview of the
Computer Science Principles performance task and of how students performed on the task, including
typical student errors. General comments regarding the skills and content that students frequently
have the most problems with are included. Some suggestions for improving student preparation in
these areas are also provided. Teachers are encouraged to attend a College Board workshop to learn
strategies for improving student performance in specific areas.

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

Question 1

Task: Create Performance Task
Topic: Application from Ideas

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Max. Points:

1

1

1

1

1

1

Mean Score:

0.55

0.67

0.34

0.43

0.44

0.38

What were the responses to this question expected to demonstrate?

The Create Performance Task is designed to give students an opportunity to develop a program that solves a
problem for the user or allows the pursuit of a creative interest. Students should be able to demonstrate the
program running in a short video and explain its purpose, how it functions, and how it handles input and
output of information as shown in the video.

Programs typically process collections of data to help the user gain insight and make decisions. This task
also requires students to demonstrate their understanding of data abstraction, using at least one list (or
equivalent collection type) to hold data that is critical to fulfilling the program’s purpose. Students must
explain how the list manages complexity in the program, by either explaining why their program could not
function without the list or why their program would require a more complex implementation without the
use of the list, to demonstrate the importance of using this abstraction when processing larger amounts
of data.

Programs use procedures to break a larger computational task into smaller subtasks to make a program
easier to develop and test. This task also requires students to use procedural abstraction to write a
procedure with at least one explicit parameter that demonstrates the use of sequencing, selection, and
iteration, along with a call to this procedure. The student should be able to explain how the procedure
works in detail, what the procedure does in summary, and how the procedure contributes to the overall
functionality of the program. Finally, the student should be able to explain how to test the procedure for
correctness using its parameter(s), using two examples that cause different behavior and results to occur.

How well did the responses address the course content related to this question? How well did the
responses integrate the skills required on this question?

Program Purpose and Function

● Students were asked to develop a working program with a purpose to solve a problem for the user or
pursue a creative interest. Students were also asked to create a video that demonstrated some

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

functionality of their program that requires user input and shows program output. In general, most
students were able to write a working program and create a video that demonstrated the program’s
functionality, input, and output. In addition, most students were able to accurately describe the
functionality, input, and output in their written response.

● Some students were able to state the purpose of the program by describing a broader problem that is
being solved for the user or the creative or artistic interest being explored, whereas other students
incorrectly stated the functionality as the purpose. In the case of game programs, some students
incorrectly stated the object of the game (i.e., how to win) as the purpose of the program.

● Some students based their solutions on example programs provided within the course (e.g., by
content providers). As a result, some of their responses were considerably weaker than those who
created their own program from scratch since they did not spend as much time working on the
code development.

Data Abstraction and Managing Complexity

● Students were asked to provide two code segments from their program, the first showing the
initialization of a list (or other collection type) of data and the second showing how that list is used in
their program to reduce complexity. Most responses used lists, while a few used an alternate
collection type such as a dictionary or a 2D array. Most students were able to identify a list in their
program and provide two code segments that demonstrated the initialization and use of the identified
list. Some students confused creating an empty list with initializing the list with data. Some students
confused an external data source or a procedure for a list. Some students accessed only one specific
element of the list instead of multiple elements, although accessing a single random element of the
list was allowed since this will allow for accessing multiple elements over time.

● Some students were able to use the list in a manner that reduces program complexity by generalizing
list element access using an index or subscript to allow for arbitrary-sized lists and iteration over
lists. A subset of these students were able to explain in their written response how the list managed
complexity in their program. On the other hand, some students wrote about managing complexity
with lists in general and did not describe how their own program managed complexity with a list.
Some students inaccurately described that their program could not be completed without lists when
the use of the list was simplistic and could be replaced with a few individual variables. In cases
where portions of the students’ code that used a list were very similar to provider examples, students
tended to have a harder time describing why the list managed complexity.

Some students were unable to use a list to manage complexity in their program, but instead, they
used a list when it was not needed (e.g., to store a small number of values where the code would
have been more clear if they were each in named variables) or failed to leverage the structure of the
list (e.g., by accessing each element with a separate statement rather than via a loop or other variable
index value).

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

Procedural Abstraction, Algorithm Implementation, and Testing

● Students were asked to provide two code segments from their program, the first showing a
procedure using at least one explicit parameter required to perform its function and the second
which shows a call to this procedure with argument(s) for the parameter(s). Students were also
asked to write about what the procedure does and how it contributes to the overall program. Most
students were able to provide the two code segments and describe what the procedure does. Some
students were also able to separately describe how the procedure contributes to the overall
functionality of the program. However, some students had trouble explaining how the procedure
contributes to the overall functionality of the program, particularly when the selected procedure
performed almost the entirety of the overall functionality of the program. Some students stated how
the procedure contributed to the overall program by describing its functionality, but the scoring
guidelines require two descriptions, one for its function and one for how that procedure contributes
to the overall program (e.g., what role that procedure plays in the program). Some students
submitted procedures with no explicit parameters (e.g., using global variables to “pass” data to the
procedure) or code fragments not enclosed in a procedure. These cases showed a lack of
understanding of procedural abstraction.

● Students were asked to demonstrate sequencing, selection, and iteration in the code that was
included in their identified procedure. While the requirements state that the algorithm should be
included in a procedure, an exception is made to allow students to earn credit for demonstrating their
ability to write an algorithm with sequencing, selection, and iteration even if it isn’t included in a
procedure with parameters. Additionally, students were asked to write a description of how the
algorithm shown in the code segment works in enough detail so that someone else could recreate it.
In general, most students were able to present a code segment that used sequencing, selection, and
iteration, but some failed to explain the algorithm represented by the code at an appropriate level of
detail. Some students provided an explanation at too high a level, explaining the results of the code
but not how the algorithm works. Some students were unable to provide an algorithm that included
iteration. Other students used a built-in timedLoop function as an iteration instead of using a
built-in iteration command with a loop condition.

● Students were asked to describe two calls to the code segment representing their procedure, with
each call passing different argument(s), explicit or implicit, that cause(s) a different segment of code
to execute in their procedure. In each case, students were asked to describe what condition was
being tested by each call and what resulted from each call. Some students were able to describe
different argument(s) that caused separate paths to execute in the procedure, resulting in unique
results. On the other hand, some students described calls to two different procedures, or they
described calls to the same procedure with different arguments and different results but that
followed the same sequence of instructions in the procedure. While the requirements state that the
algorithm should have one or more parameters explicitly shown, an exception is made to allow
students to earn credit if the response uses an implicit parameter to simulate the passing of an
argument to a procedure by setting a global variable to be used by the procedure just prior to calling
the procedure.

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

What common student misconceptions or gaps in knowledge were seen in the responses to
this question?

Common Misconceptions/Knowledge Gaps Responses that Demonstrate Understanding

Video and Written Response 3a: Program Purpose and Function

Row 1

• Confusing purpose and function when
describing the program illustrated in the video
component. Responses often explain what the
program does or how the program works,
which is not its purpose. For example, “The
purpose of my program is to play a game of
hangman.”

Row 1

• High-scoring responses stated a purpose for the
program that went beyond the function of the
program itself to explain why the program was
written and for whom. These responses
indicated how the program would be used to
solve a problem for the user or improve their
lives in some way; that is, a reason why
someone would use the program. For example,
“The purpose of this program is to help people
gain skills towards fluency in a foreign language
to be able to communicate with more people who
may not speak English.”

• Not being clear about what comprises the
input to and output of the program illustrated
in the video component. Although this
misconception was less frequent, some
responses did not clearly indicate what was
considered input to and output of the
program. For example, “The input is the
questions displayed to the user at the start of
the program. The output is the results of the
game.”

• High-scoring responses clearly described the
data the program needed to perform its function
and labeled this data as input. These responses
also described the data produced by the program
and labeled this data as output. For example,
“The input is the user’s typed responses to the
game’s questions. The output is the questions
displayed on the screen and whether or not the
answer was correct.”

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

Written Response 3b: Data Abstraction and Managing Complexity

Row 2

• Providing several lists and either naming a
list that is not being used or not showing how
any of the lists are being used. For example,
the first code segment shows a list named
cities being initialized with data. The
second code segment shows the list
citiesOutput being accessed via a for
loop, and it is not the case that
citiesOutput is a parameter that could
feasibly refer to the same list as cities.

Row 2

• High-scoring responses identify only one list and
show how data is added to that list in the first
code segment and how multiple elements of the
list are accessed in the second code segment.

• Confusing a database with a named list in the
program. For example, “The list used in my
program is 100 birds of the world,” where “100
birds of the world” refers to a file that contains
information about birds from which data is
extracted and stored in named lists in the
program.

• When using a database, high-scoring responses
identify the name of the list variable that stores
data from that database to be used within the
program.

• Showing an empty list being created instead of
data being stored in a list.

• High-scoring responses show the list being
initialized to contain data or show data being
added to an empty list after creating it.

Row 3

• Explaining how the use of the list manages
complexity by stating how the program would
be rewritten in a generic way that does not
reference the submitted program. For
example, “The program would be written
differently had I not used the list because I
would have had to use more variables and a
lot more if/else if statements. This would
make my program a lot longer and more
complex.”

Row 3

• High-scoring responses describe how the
program would need to be rewritten in a more
complex manner without the list, referencing
specific instructions and functionality in the
submitted program. For example, “The list stores
a set of 30 colors to test against, so without the
list, I would have to test each of the colors
individually in a long sequence of 30 if
statements to update the score.”

• Explaining how the use of the list manages
complexity by stating how the program could
not be written without the list even when it
would be possible. For example, for a program
that uses a list of four elements, stating that it
would not be possible to implement the
program without the list, when it would be
possible to use a separate variable for each
element in the list.

• High-scoring responses precisely identify why
an alternate solution would not be possible. For
example, “It would not be possible to implement
my program without a list because the user can
input an unknown number of scores, so it would
not be possible for the program to know how
many variables it would need to store these
inputs.”

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

• Providing an alternate solution without clearly
explaining why the alternate would be more
complex. For example, “If I did not use the
list, each state name would have to be stored
in a separate variable,” without explaining
why these separate variables would make the
code more complex.

• High-scoring responses clearly explain why the
alternate response adds complexity to the
program. For example, “If I were to write this
code without the list, I would need to write a
series of if statements for each character like
this:

 var firstHiraganaCharacter;
 if(firstNumber == 0){
 firstHiraganaCharacter = ...;
 }else if(firstNumber == 1){
 firstHiraganaCharacter = ...;
 }else if...

A new variable would be declared called
firstHiraganaCharacter with nothing
stored. This variable will store characters
instead of the list … Basically, without a list, an
if/else statement would be needed for each of
the seventy-one Japanese characters used in my
program, three times. This would create an
unnecessarily long series of code, making it
harder to read and debug.”

• Using a list in a manner that does not manage
complexity, such as:
o Storing elements in a list, but only showing

the use of the first element or the sum of
the elements in the list. In these cases, it
would be simpler to use a single variable.

o Using a series of if statements instead of a
loop to access each element in the list. In
these cases, the code is not shorter due to
the use of the list because the data
contained in the list could be directly
accessed in each if statement.

o Using a list as a counter, storing arbitrary
data in the list just to determine its length.
For example, storing five copies of the
number 1 in a list and then reporting the
score is 5 because the length of the list is 5.

• High-scoring responses display lists that are
used to manage complexity by storing a variable
number of data values that need to be processed
using a loop or iterator. For example, a list may
contain a sequence of temperatures of variable
length, and the program will display those
temperatures that are greater than the average of
the temperatures in the list. For example:

sum = 0
for t in temps:
 sum = sum + t
avg = sum / len(temps)
for t in temps:
 if t > avg:
 print t

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

Written Response 3c: Procedural Abstraction and Algorithm Implementation

Row 4

• Not including both what the procedure does at
a high level AND how it contributes to the
functionality of the program. For example,
“This function contributes to my program’s
purpose because it filters the NHL team
names, cities, and logos based on the
division.” This type of response often occurs
when the response includes a procedure that
carries out most or all of the functionality of
the program, making it difficult to distinguish
between the procedure’s functionality and
how the procedure contributes to the whole
program since it is essentially the whole
program already.

Row 4

• High-scoring responses include two parts to the
response, stating the overall function of the
procedure in a sentence and then also stating
how it contributes to the overall program by
describing when it is executed, what subsequent
code is run in the program as a result of this
procedure having been executed, or how the
procedure’s functionality ties into the rest of the
program’s functionality. For example, “The
function creategroup4 uses the list of names
and selects a random element from it with each
iteration. This contributes to the overall
functionality of the program by creating the fourth
group which is required when the user selects to
make four or more groups.”

• Failing to use one or more explicit parameters
in the submitted procedure. In these cases,
some responses select procedures that use
implicit parameters (e.g., global variables or
text boxes which are set just prior to the
procedure being called), while others simply
prompt for the data the procedure requires
from within the procedure itself.

• High-scoring responses include a procedure that
takes one or more explicit parameters that are
necessary for the procedure to perform its
function and that does not rely on external data
from global variables or user interface elements.

• Including a parameter that has no effect on
the procedure either by ignoring the
parameter or initializing it to another value.
For example,
function rps(userchoice):
 userchoice = input("Enter your
 guess: ")
 ...

• High-scoring responses include a procedure that
uses the parameter value(s) in the procedure
body without overwriting the argument being
passed into the procedure.

• Including an event handler or other built-in
construct as a student-developed procedure.

• High-scoring responses include a custom
procedure written by the student that is not part
of the language itself. In programs where an
event handler is used, the code within the event
handler calls this student-developed procedure.

• Including code that is not encapsulated in a
procedure.

• High-scoring responses include one clearly
defined procedure, including the procedure’s
header with explicit parameters, in the first code
segment.

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

Row 5

• Including an algorithm that does not contain

iteration or have meaningful iteration. Some
responses included extensive nested selection
(if/else if/else if/…) but no iteration. Some
responses included a loop that only ran
through one iteration; for example, a loop
where a break statement will always execute
on the loop’s first iteration.

Row 5

• High-scoring responses included a loop that

contributed meaningfully to the algorithm. These
loops often repeated more than three times or ran
until a specific condition was met (e.g., by using
a while loop).

• Providing a very vague and brief description
that does not include enough detail for
someone else to recreate the algorithm. For
example, “This procedure divides each ‘vibe'
list into gender-specified lists which are split
into a ‘Male’ and ‘Female’ category.”

• High-scoring responses include enough detail of
each step of the algorithm to allow someone to
reasonably recreate the algorithm.

• Providing an explanation of each line of the
code rather than a description of the
algorithm. For example, “Line 62 has an input
statement. Then on line 63 there is a for loop
with i = 1 until userChoice. Lines 64-68
show another if statement for when the input
is ‘Yes’…” These descriptions do not abstract
far enough away from the code for the
description of the algorithm to be clear
enough that it could be recreated.

• High-scoring responses summarize several lines
at a time but include all the functionality that the
code implements. For example, “The help
function decides if the user would like to see
either state information (by inputting a one) or a
program outline (by inputting a two). If the user
were to select state information, a short
description would be displayed describing the
purpose of the states and tax ranges. The user is
then asked if they would like to see a list of the
states abbreviations by inputting a 1 for yes and
a 2 for no. If they select yes, then a for loop will
iterate through a list of the state’s names and
appropriate abbreviations and print them out.
Otherwise, the user can select to see the program
outline, describing the ability to choose state of
residency, and choosing between inputting a
single, daily, or weekly purchase to be tracked.”

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

• Providing a description of the algorithm that
does not match the included program code.
Often these responses explained steps out of
order or failed to include portions of the
algorithm. For example, describing the lines:

if (PlaceLocation[i] ==
"California" && Location ==
"Spring") {
 appendItem(FilteredPlaceName,
 PlaceName[i]);
 appendItem(FilteredPlaceImage,
 PlaceImage[i]);
}

with the text “When the if statement comes
out to be true these lines will traverse the
list going through the names and images of all
the national parks and displaying the ones
that correspond to the location given.” This
response is conflating what happens in the
overall for loop that encloses these statements
with what happens in the specific if statement.

• High-scoring responses accurately described
how the algorithm works, describing the steps in
the correct order without omitting any important
pieces.

Written Responses 3d: Testing

Row 6

• Describing calls to two different procedures

rather than two calls to the same procedure with
different arguments. For example,
move_left(2) and move_right(2).

Row 6

• High-scoring responses included two calls to the

same procedure with different arguments that
caused different behavior to occur in the
procedure.

• Describing two different parts of the program
and what behavior occurs during these parts.

• High-scoring responses identify the single
procedure given in response 3c and provide two
different sets of values for the parameters that
cause different behavior to occur inside the
procedure.

• Describing two calls to the same procedure with
different arguments that cause the same
sequence of code to execute in both cases. A
common misconception in this situation is that a
procedure that has two different return values
must be executing different instructions inside.
For example, this situation occurs when the two
calls cause a for loop in the procedure to
execute a different nonzero number of times to
produce a different return value.

• High-scoring responses provided two different
arguments that would cause a different sequence
of code to execute in each case, leading to a unique
result (output or return value). Frequently these
responses would include arguments where each
would cause two different branches of a
conditional statement to execute.

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

• Setting the value of an implicit parameter inside
the procedure instead of immediately before the
procedure is called. For example, using choice
as the implicit parameter,

function select()
{
 choice = getText("Name");
 print(choice);
 ... // choice determines path
}

• High-scoring responses that used implicit
parameters set the value of the parameter
immediately before the call to the procedure to
simulate parameter passing and then described
two different paths being taken through the
procedure. For example, using choice as the
implicit parameter,

choice = getText("Name");
select();
...
function select()
{
 print(choice);
 ... // choice determines path
}

• Not identifying specific argument values passed
in the two calls to the procedure, but instead
describing which part of the code will run with
each call. For example, “The first call is when
the first if statement is true and the element is
found in the list. The second call is when the
else statement runs because the element is not
found in the list.”

• High-scoring responses clearly identify the values
of specific argument(s) that are passed to the
procedure in each call.

• Providing two calls with different arguments
where the difference between the segments of
code that execute in each case is caused by
some other factor (e.g., user input received
within the procedure) and not by the value of the
arguments.

• High-scoring responses included procedures
where the branches in the code were determined
by the argument value(s) and not some other factor
within the procedure.

• Providing arguments that cause different
segments of code to execute, but these
segments are identical to one another. For
example, using the arguments 1 and 2 and
the following procedure:

function win_message(choice) {
 if (choice == 1) {
 print("YOU WIN!");
 }
 if (choice == 2) {
 print("YOU WIN!");
 }
}

• High-scoring responses included arguments that
caused different segments of code to execute that
performed at least some action differently to
illustrate a difference between using each of the
argument values in testing.

• Including code that is not encapsulated in a
procedure.

• High-scoring responses that addressed two
separate testing cases included one clearly defined
procedure with explicit or implicit parameters in
the first code segment.

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

Based on your experience at the AP® Reading with student responses, what advice would you offer
teachers to help them improve the student performance on the exam?

In general, some students have trouble understanding what is required for each prompt in the performance
task. Provide several completed tasks for students to review and analyze, asking them to determine whether
each requirement was met or not, and why. As a teacher, review the high-quality examples to make sure you
understand the nuances of the scoring criteria so that you can score the shorter student examples
accurately.

Students need explicit instruction and experience taking screen captures of code segments and
incorporating them into their responses. Code submitted for scoring should be as clear as possible (not
blurry), and text should be at least 10-point font size.

If a student wishes to use an unconventional programming language for the Create Performance Task,
evaluate its ability to clearly address the requirements of the task and advise the student accordingly.

The following bulleted list gives more specific advice for each part of the Create Performance Task.

Responses 2 and 3a: Program Purpose and Function

● Have students review high-quality examples of the Create Performance Task to become familiar with
the difference between function and purpose. Give students additional examples of computer
programs and ask them what the purpose of each program is to see if they can identify the problem
being solved by the program or the creative or artistic pursuit. Ask students to think about “why” the
program exists or “how” it might help the user solve some larger problem as opposed to “what” the
program does or “how” to win the computer game.

● Ensure that students have access and opportunity to practice using computational video tools to
capture their program features. Integrate the use of computational tools such as screen capture and
creating short videos into multiple assignments. Assist students in learning how to make sure any
text in the video is clearly visible and readable for scoring.

● Give students examples of computer programs and ask them to identify what explicit data are being
input to the program and what explicit data are being output to the user. For input data, have
students identify specific types of data like numbers, letters, images, mouse clicks, etc. For output
data, have students identify specific types of data like text messages, colors, sounds, movement of
objects, etc.

● Make it clear to students that while it is OK to base their program on a sample program used in
class, they must make significant changes to the sample program by adding additional functionality.
The program code used for their written responses should be newly student-developed program
code, and their answers should address their newly written code.

Response 3b: Data Abstraction and Managing Complexity

● Give students examples of program code that initializes and uses a list, highlighting the difference
between initializing a list and creating an empty list. Have students identify in the code where the
initialization and use of the list are happening.

● Give examples that use lists that can be of arbitrary length to illustrate the power of using lists to
store a collection of data. Compare these to examples where the lists are of fixed length. Have

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

students write code to process elements of an arbitrary length list by using an index (e.g.,
numlist[j]) rather than hard-coding access (e.g., numlist[1]).

● Provide practice using lists with a large number of elements that will require students to write code
that is more abstract and able to handle a change in the number of elements more easily than if the
code was written in a more hardcoded way with a list containing just a few elements.

● Discuss why a well-designed list makes the code less complex by showing what would happen if the
list were not present. Have students explain in their own words why the list is necessary by
referencing the code. Show students examples of lists that can be replaced easily without making the
code more complex (e.g., a list containing data only to later determine how many items are in the list,
which can be replaced with a counter variable).

● Remind students that even if their code segment uses multiple lists, they should clearly identify one
list and respond to the prompts based on this one identified list only. The list they identify and
describe must be one they create, not one that they are given, such as a data table from a third-party
provider.

● If a student passes a list to a function to access the elements of the list, the student should be
reminded to make it clear that the list inside the function as a parameter may have a different name
but is referencing the same list that was identified for the prompt.

Response 3c: Procedural Abstraction and Algorithm Implementation

● Give students examples of program code that contain procedures with explicit parameter(s), and
have the student identify what code makes up the procedure and where the parameter(s) get their
values. Show how using global variables is not the same communication mechanism as using
parameters to pass data into a procedure: explain that when a program uses a global variable, this
may be modified incorrectly by any part of the program, making debugging harder, whereas passing
data as a parameter gives the procedure a local copy to use.

● Encourage students to use explicit parameters over implicit parameters since this will make their
code easier to debug and easier to explain for the Create Performance Task. Remember that points
are not awarded in row 4 if only implicit parameters are used.

● Remind students to identify one procedure with explicit parameter(s) to focus their response and to
only include this procedure and a call to this procedure in response 3c. If the procedure calls
additional student-developed procedures, students can include them as well in the first code
segment, but they should be listed after the first procedure, and the student should be sure to focus
their response on the first procedure. Students should not include multiple procedures and calls in
their response.

Response 3d: Testing

● Give examples of testing a single procedure with different arguments, and trace the path taken in the
code to generate each result to show that the paths are different or that different parts of the code are
being tested.

● Give an example where a response shows two different procedures, with one test case per procedure,
and explain why this response does not address the requirements for the task.

© 2023 College Board.
Visit College Board on the web: collegeboard.org.

● Remind students that each identified path through the procedure must do something that is distinct
from the other path and should not just be the same code duplicated with two if statements in order
to artificially make two paths in the procedure.

What resources would you recommend to teachers to better prepare their students for the content
and skill(s) required on this question?

● AP Classroom has scaffolded Create Performance Task prompts that can be paired with the
programs you are already having your students complete. Pairing these shorter scaffolded writing
opportunities with all of the programs students need to complete will give students extra practice
without being as overwhelming as having to complete an entire practice task. These scaffolded
questions help to build student stamina with and confidence in answering the written response
prompts for the Create Performance Task.

● The College Board webinar “AP Computer Science Principles: How to Avoid Plagiarism and Exam
Violations” discusses plagiarism and exam violation policies, shows examples of student plagiarism,
and covers instructions to ensure students’ compliance with the policies. It also answers many
frequently asked student questions. (https://www.youtube.com/watch?v=m8dpz32HlB0)

● The College Board webinar “Evaluating the Create PT as an AP Reader” provides teachers with
insight on how each row of the scoring guidelines is applied to the samples and was conducted in a
similar manner to how readers are trained. (https://www.youtube.com/watch?v=mCM3cFBBJvo)

● The College Board will be offering additional webinars this fall to explain some changes that will be
made to the administration of the Create Performance Task and help teachers and students prepare
for the 2024 exam.

https://www.youtube.com/watch?v=m8dpz32HlB0
https://www.youtube.com/watch?v=mCM3cFBBJvo

	Chief Reader Report on Student Responses:
	2023 AP® Computer Science Principles Performance Task
	What were the responses to this question expected to demonstrate?
	How well did the responses address the course content related to this question? How well did the responses integrate the skills required on this question?
	What common student misconceptions or gaps in knowledge were seen in the responses to this question?
	Based on your experience at the AP® Reading with student responses, what advice would you offer teachers to help them improve the student performance on the exam?
	What resources would you recommend to teachers to better prepare their students for the content and skill(s) required on this question?

