AP ${ }^{\prime}$ Statistics Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 1

\checkmark Scoring Guidelines
\checkmark Student Samples
\checkmark Scoring Commentary

Question 1: Focus on Exploring Data

General Scoring Notes

- Each part of the question (indicated by a letter) is initially scored by determining if it meets the criteria for essentially correct (E), partially correct (P), or incorrect (I). The response is then categorized based on the scores assigned to each letter part and awarded an integer score between 0 and 4 (see the table at the end of the question).
- The model solution represents an ideal response to each part of the question, and the scoring criteria identify the specific components of the model solution that are used to determine the score.

Model Solution

(a) The histogram of dissolved oxygen concentration in Alaskan streams with water temperatures colder than $8^{\circ} \mathrm{C}$ is unimodal and skewed left with a median between 11 and $12 \mathrm{mg} / 1$.

The first quartile is in the bin from $10-11 \mathrm{mg} / 1$ and the third quartile is in the bin from 12-13 $\mathrm{mg} / 1$, so the IQR is approximately $2 \mathrm{mg} / 1$.

There do not appear to be any high outliers, but there are several potential low outliers because the values in the $2-3,4-5$, and 5-6 bins are all certainly more than 1.5 IQR below the first quartile.

Scoring

Essentially correct (E) if the description of the distribution satisfies component 1 AND at least three of components 2-5:

1. Includes context of dissolved oxygen concentration
2. Shape: The distribution is skewed left
3. Center: The center of the distribution is between $11 \mathrm{mg} / 1$ and $12 \mathrm{mg} / \mathrm{l}$
4. Spread: Refers to at least one measure of variation (i.e., the range is between $14-2=12 \mathrm{mg} / \mathrm{l}$ and $13-3=10 \mathrm{mg} / \mathrm{l}$; all values are between $2 \mathrm{mg} / \mathrm{l}$ and $14 \mathrm{mg} / \mathrm{l}$ or the IQR is approximately $2 \mathrm{mg} / \mathrm{l}$)
5. Unusual features: potential outliers or a gap between $3 \mathrm{mg} / \mathrm{l}$ and $4 \mathrm{mg} / \mathrm{l}$

Partially correct (\mathbf{P}) if the response satisfies component 1 and two components out of components 2-5
OR
if the response satisfies at least three out of components 2-5 but does not satisfy component 1 .

Incorrect (I) if the response does not meet the criteria for E or P .

Additional Notes:

- Context

- Component 1 can be satisfied with a reference to dissolved oxygen concentration, dissolved oxygen, amount of oxygen, or mg / l.
- Shape:
- Component 2 cannot be satisfied if a response describes the histogram as normal or approximately normal.
- Center:
- A response that addresses center using definitive language such as "the mean (median) of the distribution is 11.5 " cannot satisfy component 3 .
- A response that addresses center using approximate language such as "the median of the distribution is approximately $11.5 "$ must, for any single measure of center, specify a numeric value that is between $11 \mathrm{mg} / 1$ and $12 \mathrm{mg} / 1$, inclusive, to satisfy component 3.
- Spread:
- A response recognizing all values in the sample fall between $2 \mathrm{mg} / 1$ and $14 \mathrm{mg} / \mathrm{l}$, satisfies component 4 only for these exact endpoints and need not appeal to a specific measure of spread such as the range.
- A response that uses interval language must use it correctly. For example, "the observations range from $2 \mathrm{mg} / \mathrm{l}$ and $14 \mathrm{mg} / \mathrm{l}$," satisfies component 4 because it correctly indicates that all observations are between $2 \mathrm{mg} / \mathrm{l}$ and $14 \mathrm{mg} / \mathrm{l}$, inclusive. However, a statement such as "the range is between 2 mg / l and $14 \mathrm{mg} / \mathrm{l}, "$ is incorrect because the range is a single number, i.e., $14-2=12 \mathrm{mg} / 1$.
- A response that appeals to a specific measure of spread using approximate language, such as "the IQR is approximately 2 ," must specify a numeric value within the bounds appropriate to that measure of spread shown in the following table.

Statistic	Min (mg/l)	Max $(\mathrm{mg} / \mathrm{l})$
Range	10	12
IQR	1.5	2.5
Standard Deviation	1.7	1.8

- Unusual Features:
- Component 5 cannot be satisfied if a response indicates that the distribution has an unusual feature other than potential outliers or a gap.
- Definitive language such as "there is an outlier" does not satisfy component 5.

Dissolved Oxygen Concentration (mg / l) in Streams with Temperatures Warmer than $8^{\circ} \mathrm{C}$

Scoring

Essentially correct (E) if the response satisfies four or five of the following five components:

1. Constructs the box beginning at Q 1
2. Constructs the box ending at Q3
3. Locates the median within the box
4. Extends the lines on the boxplot to the minimum value
5. Extends the lines on the boxplot to the maximum value

Partially correct (\mathbf{P}) if the response includes a boxplot with only three of the five components.

Incorrect (I) if the response does not meet the criteria for E or P .

Additional Notes:

- A response that shows a graph or plot other than a boxplot should be scored incorrect (I).
- To be correctly placed:
- The minimum must be between the tick marks for 2 and 2.5
- The first quartile must be between the tick marks for 4 and 4.5
- The median must be between the tick marks for 5 and 5.5
- The third quartile must be between the tick marks for 6 and 6.5
- The maximum must be between the tick marks for 13 and 13.5

Model Solution

(c) If the researchers' belief is correct, then streams with water temperature colder than $8^{\circ} \mathrm{C}$ are healthier for wildlife.

The distribution of dissolved oxygen concentration for colder streams has a higher center because its median (between $11 \mathrm{mg} / \mathrm{l}$ and $12 \mathrm{mg} / \mathrm{l}$) is larger than the median for warmer streams ($5.43 \mathrm{mg} / \mathrm{l}$).

The shape of the distribution of dissolved oxygen concentration for colder streams is different from the shape of the distribution for warmer streams. The distribution of values of dissolved oxygen concentration for colder streams is skewed to the left but the distribution of values for warmer streams is skewed to the right.

Both distributions have a similar spread because they both have similar IQR values approximately $2 \mathrm{mg} / \mathrm{l}$ for the colder streams and $1.73 \mathrm{mg} / \mathrm{l}$ for the warmer streams.

Scoring

Essentially correct (E) if the response satisfies component $1 A N D$ at least two of components 2-4:

1. States colder streams are healthier for wildlife
2. Directly compares the centers of the two distributions
3. Indicates warmer streams are skewed right and colder streams are skewed left
4. Directly compares the spreads

Partially correct (\mathbf{P}) if the response satisfies component 1 AND one of components 2-4.

Incorrect (I) if the response does not meet the criteria for E or P .

Additional Notes:

- While both distributions have potential outliers, it is not necessary to compare them for this part of the question.
- A response based on an incorrect part (a) or part (b) may be scored E or P if it justifies the choice consistent with their answers to part (a) or part (b).
- In order to satisfy component 4, a response may compare at least one of the values of the approximate range, IQR, or standard deviation with the value of the same statistic from the other distribution.

Scoring for Question 1	Score
Complete Response Three parts essentially correct	$\mathbf{4}$
Substantial Response Two parts essentially correct and one part partially correct	$\mathbf{3}$
Developing Response Two parts essentially correct and no part partially correct OR	$\mathbf{2}$

One part essentially correct and one or two parts partially correct OR
Three parts partially correct

Minimal Response

One part essentially correct and no part partially correct OR
No part essentially correct and two parts partially correct

Question 1

Begin your response to QUESTION 1 on this page.

STATISTICS

SECTION II
Total Time- $\mathbf{1}$ hour and $\mathbf{3 0}$ minutes
6 Questions

Part A
Suggested Time- $\mathbf{1}$ hour and 5 minutes
5 Questions
Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. As part of a study on the chemistry of Alaskan streams, researchers took water samples from many streams with temperatures colder than $8^{\circ} \mathrm{C}$ and from many streams with temperatures warmer than $8^{\circ} \mathrm{C}$. For each sample, the researchers measured the dissolved oxygen concentration, in milligrams per liter (mg / l).

Dissolved Oxygen Concentration (mg/l) in Streams with Temperatures Colder than $8^{\circ} \mathrm{C}$
(a) The researchers constructed the histogram shown for the dissolved oxygen concentration in streams from the sample with water temperatures colder than $8^{\circ} \mathrm{C}$. Based on the histogram, describe the distribution of dissolved oxygen concentration in streams with water temperatures colder than $8^{\circ} \mathrm{C}$.
The dutribution of dissolved oxyger conuentration in Hreams with water temperatures coider than $8^{\circ} \mathrm{C}$ is unimodal and skewed lett. The didivibution has a range of $12 \mathrm{mg} / 1$. The median of the distribution of dissolved oxygen conuritation in otrenms wit water colder than $8 \circ \mathrm{C}$ a m between $11 \mathrm{mg} / 1$ and $12 \mathrm{mg} / \mathrm{l}$. The sample that has. dssolied oxygen conuntration in between $2 \mathrm{mg} / 1$ and 3 $\mathrm{mg} / 1$ appeass th be a possibie ontiue of the distribution

Page 2
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Quistion 1

Continue your response to QUESTION 1 on this page.

Min	Q1	Median	Q3	Max	Mean	Sed. Dev.		
2.10	4.39	5,43	6.12	13.45	$5 ; 54$	1.64	\quad	warmer
:---:								

(b) The reneerctan computed the summary slatistics shown in the table for the dissolved oxygen concentendorn in streams from the cample with water compentures whmer than $8^{\circ} \mathrm{C}$. Use the summary statistics to construct a box plot for the dissolved oxygen concentration in streams with water temperatures whemer than $8^{\circ} \mathrm{C}$. Do not indicate outliers.

(c) The researchers believe that streams with higher dissolved oxygea concentron ion mer pengenlly healthier for wildlife. Which streams are generally healthier for wildilife, those with water temperturre colder than $8^{\circ} \mathrm{C}$ or those with water emperabur wammer than $8^{\circ} \mathrm{C}$? Using characteristics of the distribution of dissolved oxygen concentration for temperatures colder than $8^{\circ} \mathrm{C}$ and characteristics of the distribution of dissolved oxygen concentration for temperaturea warmer than $8^{\circ} \mathrm{C}$, justify your answer.
streams whit wrier remperature colder than $\delta^{\circ} \mathrm{C}$ are wambier tor cula lite than dreams wrin water temperature warmer than $8^{\circ} \mathrm{C}$. This is caune the distribution of oxygen concentration tor Hreams with temperatures colacr thum $\delta^{\circ} \mathrm{C}$ has a highes center than the distribution of axgeper concentration for sireams with temperatiures warmer tanan $8^{\circ} \mathrm{C}$, as the former nas a median between $11 \mathrm{song} / \mathrm{and} 12 \mathrm{mgl} /$. ungle the latter has a subtamsially dower median of $5.43 \mathrm{mg} / 1$. Furthermove, the distributiom or colder fineams k skewed reff. meaning, move ot its dAta "cluotered awund niguer oxygen temperatured the distrinutuen fo warmer Hreame on the other her is stewed ngeri, meaning mot of its data is clureered around homr oxyoen temperatures

Unachatred copsing. or ruee of tills pape io Ilegal.
Page 3
GO ON TO THE NEXT PAGE
Use a pendl or a pen wrig' bleck or dark blue ink. Do NOT with your nems. Do NOT witte outelde the box.

Question

Continue your response to QUESTION 1 on this page.

Min	Q1	Median	Q3	Max	Mean	Std. Dev.
2.10	4.39	5.43	6.12	13.45	5.54	1.64

(b) The researchers computed the summary statistics shown in the table for the dissolved oxygen concentration in streams from the sample with water temperatures warmer than $8^{\circ} \mathrm{C}$. Use the summary statistics to construct a box plot for the dissolved oxygen concentration in streams with water temperatures warmer than $8^{\circ} \mathrm{C}$. Do not indicate outliers.

Streams with Temperatures Warmer than $8^{\circ} \mathrm{C}$
(c) The researchers believe that streams with higher dissolved oxygen concentration are generally healthier for wildlife. Which streams are generally healthier for wildlife, those with water temperature colder than $8^{\circ} \mathrm{C}$ or those with water temperature warmer than $8^{\circ} \mathrm{C}$? Using characteristics of the distribution of dissolved oxygen concentration for temperatures colder than $8^{\circ} \mathrm{C}$ and characteristics of the distribution of dissolved oxygen concentration for temperatures warmer than $8^{\circ} \mathrm{C}$, justify your answer.

Streams with temperature colder than $8^{\circ} \mathrm{C}$ are generally healthier. In the histogram of streams colder than $8^{\circ} \mathrm{C}$, the median of dissolved oxygen levers was between $11 \mathrm{mg} / 1$ and $12 \mathrm{mg} / 1$. This is around twice as much as the median for dissolved axygen levels in warmer than $8^{\circ} \mathrm{C}$ streams. This is indicated in the histogram that displays a center line around 5.43 wy $/ 1$. This means that Streams cooler then $8^{\circ} \mathrm{C}$ have a median that is higher than streams warmer than $8^{\circ} \mathrm{C}$, making them generally heathier.
Unauthorized copying or reuse of this page is illegal.
Page 3
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 1

Continue your response to QUESTION 1 on this page.

Min	Q1	Median	Q3	Max	Mean	Std. Dev.
2.10	4.39	5.43	6.12	13.45	5.54	1.64

(b) The researchers computed the summary statistics shown in the table for the dissolved oxygen concentration in streams from the sample with water temperatures warmer than $8^{\circ} \mathrm{C}$. Use the summary statistics to construct a box plot for the dissolved oxygen concentration in streams with water temperatures warmer than $8^{\circ} \mathrm{C}$. Do not indicate outliers.

(c) The researchers believe that streams with higher dissolved oxygen concentration are generally healthier for wildlife. Which streams are generally healthier for wildlife, those with water temperature colder than $8^{\circ} \mathrm{C}$ or those with water temperature warmer than $8^{\circ} \mathrm{C}$? Using characteristics of the distribution of dissolved oxygen concentration for temperatures colder than $8^{\circ} \mathrm{C}$ and characteristics of the distribution of dissolved oxygen concentration for temperatures warmer than $8^{\circ} \mathrm{C}$, justify your answer.
The histogram given for temperatures colder than $8^{\circ} \mathrm{C}$ is left Skewed meaning there is a higher Frequency of Dissolved Oxygen concentration on the right side of the graph meoniry a higher concentration. The box plat made in part b has a long tail on the right meaning Skewed right so there are more Dissolved Otyogen concentration that are lower for temperatures WArmer the $B^{\circ} \mathrm{C}$. Because of these graph characteristics the Colder hater temperatud than $B^{\circ} L$ e to renecally healthier for wild life. Unauthorized copying or reuse of this page is illegal.

Page 3
GO ON TO THE NEXT PAGE.
Use a pencil or a peri with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 1

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The primary goals of this question were to assess a student's ability to (1) use data presented on a histogram to describe a variable within the context of a study; (2) create a box plot when provided summary statistics for a variable; and (3) determine which of two data sets match a description, when provided graphs and characteristics, and then provide a justification based on a comparison of the characteristics.

This question primarily assesses skills in skill category 2: Data Analysis. Skills required for responding to this question include (2.A) Describe data presented numerically or graphically, (2.B) Construct numerical or graphical representations of distributions, and (2.D) Compare distributions or relative positions of points within a distribution.

This question covers content from Unit 1: Exploring One-Variable Data of the course framework in the AP Statistics Course and Exam Description. Refer to topics, 1.6, 1.8, and 1.9, and learning objectives UNC-1.H, UNC-1.L, UNC-1.M, and UNC-1.N.

Sample: 1A

Score: 4

The response earned the following: Part (a) - E; Part (b) - E; Part (c) - E.
In part (a) the response includes context, satisfying component 1 . The response indicates that the distribution is "skewed left," satisfying component 2 . The response provides the correct center "between $11 \mathrm{mg} / 1 \mathrm{and} 12 \mathrm{mg} / \mathrm{l}$," satisfying component 3 . The response notes a "range of 12 " satisfying component 4 . The response identifies a "possible" outlier, satisfying component 5. Part (a) was scored essentially correct (E). In part (b) the response correctly includes the beginning and end of the box, median line, and extends to the minimum and maximum values, satisfying all 5 components. Part (b) was scored essentially correct (E). In part (c) the response states colder streams are healthier, directly compares the medians of the two distributions, and discusses the shape of each distribution, satisfying components 1,2 , and 3 . The response does not satisfy component 4 . Part (c) was scored essentially correct (E).

Sample: 1B

Score: 3

The response earned the following: Part (a) - E; Part (b) - E; Part (c) - P.
In part (a) the response includes context, shape, center, and spread, satisfying components $1-4$. The response uses definitive language to identify "an outlier at $2-3 \mathrm{mg} / \mathrm{l}$," which is parallel to the discussion of a "gap between $3-4 \mathrm{mg} / \mathrm{l}$." Component 5 is not satisfied. Part (a) was scored essentially correct (E). In part (b) the response correctly includes the beginning and end of the box, median line, and extends to the minimum and maximum values, satisfying all five components. Part (b) was scored essentially correct (E). In part (c) the response includes that colder streams are healthier and compares centers, satisfying components 1 and 2 . The response does not discuss skewness or spread, which does not satisfy components 3 and 4. Part (c) was scored partially correct (P).

Question 1 (continued)

Sample: 1C
 Score: 2

The response earned the following: Part (a) - I; Part (b) - E; Part (c) - P.
In part (a) the response includes context and shape, satisfying component 1 and only one of the components 2-5. Part (a) was scored incorrect (I). In part (b) the response correctly includes the beginning and end of the box, median line, and extends to the minimum and maximum values, satisfying all five components. Part (b) was scored essentially correct (E). In part (c) the response states that colder streams are healthier for wildlife and indicates warmer streams are skewed right and colder streams are skewed left, satisfying components 1 and 3 . The response does not satisfy components 2 or 4 . Part (c) was scored partially correct (P).

