AP Physics C: Mechanics

 Sample Student Responses and Scoring Commentary Set 2
Inside:

Free-Response Question 3
\checkmark Scoring Guidelines
\checkmark Student Samples
\checkmark Scoring Commentary
(a) For stating the parallel axis theorem

Example Response

$I_{\text {blade }}=I_{\mathrm{CM}}+M d^{2}$
For using correct substitutions of the rotational inertia of one blade about its center of mass $\mathbf{1}$ point and substituting the distance from the center of mass

Example Response

$I_{\text {blade }}=\frac{1}{18} M L^{2}+M\left(\frac{L}{3}\right)^{2}$
For multiplying the rotational inertia of one blade by $3 \quad 1$ point

Example Response

$I_{\text {rotor }}=3 I_{\text {blade }}=\frac{1}{2} M L^{2}$

Example Solution

$$
\begin{aligned}
& I_{\text {blade }}=I_{\mathrm{CM}}+M d^{2} \\
& I_{\text {blade }}=\frac{1}{18} M L^{2}+M\left(\frac{L}{3}\right)^{2} \\
& I_{\text {blade }}=\frac{1}{6} M L^{2} \\
& I_{\text {rotor }}=3 I_{\text {blade }}=\frac{1}{2} M L^{2}
\end{aligned}
$$

(b) For calculating the correct answer with correct units (2.4 s)

Example Solution

$v=r \omega$
$\nu=L \omega_{0}$
$\frac{d}{t}=L \omega_{0}$
$t=\frac{d}{L \omega_{0}}=\frac{2 \pi L}{L \omega_{0}}=\frac{2 \pi}{\omega_{0}}$
$t=\frac{2 \pi}{(2.6 \mathrm{rad} / \mathrm{s})}$
$\therefore t=2.4 \mathrm{~s}$
(c)(i) For indicating that the total initial rotational kinetic energy is dissipated

1 point

Example Response

$\Delta K_{\text {rot }}=E_{\text {dis }}$
$0-\frac{1}{2} I \omega_{0}{ }^{2}=E_{\text {dis }}$
For substituting correct values for the rotational inertia and initial angular speed of the system $\mathbf{1}$ point

Example Response

$E_{\mathrm{dis}}=-\frac{1}{2}\left(6.7 \times 10^{6} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(2.6 \mathrm{rad} / \mathrm{s})^{2}$
For an answer consistent with substitutions above and with correct units

Example Response

$E_{\text {dis }}=-2.3 \times 10^{7} \mathrm{~J}$

Example Solution

$$
\begin{aligned}
& \Delta K_{\mathrm{rot}}=E_{\mathrm{dis}} \\
& 0-\frac{1}{2} I \omega_{0}^{2}=E_{\mathrm{dis}} \\
& E_{\mathrm{dis}}=-\frac{1}{2}\left(6.7 \times 10^{6} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(2.6 \mathrm{rad} / \mathrm{s})^{2} \\
& E_{\mathrm{dis}}=-2.3 \times 10^{7} \mathrm{~J}
\end{aligned}
$$

Scoring Note: A response may earn full credit for positive or negative values of dissipated energy.
(c)(ii) For using Newton's second law in rotational form $\mathbf{1}$ point

For attempting to differentiate the equation for ω

Example Response

$\tau=I_{\mathrm{sys}} \frac{d}{d t}\left(\omega_{0} e^{-\beta_{0} t}\right)$
For a correct expression for the torque on the system

Example Response

$\tau=-\beta_{0} I_{\text {sys }} \omega_{0} e^{-\beta_{0} t}$
Example Solution

$$
\begin{aligned}
& \tau=I \alpha \\
& \tau=I_{\text {sys }} \frac{d \omega}{d t} \\
& \tau=I_{\text {sys }} \frac{d}{d t}\left(\omega_{0} e^{-\beta_{0} t}\right) \\
& \therefore \tau=-\beta_{0} I_{\text {sys }} \omega_{0} e^{-\beta_{0} t}
\end{aligned}
$$

(c)(iii) For attempting to integrate the expression for angular speed

1 point

Example Response

$$
\Delta \theta=\int \omega(t) d t
$$

For using the correct limits of integration $\quad \mathbf{1}$ point

Example Response

$$
\Delta \theta=\int_{0}^{t} \omega_{0} e^{-\beta_{0} t} d t
$$

For a correct expression for angular displacement
1 point
Example Response
$\Delta \theta=\frac{\omega_{0}}{\beta_{0}}\left(1-e^{-\beta_{0} t}\right)$
Example Solution
$\Delta \theta=\int \omega(t) d t$
$\Delta \theta=\int_{0}^{t} \omega_{0} e^{-\beta_{0} t} d t$
$\Delta \theta=\left.\left(-\frac{\omega_{0}}{\beta_{0}} e^{-\beta_{0} t}\right)\right|_{0} ^{t}=-\frac{\omega_{0}}{\beta_{0}} e^{-\beta_{0} t}+\frac{\omega_{0}}{\beta_{0}}(1)$
$\therefore \Delta \theta=\frac{\omega_{0}}{\beta_{0}}\left(1-e^{-\beta_{0} t}\right)$
(d) For drawing a continuous curve showing an exponential decay

1 point
For starting at $\omega=2.6 \mathrm{rad} / \mathrm{s}$ and drawing a curve below the original curve

Example Solution

Total for part (d) 2 points
Total for question $3 \mathbf{1 5}$ points

PC M Q3 Sample 3A Page 1 of 3

Question 3

\square

Figure 1

Single Blade

Figure 2
3. A wind turbine includes a three-blade system that rotates about an axis through the end of each blade, as shown in Figure 1. Each blade has a length L and mass M, with a center of mass located at a distance $\frac{L}{3}$ from the axis of rotation, as shown in Figure 2.
(a) Derive an expression for the rotational inertia of the three-blade system. Express your answer in terms of M,
L, and physical constants, as appropriate. The rotational inertia of each blade about an axis through its center of mass is given by the equation $I_{\mathrm{cm}}=\frac{1}{18} M L^{2}$.

$$
\begin{aligned}
I_{\text {sys }} & =3 \times I_{\text {blade }} \\
I_{\text {bale }} & =I_{\text {CM }}+m x^{2} \\
& =\frac{1}{18} M L^{2}+M\left(\frac{L}{3}\right)^{2} \\
& =\frac{1}{18} M L^{2}+\frac{1}{9} M L^{2} \\
& =\frac{1}{6} M L^{2} \\
\text { Thus, } I_{\text {Sys }} & =3\left(\frac{1}{6} M L^{2}\right)=\frac{1}{2} M L^{2}
\end{aligned}
$$

Unauthorized copying or reuse of this page is illegal.
Page 10
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

PC M Q3 Sample 3A Page 2 of 3

Question 3

Continue your response to QUESTION 3 on this page.

(b) While the wind blows, the three-blade system operates at a constant angular speed $\omega_{0}=2.6 \mathrm{rad} / \mathrm{s}$. The length of one blade is $L=36 \mathrm{~m}$. The numerical value of the rotational inertia of the system is $I_{\text {sym }}=6.7 \times 10^{6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Calculate the time T it takes the outer edge of a single blade to complete one revolution.

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2.6 \mathrm{rad} / \mathrm{s}}=2.42 \text { seconds }
$$

(c) When the wind stops blowing, the angular speed of the system decreases. The angular speed ω of the system while slowing down is given as a function of time t by the equation $\omega=\omega_{0} e^{-\beta_{0} t}$, where β_{0} is a constant with appropriate units, as shown on the graph in Figure 3.

Figure 3
i. Calculate the amount of energy dissipated from $t=0$, when the wind stops blowing, until the system comes to rest.

$$
E_{\lambda \text { ass }}=K_{\text {notation }}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(6.7 \times 10^{6}\right)(2.6)^{2}=2.26 \times 10^{7} \mathrm{~J}
$$

[^0]
PC M Q3 Sample 3A Page 3 of 3

PC M Q3 Sample 3B Page 1 of 3

PC M Q3 Sample 3B Page 2 of 3

Continue your response to QUESTION 3 on this page.

(b) While the wind blows, the three-blade system operates at a constant angular speed $\omega_{0}=2.6 \mathrm{rad} / \mathrm{s}$. The length of one blade is $L=36 \mathrm{~m}$. The numerical value of the rotational inertia of the system is $I_{\text {sys }}=6.7 \times 10^{6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Calculate the time T it takes the outer edge of a single blade to complete one revolution.

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2.6}=2.42 \text { seconds }
$$

(c) When the wind stops blowing, the angular speed of the system decreases. The angular speed ω of the system while slowing down is given as a function of time t by the equation $\omega=\omega_{0} e^{-\beta_{0} t}$, where β_{0} is a constant with appropriate units, as shown on the graph in Figure 3.

Figure 3
i. Calculate the amount of energy dissipated from $t=0$, when the wind stops blowing, until the system comes to rest.

Unauthorized copying or reuse of this page is illegal.
$k=\frac{1}{2} I w^{2}$
$=\frac{1}{2}\left(6.7 \times 10^{6}\right)(2.6)^{2}=22646000 \mathrm{~J}$
Page 11
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

PC M Q3 Sample 3B Page 3 of 3

PC M Q3 Sample 3C Page 1 of 3

= Question 3

PC M Q3 Sample 3C Page 2 of 3

Continue your response to QUESTION 3 on this page.

(b) While the wind blows, the three-blade system operates at a constant angular speed $\omega_{0}=2.6 \mathrm{rad} / \mathrm{s}$. The length of one blade is $L=36 \mathrm{~m}$. The numerical value of the rotational inertia of the system is $I_{\text {sys }}=6.7 \times 10^{6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Calculate the time T it takes the outer edge of a single blade to complete one

$$
\begin{aligned}
& \text { revolution. } \\
& \omega_{0}=2.6 \mathrm{r} / \mathrm{s} \\
& L_{\text {F }} .0 . \mathrm{m}=36 \mathrm{~m} \\
& I_{\text {syn }}=6.7 \times 10^{6} \mathrm{kgm}^{2} \\
& 2 \pi r=2 \pi(36)=72 \pi=\text { total } \\
& \begin{array}{l}
\text { circumference } \\
\text { of path }
\end{array} \\
& =\sigma
\end{aligned}
$$

(c) When the wind stops blowing, the angular speed of the system decreases. The angular speed ω of the system while slowing down is given as a function of time t by the equation $\omega=\omega_{0} e^{-\beta_{0} t}$, where β_{0} is a constant with appropriate units, as shown on the graph in Figure 3.

Figure 3
i. Calculate the amount of energy dissipated from $t=0$, when the wind stops blowing, until the system comes to rest.
$\begin{aligned} & \omega(0)=2.7 \\ & \cos (35)=0.1\end{aligned} \quad 2.7-0.1=2.6 \mathrm{~J}$

Unauthorized copying or reuse of this page is illegal.
Page 11
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

PC M Q3 Sample 3C Page 3 of 3

Question 3

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The responses were expected to demonstrate the ability to:

- Identify and use the parallel axis theorem to find one blade's rotational inertia for a point parallel to the center of mass.
- Determine the total rotational inertia of a three-blade system, using logical algebraic pathways.
- Recognize that time for one revolution is period and select relevant given values to calculate an unknown quantity with units.
- Relate amount of dissipated energy to the total initial rotational kinetic energy, select relevant given values, and calculate the unknown quantity with units.
- Derive an expression for torque using the appropriate equation and a derivative of the angular speed decay equation.
- Use integral calculus to derive angular displacement from the known exponential decay expression for angular speed.
- Sketch a graph of a new three-blade system's exponential decay where a variable was changed.

Sample: 3A

Score: 15

Part (a) earned 3 points. The first point was earned because the response correctly states the parallel axis theorem. The second point was earned because the response correctly substitutes both the rotational inertia of one blade about its center of mass and the distance from the center of mass. The third point was earned because the response correctly multiplies the rotational inertia of one blade by three to derive the rotational inertia of the three-blade system. Part (b) earned 1 point because the response correctly calculates the time T with correct units for one revolution of the outer edge of a blade. Part (c)(i) earned 3 points. The first point was earned because the response correctly indicates that the total rotational kinetic energy is dissipated. The second point was earned because the response correctly substitutes the correct values for rotational inertia and the initial angular speed into the rotational kinetic energy equation. The third point was earned because the response correctly calculates the numerical value for the energy dissipated with the appropriate units. Part (c)(ii) earned 3 points. The first point was earned because the response uses Newton's second law in rotational form. The second point was earned because the response correctly differentiates the equation for ω. The third point was earned because the response has a correct expression for the torque on the system. Part (c)(iii) earned 3 points. The first point was earned because the response correctly integrates the expression for angular speed. The second point was earned because the response shows correct limits of integration. The third point was earned because the response has a correct expression for angular displacement. Part (d) earned 2 points. The first point was earned because the response correctly graphs a continuous curve showing exponential decay. The second point was earned because the response correctly starts at $\omega=2.6 \mathrm{rad} / \mathrm{s}$ and is drawn below the original curve.

Question 3 (continued)

Sample: 3B Score: 9

Part (a) earned 2 points. The first point was earned because the response correctly states the parallel axis theorem. The second point was earned because the response correctly substitutes both the rotational inertia of one blade about its center of mass and the distance from the center of mass. The third point was not earned because the response does not multiply the rotational inertia of one blade by three to derive the rotational inertia of the threeblade system. Part (b) earned 1 point because the response correctly calculates the time T with correct units for one revolution of the outer edge of a blade. Part (c)(i) earned 3 points. The first point was earned because the response correctly indicates that the total rotational kinetic energy is dissipated. The second point was earned because the response correctly substitutes the correct values for rotational inertia and the initial angular speed into the rotational kinetic energy equation. The third point was earned because the response correctly calculates the numerical value for the energy dissipated with the appropriate units. Part (c)(ii) earned 1 point. The first point was earned because the response uses Newton's second law in rotational form. The second point was not earned because the response does not differentiate the equation for ω. The third point was not earned because the response does not have the correct expression for the torque on the system. Part (c)(iii) earned 0 points. The first point was not earned because the response does not integrate the expression for angular speed. The second point was not earned because the response does not show correct limits of integration. The third point was not earned because the response does not have a correct expression for angular displacement. Part (d) earned 2 points. The first point was earned because the response correctly graphs a continuous curve showing exponential decay. The second point was earned because the response correctly starts at $\omega=2.6 \mathrm{rad} / \mathrm{s}$ and is drawn below the original curve.

Sample: 3C

Score: 2

Part (a) earned 1 point. The first point was not earned because the response does not state the parallel axis theorem. The second point was not earned because the response does not substitute both the rotational inertia of one blade about its center of mass and the distance from the center of mass. The third point was earned because the response multiplies the rotational inertia of one blade by three. Part (b) earned 0 points because the response does not calculate the time T for one revolution of the outer edge of a blade. Part (c)(i) earned 0 points. The first point was not earned because the response does not indicate that the total rotational kinetic energy is dissipated. The second point was not earned because the response does not substitute the correct values for rotational inertia and the initial angular speed into the rotational kinetic energy equation. The third point was not earned because the response does not calculate the numerical value for the energy dissipated. Part (c)(ii) earned 0 points. The first point was not earned because the response does not use Newton's second law in rotational form. The second point was not earned because the response does not differentiate the equation for ω. The third point was not earned because the response does not have the correct expression for the torque on the system. Part (c)(iii) earned 0 points. The first point was not earned because the response does not integrate the expression for angular speed. The second point was not earned because the response does not show correct limits of integration. The third point was not earned because the response does not have a correct expression for angular displacement. Part (d) earned 1 point. The first point was earned because the response correctly graphs a continuous curve showing exponential decay. The second point was not earned because the response does not start at $\omega=2.6 \mathrm{rad} / \mathrm{s}$ nor is it drawn entirely below the original curve.

[^0]: Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

