AP Physics 2: Algebra-Based Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 4
\checkmark Scoring Guidelines
\checkmark Student Samples
\checkmark Scoring Commentary
(a) For an evaluation of Student Y 's statement that correctly includes the vector nature of electric $\mathbf{1}$ point field

For indicating that Student Y should have stated that the third particle must have charge $+Q \quad \mathbf{1}$ point for the electric field at Point P to be zero

OR

For a statement indicating what the resultant magnitude of the electric field at Point P would be for a particle with charge $+2 Q$

For an evaluation of Student Z 's statement that correctly includes the scalar nature of electric $\mathbf{1}$ point potential

For indicating that zero electric potential at Point P would require the third particle having $\mathbf{1}$ point charge $-2 Q$

For a logical, relevant, and internally consistent argument that addresses the required argument or question asked, and follows the guidelines described in the published requirements for the paragraph-length response

Example Response

Student Y is incorrect. Before the third particle is placed at the bottom-right vertex, the electric field from particles A and B at Point P is down and to the right. The electric field from a positively charged particle placed at the bottom-right vertex is up and to the left. The third particle needs to have charge $+Q$, rather than $+2 Q$, in order to have the correct magnitude to make the resultant field zero at Point P .

Student Z is incorrect. Before the third particle is placed at the bottom-right vertex, the value of the electric potential at Point P is positive. Because Point P is equidistant from all three particles, the electric potential at Point P is proportional to the total charge of the system. If the total charge of the system is zero, the electric potential at Point P will be zero. This requires the third particle to have charge $-2 Q$.

OR

Student Y is incorrect that a particle with charge $+2 Q$ placed at the bottom-right vertex will result in no electric field at Point P. The horizontal component of the electric field from Particle A is less than the horizontal component of the electric field from the particle with charge $+2 Q$. The sum of the vertical components of the fields from particles A and B is less than the vertical component of the field from the particle with charge $+2 Q$. Therefore, the resulting electric field at Point P is nonzero and points in a direction between particles A and B .

Student Z is incorrect. Before the third particle is placed at the bottom-right vertex, the value of the electric potential at Point P is positive. Electric potential is a scalar quantity, so if the third particle has charge $-2 Q$ rather than $-Q$, the electric potential at Point P will be zero.
(b)(i) For drawing a bar on the grid that shows a positive value for W_{1}

For drawing a bar on the grid that shows $U_{f 1}=3 U_{i 1}$
For drawing bars on the grid so that the work done on the system is equal to the change in 1 point energy, $U_{i 1}+W_{1}=U_{f 1}$

Example Response

Scenario 1
(b)(ii) For drawing a bar on the grid that shows $U_{f 2}=-U_{i 2} \quad 1$ point

For drawing a bar on the grid that shows a negative value of W_{2} so that the work done on the $\mathbf{1}$ point system is equal to the change in energy $U_{i 2}+W_{2}=U_{f 2}$

Example Response

Scenario 2
Total for part (b) 5 points
Total for question $4 \mathbf{1 0}$ points

P2 Q4 Sample 4A Page 1 of 3

Question 4

Begin your response to QUESTION 4 on this page.

4. (10 points, suggested time 20 minutes)

Particles A and B each have positive charge $+Q$ and are held fixed at two varices of an equilatend triangle of side length d, as shown. Point P is located equidistant from each vertex of the triangle.

Saidats Y and Z discuss the electric field and the electric potarind at Point P after a third charged particle is placed at the bottom-right vertex. The students make the following statements.

Student Y: "If a particle with positive charge $+2 Q$ is placed at the bottom-right vertex, the magnitude of the electric field will be zero at Point P."

Student Z: "To mate the value of the electric potential zero at Point P, a particle with negnive charge $-Q$ should be placed at the bottom-right vertex."
(a) In a coherent, paragraph-length response, evaluate the accuracy of each student's statement. If any aspect of either student's statement is inaccurate, explain how to correct the student's statement. Support your evaluations using appropriate physics principles.
Student Y is statement is incomect, to make the electric field at P o we should instead place a particle w/ $+Q$ change. Because w/ a parbele
$W /+Q$ charge at the third vertexi, a partite Q P would experice 3 electric force in such confirgurotion \downarrow ', which would cancel $e / 0$ out and student Z 's stantment is P an electric field of 0 . electric potentincorrocty to make the place a potential at $P 0$, we should instead current V att P is $2, \frac{1}{4 \pi}, Q$ charge. Because the to negative this V is $\frac{4 \pi \varepsilon_{0}}{\cdot} \frac{Q}{\frac{2}{\sqrt{3}} d}$. The only way which changes the V by $\frac{1}{4 \pi}$, by placing a charge of $-2 Q$, Unauthorized copying or reuse of this page is illegal. $4 \pi \xi_{\text {page }} \frac{14}{14 \frac{2}{N} d}$, giving o a $\sum_{\text {ON }}$ TO THE NEXT PAGE.

Use a pencil or a pen with black or dark blue ink. Do NOT wite your name. DO NOT write outside the box,

Continue your response to QUESTION 4 on this page.

(b) Particles A and B are once again held in place at two vertices of the equilateral triangle. The students want to represent the electric potential energy of a system of particles when a third charged particle is brought from very far away to the bottom-right vertex. Scenarios 1 and 2 are considered.
i. In Scenario 1, a third particle with positive charge $+Q$ is moved from very far away to the bottom-right vertex and then held in place. A bar is shown on the following chart that represents the electric potential energy $U_{i 1}$ of the system consisting of all three particles when the third particle with positive charge is very far away from the other particles.

In the grid provided, complete the bar chart.

- Draw a bar to represent the work W_{1} required to move the third particle with positive charge from very far away to the bottom-right vertex.
- Draw another bar to represent the electric potential energy $U_{f 1}$ of the system consisting of all three particles when the third particle with positive charge is held in place at the bottom-right vertex.

The height of each bar should be proportional to the energy represented. If the quantity is zero, write a " 0 " in that column.

Scenario 1

Unauthorized copying or reuse of this page is illegal.
Page 15
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Questlon 4

Continue your response to QUESTION 4 on this page.

ii. In Scenario 2, a particle with negative charge $-Q$ is moved from very far away to the bottom-right verter and then held in place. A bar is shown on the following chart that represents the electric potential energy U_{12} of the system consisting of all three particles when the particle with negative charge is very far away from the other particles.
In the grid provided, complete the bar chart.

- Draw a bar to represent the work W_{2} required to move the particle with degative charge from very far away to the bottom-right vertex.
- Draw another bar to represent the electric potential energy $U_{f 2}$ of the system consisting of all three particles when the particle with negative charge is held in place at the bottom-right vertex.
The height of each bar should be proportional to the energy represented. If the quantity is zero, write a " 0 " in that column.

Scenario 2

Question 4

Continue your response to QUESTION 4 on this page.

(b) Particles A and B are once again held in place at two vertices of the equilateral triangle. The students want to represent the electric potential energy of a system of particles when a third charged particle is brought from very far away to the bottom-right vertex. Scenarios 1 and 2 are considered.
i. In Scenario 1, a third particle with positive charge $+Q$ is moved from very far away to the bottom-right vertex and then held in place. A bar is shown on the following chart that represents the electric potential energy $U_{i 1}$ of the system consisting of all three particles when the third particle with positive charge is very far away from the other particles.

In the grid provided, complete the bar chart.

- Draw a bar to represent the work W_{1} required to move the third particle with positive charge from very far away to the bottom-right vertex.
- Draw another bar to represent the electric potential energy $U_{f 1}$ of the system consisting of all three particles when the third particle with positive charge is held in place at the bottom-right vertex.
The height of each bar should be proportional to the energy represented. If the quantity is zero, write a " 0 " in that column.

$$
w=F \cdot d=E q d
$$

Scenario 1

$$
V=q V
$$

00

P2 Q4 Sample 4B Page 3 of 3

Question 4

Begin your response io QUESTION 4 on this page.

4. (10 points, angerted time 20 minutes)

Particles A and B each have positive charge $+Q$ and are held fixed at two varices of an equilmend triangle of side length d, as shown. Point P is located equidistant from each vertex of the trimgie.

Students Y and Z discos the electric field and the electric potential at Point P attar a third charged particle is placed at the bottom-right vertex. The students mite the following staternents.

Student Y: "If a particle with positive change $+2 Q$ is placed at the botuom-right vertex, the mamitmito of the electric field will be zero at Point P."

Student Z: "To make the value of the electric potential zero at Point P, a particle with negative chine $-\underline{Q}$ should to placed at the bottom-right verter"
(a) In a coherent, parazaph-length response, ovalunte the accuracy of each surat's maternent If any aspect of eth ar student's sterfoment is inscewrit, explain how to correct the atm dent's statement. Support your evaloutions using appropriate phyles principles.

$$
\begin{aligned}
& \text { y: If the charge at the bottom right vertex } \\
& \text { was negative, point } p \text { would be zero } \\
& \text { 区: the charge at the bottom nee gs to } \\
& \text { be a shrongce negative charge to } \\
& \text { make point o sro }
\end{aligned}
$$

Question 4

Continue your response to QUESTION 4 on this page.

(b) Particles A and B are once again held in place at two vertices of the equilateral triangle. The students want to represent the electric potential energy of a system of particles when a third charged particle is brought from very far away to the bottom-right vertex. Scenarios 1 and 2 are considered.
i. In Scenario 1, a third particle with positive charge $+\boldsymbol{Q}$ is moved from very far away to the bottom-right vertex and then held in place. A bar is shown on the following chart that represents the electric potential energy $U_{i 1}$ of the system consisting of all three particles when the third particle with positive charge is very far away from the other particles.

In the grid provided, complete the bar chart.

- Draw a bar to represent the work W_{1} required to move the third particle with positive charge from very far away to the bottom-right vertex.
- Draw another bar to represent the electric potential energy $U_{f 1}$ of the system consisting of all three particles when the third particle with positive charge is held in place at the bottom-right vertex.
The height of each bar should be proportional to the energy represented. If the quantity is zero, write a " 0 " in that column.

Scenario 1

Unauthorized copying or reuse of this page is illegal.
Page 15
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 4

Continue your respones to OUESTION 4 on this page.

ii. In Scenario 2 , a particle with oegnive chage $-Q$ is moved from very far sway to the boucp-ight veria and then beld in plise. A ber is shown on the following chart thet represents the elecaic pouxth), acisy U_{Q} of the symem consisting of all three perticles when the pericle with oegnove charis is firy away from the other perticles.

In the gid provided, complete the ber chart

- Draw a bar to represent the wark W_{2} regaired to move the particle with pogntive chage from vary far away to the bottom-righe vertex.
- Draw another bar to represent the electric potential energy $U_{g 2}$ of the sjimin condsting of all: three perticles when the perticlo with negative charge it held in pleco at tho tipuondins verin?
 thet column.

Scenario 2

Uso a pend or e pen wid blodk or dark blus ink. DO NOT withe your name. Do NOT with outide the box.

Question 4

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The responses to this question were expected to demonstrate the ability to:

- Identify the relationship between a symmetrical distribution of charged particles and the types of charged particles to find the resulting electric field at the center of that particle distribution.
- Identify the relationship between the types of charged particles and their arrangement to find the electrical potential at the center of that particle distribution.
- Evaluate and critique the accuracy of a given statement through a concise, logical argument, using correct and appropriate physics.
- Represent the work required to move particles with positive and negative charges from very far away to the center of a particle distribution using bar charts.
- Represent the potential energy of a system of positively and negatively charged particles using a bar chart.

Sample: 4A

Score: 10

Part (a) earned 5 points. The first point was earned for correctly indicating the vector nature of the electric field. The second point was earned for correcting Student Y 's statement. The response correctly identifies that a particle of charge $+Q$ placed at the bottom-right vertex will create an electric field contribution at Point P that cancels the contributions to the field from the particles at points A and B and, thus, the electric field at Point P will be zero. Although the response shows force cancellation, the response relates the force on a particle placed at Point P with the electric field at P. The third point was earned for correctly referring to the scalar nature of electric potential shown by the use of the equation for the electric potential at Point P due to the two particles at points A and B . The fourth point was earned for correctly stating that placing a particle of charge $-2 Q$ at the vertex would create an electric potential of zero at Point P. The fifth point was earned for a logical, relevant, and internally consistent paragraph-length response. Part (b) earned 5 points. The first point was earned for showing a bar in the positive region of the grid indicating that W_{1} is a positive quantity. The second point was earned for showing a bar indicating $U_{f 1}$ is three times the size of $U_{i 1}$, such that $U_{f 1}=3 U_{i 1}$. The third point was earned for showing a bar indicating that $U_{f 1}$ is the sum of W_{1} and $U_{i 1}$, so that $U_{i 1}+W_{1}=U_{f 1}$. The fourth point was earned for showing a bar indicating that $U_{f 2}$ is equal but opposite in sign to $U_{i 2}$, such that $U_{f 2}=-U_{i 2}$. The fifth point was earned for showing a bar in the negative region of the grid indicating that W_{2} is a negative quantity AND the bar drawn for $U_{f 2}$ is the sum of $U_{i 2}$, so that $U_{i 2}+W_{2}=U_{f 2}$.

Question 4 (continued)

Sample: 4B

Score: 5

Part (a) earned 3 points. The first point was not earned because the response does not correctly indicate the vector nature of the electric field. The second point was not earned because the response makes no statement about changing the charge of the particle to $+Q$ in order for the electric field at Point P to be zero. Additionally, the response does not describe that adding a particle of charge $+2 Q$ at the bottom-right vertex would have created an electric field at Point P that is directed toward the top left of the page. The third point was earned for indicating the scalar nature of electric potential by discussing the proportionality between the sum of charges and the net electric potential. The fourth point was earned for correctly stating that placing a particle of charge $-2 Q$ at the vertex would create an electric potential of zero at Point P . The fifth point was earned for a logical, relevant, and internally consistent paragraph-length response. Part (b) earned 2 points. The first point was earned for correctly showing a bar drawn on the grid that represents positive W_{1}. The second point was not earned because the response shows an incorrectly sized bar for $U_{f 1}$. The third point was not earned because the response shows a bar for W_{1} and for $U_{f 1}$, such that $U_{i 1}+W_{1} \neq U_{f 1}$. The fourth point was earned for correctly showing a bar drawn on the grid that represents $U_{f 2}=-U_{i 2}$. The fifth point was not earned because the response does show a negative bar drawn on the grid for W_{2}, but the response does not show bars that correctly represent $U_{i 2}+W_{2}=U_{f 2}$. For the point to be earned, both parts of the response must be correct.

Sample: 4C

Score: 1

Part (a) earned no points. The first point was not earned because the response does not correctly indicate the vector nature of the electric field. The second point was not earned because the response incorrectly states that the charge of the particle would need to be negative in order for the electric field at Point P to be zero. The third point was not earned because the response makes no reference to electric potential. The fourth point was not earned because, although the response states that a "stronger negative charge" is needed to make the electric potential zero, the response does not say that the value would need to be $-2 Q$. The fifth point was not earned because there is not a logical, relevant, or internally consistent paragraph-length response. Part (b) earned 1 point for correctly showing a bar drawn on the grid that represents a positive W_{1}. The second point was not earned because the response incorrectly shows that $U_{f 1}=U_{i 1}$. The third point was not earned because the response shows a bar for work W_{1} and a bar for $U_{f 1}$, such that $U_{i 1}+W_{1}=U_{f 1}$. The fourth point was not earned because the response shows a value of zero for $U_{f 2}$. The fifth point was not earned because the response incorrectly shows a positive value drawn on the grid for W_{2}.

