AP Physics 2: Algebra-Based Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 2
\checkmark Scoring Guidelines
\checkmark Student Samples
\checkmark Scoring Commentary
(a)(i) For a diagram including a source of potential difference (e.g., battery, power supply) that is in $\mathbf{1}$ point a complete circuit that results in a current in the unknown circuit component For a diagram including a measurement device that is appropriately connected in the circuit

1 point (e.g., voltmeter, ammeter)

Scoring Note: A lightbulb that is connected in series with the circuit component is an acceptable alternative for an ammeter.
Example Responses

(a)(ii) For describing a procedure that includes a measurement of one of the following:

- The potential difference across the circuit component
- The current in the circuit
- The potential difference across the known resistor

For taking measurements at two different times after the circuit is closed or taking one measurement a long time after the circuit is closed, consistent with the procedure described

Example Responses

Measure the current in the ammeter immediately after the circuit is closed and a long time after the circuit is closed.

OR

Measure the potential difference across the circuit component immediately after the circuit is closed and a long time after the circuit is closed.

OR

Measure the potential difference across the circuit component a long time after the circuit is closed.

OR

Measure the potential difference across the 500Ω resistor immediately after the circuit is closed and a long time after the circuit is closed.
(a)(iii) For describing a correct result of the experiment that indicates the current in the circuit 1 point decreases to zero over time or that the charge of the plates of the capacitor increases over time For describing a correct result of the experiment that indicates that the electric potential $\mathbf{1}$ point difference across the capacitor increases from zero over time

Example Response

Immediately after the circuit has been closed, a current should be measured. A long time after the circuit has been closed, a current of zero should be measured. This is because the initially uncharged capacitor becomes fully charged. This results in a potential difference across the capacitor that is equal to the potential difference across the battery a long time after the circuit has been closed. Therefore, according to Kirchhoff's loop rule, a potential difference will not be measured across any other circuit components.
(b)(i) For an equation that correctly applies the loop rule

Example Response

$0=+\varepsilon-I r-I R_{\text {var }}$
(b)(ii) For indicating appropriate quantities that, when graphed, result in a linear graph that allow

1 point students to determine emf ε

Example Responses

- $\frac{1}{r+R_{\mathrm{var}}}$ vs. I
- I vs. $I R_{\mathrm{var}}$
- $\quad R_{\text {var }}$ vs. $\frac{1}{I}$
(b)(iii) For including numerical values on both axes with a linear scale and labeling the axes with appropriate labels and units
For a graph in which data are plotted within at least half of the grid area

For drawing a best-fit line that approximates the trend of the data

Example Responses

OR

(b)(iv) For correctly using the graph to determine an experimental value for emf ε, including correct units, between 18.0 V and 22.0 V

Example Solutions

I as a function of $\frac{1}{r+R_{\text {var }}}$
$\varepsilon-I r-I R_{\text {var }}=0$
$\varepsilon-I\left(r+R_{\text {var }}\right)=0$
$I\left(r+R_{\text {var }}\right)=\varepsilon$
$I=\varepsilon\left(\frac{1}{r+R_{\mathrm{var}}}\right)$
$I=\varepsilon\left(\frac{1}{30 \Omega+R_{\mathrm{var}}}\right)$
Slope $=\varepsilon$
$\frac{\Delta y}{\Delta x}=\varepsilon$
$\frac{(0.08 \mathrm{~A}-0.04 \mathrm{~A})}{\left(0.004 \Omega^{-1}-0.002 \Omega^{-1}\right)} \approx \varepsilon$
$\varepsilon \approx 20 \mathrm{~V}$

OR
$I R_{\text {var }}$ as a function of I
$\varepsilon-I r-I R_{\text {var }}=0$
$\varepsilon-I r=I R_{\text {var }}$
$I R_{\text {var }}=-I r+\varepsilon$
y-intercept $=\varepsilon$
$\varepsilon \approx 20 \mathrm{~V}$

Begin your response to QUESTION 2 on this page.

2. (12 points, suggested time 25 minutes)

Students are given an unknown circuit component that is connected in series to a resistor with known resistance 500Ω.
(a) The students are asked to experimentally determine whether the component is a resistor or an uncharged capacitor.
i. Complete the following diagram to show how to use standard circuit equipment to determine whether the component is a resistor or an uncharged capacitor.

ii. Describe an experimental procedure to determine whether the component is a resistor or an uncharged capacitor. Refer to the circuit equipment in the diagram drawn in part (a)(i).

1) Plus a lrittery with a known ology in aries with the 500 s resister on l the crimes ompurnent
2) Phew a voltertes in poullel with the ciriest comport and anne in peris wits the ratite oud convict compound
3) Nearer the eurus and volleys at fixed intemed of 10 mande.
iii. What results would the students expect if the component is an uncharged capacitor? Support your answer in terms of potential difference and charge.

The inculita would rapist to nee a duress in the annal really, (the count) and an cores in the oflentes redis (thinatial differed) ff the corpount in an cenlarydi cupaision.
 stor mos chang and acres a prudes potentid diffonas
Unauthorized copying or reuse of this page is illegal.
Page 7
GO ON TO THE NEXT PAGE.

Use a pencil l or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

P2 Q2 Sample 2A Page 2 of 3

Continue your response to QUESTION 2 on this page.

The students conduct a different experiment to determine the emf ε of a battery that is not ideal and has internal resistance $r=30 \Omega$. The battery is connected to a variable resistor in a circuit, as shown. The students measure the current I through the circuit for different values of resistance $R_{\text {var }}$ of the variable resistor that is connected to the battery. The following table contains the data collected.

$I(\mathrm{~A})$	$R_{\text {var }}(\Omega)$	$\frac{1}{R_{\text {mat }}+(}\left(\Omega^{-1}\right)$	
0.087	200	0.0043	
0.060	300	0.0030	
0.042	450	0.0021	
0.027	700	0.0014	
0.016	1200	0.00081	

(b)
i. Write an equation describing the circuit in terms of \mathcal{E}, I, r, and $R_{\text {var }}$.

$$
\varepsilon=I\left(r+R_{v a r}\right)
$$

ii. Which quantities could be graphed to yield a straight line that could be used to calculate a numerical value for the emf ε of the battery?

Begin your response to QUESTION 2 on this page.

2. (12 point, suggested time 25 minutes)

Students are given en unknown circuit component that is connected in series to a raiser with brown resistance 500Ω.
(a) The students are anted to experimentally determine whether the component is a resistor or an unchanged capacitor.
i. Complete the following dingoes to show how to use standard circuit equipment to determine whether the component is a resistor or an uncharged capecitus.

ii. Describe an experimental procedure to determine whether the component is a resistor or an uncharged capacitor. Refer to the circuit equipment in the diagram drawn in part (a)(i).

1. Connect the voltmeter in parallel to the circuit component and the ammeter to the circuit after turning on the power supply or connection the battery. ${ }^{\text {b }}$. before measuring the voltage and 3. Wait 10 seconds before measuring the currentagain 4. Repeat Step 35 times
iii. What results would the students expect if the component is an uncharged capacitor? Support your answer in terms of potential difference and charge.
If the component is ar uncharged capacitor, then the potential difference and current should decrease ron linearly and begin to approach 0. According to Ohm's Law ($\frac{x}{x}=R$), the current should decrease as the resistance increases, ard after a long time in steady-state, there, should be after a long time irately ∞ resistance Unauthorized Mopping of rouse of this page is illegal.

Page $7^{\text {the }}$ should be 0 , GO ON TO THE NEXT PAGE.
Use a "perter or a peri with black or dark bite ink. Do NOT wit your name. DO NOT write arete the box.

Question 2

Continue your response to QUESTION 2 on this page.

The students conduct a different experiment to determine the emf ε of a battery that is not ideal and has internal resistance $r=30 \Omega$. The battery is connected to a variable resistor in a circuit, as shown. The students measure the current I through the circuit for different values of resistance $R_{\text {var }}$ of the variable resistor that is connected to the battery. The following table contains the data collected.

$I(\mathrm{~A})$	$R_{\text {var }}(\Omega)$	$\left(\frac{1}{5 \Omega}\right) \frac{1}{R_{\text {eq }}}$	
0.087	200	2	
0.060	300	1.667	
0.042	450	1.333	
0.027	700	1	
0.016	1200	0.667	

(b)
i. Write an equation describing the circuit in terms of ε, I, r, and $R_{\text {var }}$.

$$
\begin{array}{ll}
V=I R_{e q} & R_{e q}=R_{v a r}+r \\
\therefore \varepsilon=I\left(R_{v a r}+r\right) & V=\varepsilon
\end{array}
$$

ii. Which quantities could be graphed to yield a straight line that could be used to calculate a numerical value for the emf ε of the battery?
Horizontal Axis: $\frac{1}{R_{\text {eq }}}\left(\frac{1}{k \Omega}\right)$ Vertical Axis: I (A)
$I=\frac{\varepsilon}{\left(k_{w}+r\right)}$

Unauthorized copying or reuse of this page is illegal.
Page 8
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Questions

Continue your response to OUESTION 2 on this page.

iii. Plot the date points for the quantities indicated in part (b)(ii) on the following graph. Clearly scale and label all ares, including units. Draw a straight line that bert represents the data
You may use the blank columns in the table for any quantities you graph other then the given data.

iv. Using the graph from pert (b)(iii), doturnino the emf \mathcal{E} of the bandy.

$$
I R_{\text {eq }}=\varepsilon
$$

Use a pencil or a pen with black or dark blue ink. Do NOT write vour name. Do NOT write outside the box.

Question 2

Begin your response to QUESTION 2 on this page.

2. (12 points, suggested time 25 minutes)

Students are given an unknown circuit component that is connected in series to a resider with known resistance 500Ω.
(a) The stud ants are asked to experimentally determine whether the component is a resistor or an uncharged capacitor.
i. Complete the following diagram to show bow to use standard circuit equipment to determine whether the component is a resistor or an uncharged capacitor.

Circuit
Component

ii. Describe an experimental procedure to determine whether the compranent is a resister or an uncharged capacitor. Refer to the circuit equipment in the diagram drawn in part (a)(i).
You would use an anger to find the current? and if the system doesn't here the same currant after traveling through. Than fou can 3 predict that it is a resistor duse to nobisterl limiting current through systems.
iii. What results would the students expect if the component is an uncharged eapecitan Support your answer in terms of potential difference and charge.
The potential difference would be around
or equal to zero. The charge of
the system be neutral due to
the capacitor holding the charge.

Unautuated copytig or rouse of title page it lineal.
Page 7
GO ON TO THE NEXT PAGE.
Uss a pencil or a pen with black or dark blue ink. DO NOT witt your name. DO NOT with outdo the book.

P2 Q2 Sample 2C Page 3 of 3

Continue your response to OUE8TION 2 on this page.

iii. Plot the data points for the quantities indicated in part (b)(ii) on the following graph. Clearly scale and label all ares, including units. Draw a straight line that best repeecmis the data
You may use the blank columns in the table for any quantities you graph other than the given data

iv. Using the graph from part (b)(iii), determine the emt ε of the battery.

$$
\begin{aligned}
& \varepsilon=\frac{(300)(20 \mathrm{~s})}{(10 \mathrm{NH})} \\
& \varepsilon=30 \mathrm{~s}
\end{aligned}
$$

Unauthorized copying or reuse of this page is Illegal.
Use a pencil or a den with black or dark blue ink. Do NOT with your nevin. Do NOT wite niffelle the hiv

Question 2

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The responses were expected to demonstrate the ability to:

- Complete a circuit diagram to use in an experiment to determine the identity of an unknown circuit component.
- Describe an experiment to properly collect data about the electric circuit over a period of time.
- Demonstrate understanding of the decrease in the current in an RC circuit and the increase of the potential difference across a capacitor while a capacitor is being charged.
- Write a Kirchhoff's Loop Rule equation to describe a circuit that includes a nonideal battery that has internal resistance.
- Recognize how Kirchhoff's Loop Rule equation can be used to determine the emf of the battery by selecting the appropriate variables to graph.
- Plot data with appropriate scaling and label axes of a graph with the appropriate quantities and units.
- Draw a best-fit line using a straightedge that follows the trend of the data.
- Use the graph and appropriate equation to determine the emf of a nonideal battery.

Sample: 2A

Score: 12
Part (a) earned 6 points. The first point was earned for correctly including a source of potential difference in the diagram. The second point was earned for correctly including an appropriately connected measuring device in the diagram. The third point was earned for correctly describing a procedure that includes a measurement of current and voltage. The fourth point was earned for correctly describing a procedure that includes a measurement at different times. The fifth point was earned for correctly indicating both that the current in the circuit would decrease over time and that the capacitor would store more charge. The sixth point was earned for correctly indicating that the potential difference across the capacitor would increase over time. Part (b) earned 6 points. The first point was earned for correctly including an equation that applies the loop rule. The second point was earned for correctly indicating quantities that, when graphed, result in a linear graph that allows the determination of the emf of the battery. The third point was earned for correctly labeling both axes with a linear scale and with correct labels and units. The fourth point was earned for correctly plotting the data over more than half of the grid area. The fifth point was earned for correctly drawing a best-fit line that approximates the data. The sixth point was earned for correctly using the graph to determine an experimental value for the emf with correct units of volts.

Question 2 (continued)

Sample: 2B
 Score: 10

Part (a) earned 5 points. The first point was earned for correctly including a source of potential difference in the diagram. The second point was earned for correctly including an appropriately connected measuring device in the diagram. The third point was earned for correctly describing a procedure that includes a measurement of current. The fourth point was earned for correctly describing a procedure that includes a measurement at different times. The fifth point was earned for correctly indicating both that the current in the circuit would decrease over time and that the capacitor would store more charge. The sixth point was not earned because the response does not correctly indicate that the potential difference across the capacitor would increase over time. Part (b) earned 5 points. The first point was earned for correctly including an equation that applies the loop rule. The second point was earned for correctly indicating quantities that, when graphed, result in a linear graph that allows the determination of the emf of the battery. The third point was earned for correctly labeling both axes with a linear scale, and with correct labels and units. The fourth point was earned for correctly plotting the data over more than half of the grid area. The fifth point was earned for correctly drawing a best-fit line that approximates the data. The sixth point was not earned because the response does not correctly determine an experimental value for the emf. This is a result of incorrectly calculating the inverse of the total resistance.

Sample: 2C
 Score: 3

Part (a) earned 2 points. The first point was earned for correctly including a battery in a complete circuit. The second point was not earned because the response does not correctly include a measurement device that is appropriately connected in the circuit. The third point was earned because the response describes the appropriate use of a measurement device by measuring the current in the circuit. The fourth point was not earned because the response does not describe taking measurements at different times or after a long time. The fifth point was not earned because the response does not describe a correct result of the experiment that indicates the current in the circuit decreases to zero over time. The sixth point was not earned because the response does not describe a correct result of the experiment that indicates that the electric potential difference across the capacitor increases from zero over time. Part (b) earned 1 point. The first point was not earned because the response does not include an equation that correctly applies the loop rule. The second point was not earned because the response does not indicate appropriate quantities that, when graphed, result in a linear graph that would allow for a determination of the emf. The third point was not earned because, although the response does correctly include numerical values on both axes with a linear scale, the scale on the y-axis is not linear. The fourth point was earned for correctly displaying the data plotted within at least half of the grid area. The fifth point was not earned because the response does not correctly display a smoothly drawn best-fit line that approximates the trend of the data. The sixth point was not earned because the response does not correctly determine the emf of the battery.

