AP Physics 2: Algebra-Based Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 1

\checkmark Scoring Guidelines
\checkmark Student Samples
\checkmark Scoring Commentary

Question 1: Short Answer

(a) For drawing a straight-line path from the entry point to the bottom of the tank with an angle 1 point from the normal that is less than θ_{i}
For drawing a continuous path that is symmetric about a vertical axis that intersects the mirror $\mathbf{1}$ point at the location where the beam of light is incident upon the mirror

Example Response

Total for part (a) 2 points

(b) For indicating that the wavelength of light decreases without any incorrect statements 1 point

Example Response

As light travels from one medium to a medium that has a higher index of refraction, the speed of light decreases and the frequency of the light remains the same. Therefore, the wavelength of the light decreases, as described by the equation $\lambda=\frac{v}{f}$.
(c)(i) For a correct application of Snell's law for two media boundaries

Scoring Note: If a test taker correctly applies Snell's law for air and the bottom layer, this point can be earned.

Example Response

$$
\theta_{4}=\sin ^{-1}\left(\frac{n_{\mathrm{a}}}{n_{\mathrm{b}}} \sin \theta_{i}\right) \text { OR } \sin \theta_{4}=\frac{n_{\mathrm{a}}}{n_{\mathrm{b}}} \sin \theta_{i}
$$

Example Solution

$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$n_{\mathrm{a}} \sin \theta_{i}=n_{\mathrm{w}} \sin \theta_{2}=n_{\mathrm{m}} \sin \theta_{3}=n_{\mathrm{b}} \sin \theta_{4}$
$n_{\mathrm{a}} \sin \theta_{i}=n_{\mathrm{b}} \sin \theta_{4}$
$\sin \theta_{4}=\frac{n_{\mathrm{a}}}{n_{\mathrm{b}}} \sin \theta_{i}$
$\theta_{4}=\sin ^{-1}\left(\frac{n_{\mathrm{a}}}{n_{\mathrm{b}}} \sin \theta_{i}\right)$

(c)(ii) | For indicating that θ_{4} alone is the smallest angle | $\mathbf{1}$ point |
| :--- | :---: |
| For indicating that θ_{2} alone is the largest angle | $\mathbf{1}$ point |
| For indicating that $\theta_{1}=\theta_{3}$ | $\mathbf{1}$ point |
| For an explanation that correctly relates the index of refraction to an angle | $\mathbf{1}$ point |

Example Response

$\underline{2} \theta_{1} \quad 1 \quad \theta_{2} \quad 2 \quad \theta_{3} \quad 3 \quad \theta_{4}$
θ_{2} has the greatest value because water has the lowest index of refraction. θ_{1} and θ_{3} are equal because each is in the same layer with the same index of refraction, but the angles are smaller than θ_{2} because the index of refraction is larger in this layer. θ_{4} has the smallest value because the bottom layer has the highest index of refraction.
(d) For indicating that both d_{A} and d_{B} are less than d_{w}, with an attempt at a relevant explanation $\mathbf{1}$ point

For correctly indicating that the horizontal distance traveled decreases with increasing $\mathbf{1}$ point refraction toward the normal

Example Response

Horizontal distances d_{A} and d_{B} are less than d_{w}. The light rays for all scenarios are entering from air. However, in models A and B , the light rays enter a medium with an index of refraction that is greater than that of water. Therefore, the light rays bend more toward the normal in models A and B than in the original tank. Bending more toward the normal results in a shorter horizontal distance traveled.

Question 1

Begin your response to QUESTION 1 on this page.

PHYSICS 2

SECTION II

Time- $\mathbf{1}$ hour and $\mathbf{3 0}$ minutes

4 Questions

Directions: Questions 1 and 4 are short free-response questions that require about 20 minutes each to answer and are worth 10 points each. Questions 2 and 3 are long free-response questions that require about 25 minutes each to answer and are worth 12 points each. Show your work for each part in the space provided after that part.

Figure 1

1. (10 points, suggested time 20 minutes)

A rectangular tank with a mirrored bottom is filled with water (index of refraction n_{w}). A beam of light passes from air (index of refraction n_{a}) into the water at angle θ_{i} from the normal, as shown in Figure 1. Index of refraction n_{w} is greater than index of refraction n_{a}.
(a) On the following diagram, sketch the entire path of the beam as the beam enters, travels through, and then exits the water.

Unauthorized copying or reuse of this page is illegal.
Page 2
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 1

Continue your response to QUEETION 1 on this page.

Sugar is then added to the where, resulting in a mixture that has a different index of refrection then water. A student considers two models, Model A and Model B, for how the sugar mixes with witer. The models are shown in Pigure 2.

Model A: The sugar is uniformly mixed throughow the water, resulling in a miture with index of frinection n_{m} sucb that $n_{m}>n_{w}$.

Model B: Layers are formed of verying concentrations of sugar in the water. There are three distinct layers of equal volume. The top layer is only water (inder of refinetion n_{σ}). The middle layer has the same conceniration of suger as the uixture in Model \mathbf{A} (index of rufretion n_{m}). The botem layer has the highest corcentration of sugar (index of refrection n_{b}) i:
(b) Consider Model A. Briefly describe bow the obeerved wavelength of light changes, if at all, as thebeam travels from air into the mixture.

As light enters the mixtore, the obsewed unvelugth decreases.
Because n_{m} is larger than n_{a}, wavelength in the mirture is
smalier than that in air as frequency remains constant.

Unauthorzed copytig or rouse of tith page is megen.
Pago 3
GO ON TO THE NEXT PAGE.
Use a pencl or a pen with black or dark buetirl Do NOT witt four nams. Do NOT wite outidh the box.

Question 1

Continue your response to QUESTION 1 on this page.

(c) Relevant angles between the beam and the normal for the various layers present in models A and B are defined in the following table.

Model A		Model B	
θ_{i}	Incident angle of the beam in air	θ_{i}	Incident angle of the beam in air
		θ_{2}	Angle the beam makes with the normal in the top layer in Model B
θ_{1}	Angle the beam makes with the normal in the mixture in Model A	θ_{3}	Angle the beam makes with the normal in the middle layer in Model B
		θ_{4}	Angle the beam makes with the normal in the bottom layer in Model B

i. Determine an expression for θ_{4} in terms of $\theta_{i}, n_{\mathrm{a}}$, and n_{b}.

$$
n_{a} \sin \theta_{i}=n_{w} \sin \theta_{2}=n_{w}^{m} \sin \theta_{b}=n_{b} \sin \theta_{4}
$$

$$
\sin \theta_{4}=\frac{n_{a} \sin \theta_{i}}{n_{b}} \longrightarrow \quad \therefore \theta_{i}=\sin ^{-1}\left(\frac{n_{a} \sin \theta_{i}}{n_{b}}\right)
$$

$$
\theta_{4}=\sin ^{-1}\left(\sin \theta_{i} \cdot \frac{n_{4}}{h_{6}}\right.
$$

ii. Rank the angles from greatest to least, with 1 being greatest. If two angles are the same value, give them the same ranking.
$a^{2} \theta_{1}$ o rn on $\theta_{2}^{2} \theta_{3}$
Briefly explain your reasoning using appropriate physics principles and/or mathematical models.

$$
\text { According to snell's law } n_{A} \sin \theta_{i}=n_{w} \sin \theta_{2}=n_{m} \sin \theta_{3}=n_{b} \sin \theta_{4} .
$$

in model B_{1}
In model $A_{1}, n_{a} \sin \theta_{i}=n_{m} \sin \theta_{1}$. As $n_{a}<n_{w}<n_{m}<n_{b}, \theta_{2}$ finn
$n_{w} \sin \theta_{2}$ has the greatest value. When comparing θ_{1} and θ_{3}, $n_{m} \sin \theta_{1}$ $=n_{m} \sin \theta_{3}=n_{a} \sin \theta_{i}$, therefore $n_{m} \sin \theta_{1}=n_{m} \sin \theta_{3}$. As $\sin \theta_{1}=\sin \theta_{3}$, $\theta_{1}=\theta_{3}$. As n_{6} is the largest, θ_{4} finn $n_{b} \sin \theta_{4}$ is smallest.

Question 1

Continue your response to QUESTION 1 on this page.

Model A

Model B

For the original tank filled with whir, the beam is observed to exit the suffice of the where a horizontal distance d_{w} from the entry point. For models A and B , the horizontal distances are d_{A} and d_{B}, respectively.
(d) Determine whether d_{A} and d_{B} are each greater than, less than, or equal to d_{w}. It is NOT necessary to compare d_{A} to d_{B}. Briefly justify your answer.

Comparing d_{A} and d_{w}, d_{A} is less than d_{w}. Because $n_{w}<n_{m}$, angle of refraction in water is larger than that in model A. As the angle and thereffe horizontal distance il larger, $d_{w}>d A$.
d_{s} is also less than $d w$. While both angles of refractor in water ore the same, in model B, as the beam enter different liquids with higher indexes of refractim, the angles of refraction reduce. Therefore, the angle of reflector when hitting the minos is less as well, result in a smaller d_{B}.

Page 5
GO ON TO THE NEXT PAGE.
Use a pent or a pen with black or dark blue link. Do NOT with yous name. Do NOT with outside the box.

Question 1

Senin your response to QUESTION 1 on this page.

Continue your response to QUESTION 1 on this page.

Figure 2
Sugar is then added to the water, resulting in a mixture that has a different index of refraction then water. A student considers two models, Model A and Model B, for how the sugar mixes with water. The models are shown in Figure 2.

Model A: The sugar is uniformly mired throughout the water, resulting in a mixture with index of refraction n_{m} such that $n_{m}>n_{w}$.

Model B: Layers are formed of varying concentrations of sugar in the water. There are three distinct layers of equal volume. The top layer is only water (index of refraction n_{\square}). The middle layer has the same concentration of sugar as the mixture in Model A (index of refraction n_{m}). The bottom layer has the highest concentration of sugar (index of refraction n_{b}).
(b) Consider Model A. Briefly describe how the observed wavelength of light changer, if at all, as the beam travels from air into the mixture.

Use a pencil or a pen with black or dark blue ink. Do NOT withe your riemio. Do NOT with outside the Dix

Question 1

Continue your response to QUESTION 1 on this page.

(c) Relevant angles between the beam and the normal for the various layers present in models \mathbf{A} and B are defined in the following table.

Model A		Model B	
θ_{i}	Incident angle of the beam in air	θ_{i}	Incident angle of the beam in air
		θ_{2}	Angle the beam makes with the normal in the top layer in Model B
	Angle the beam makes with the normal in the mixture in Model A	θ_{3}	Angle the beam makes with the normal in the middle layer in Model B
		θ_{4}	Angle the beam makes with the normal in the bottom layer in Model B

i. Determine an expression for θ_{4} in terms of $\theta_{i}, n_{\mathrm{a}}$, and n_{b}.

$$
\begin{aligned}
n_{a} \sin \theta_{i} & =n_{b} \sin \theta_{4} \\
\sin \theta_{4} & =\frac{n_{a} \sin \theta_{i}}{n_{b}} \\
\theta_{4} & =\sin ^{-1}\left(\frac{n_{a} \sin \theta_{i}}{n_{b}}\right)
\end{aligned}
$$

ii. Rank the angles from greatest to least, with 1 being greatest. If two angles are the same value, give them the same ranking.

Briefly explain your reasoning using appropriate physics principles and/or mathematical models.

According to $h_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$, as the index of retraction increases, the angle h_{a} to decrease and
The light is entering mixtures withe greater index of refractions So its angle must be decreasing,
Page 4
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

P2 Q1 Sample 1B Page 4 of 4

Question 1

Continue your response to QUESTION 1 on this page.

Original Tank

For the original tank filled with water, the beam is observed to exit the surface of the water a horizontal distance $d_{\mathbf{N}}$ from the entry point. For models A and B , the horizontal distances are d_{A} and d_{B}, respectively.
(d) Determine whether d_{A} and d_{B} are each greater than, less than, or equal to d_{w}. It is NOT necessary to compare d_{A} to d_{B}. Briefly justify your answer.

Both d_{A} an d_{B} are less than $d w$ because tanks A and B are filled with substances F. with greater index ot retractions or of retractions, so the angle decreases, \& leading to an exit point closer to the entry point

Unacorted copptre of rue of tile pace io ningal.
Page 5
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT whee your name. Do NOT wite outside the box.

Question 1

Begin your response to QUESTION 1 on this page.

PHYSICS 2
SECTION II
Time- $\mathbf{1}$ hour and $\mathbf{3 0}$ minutes
4 Questions

Directions: Questions 1 and 4 are short free-response questions that require about 20 minutes each to answer and are worth 10 points each. Questions 2 and 3 are long free-response questions that require about 25 minutes each to answer and are worth 12 points each. Show your work for each part in the space provided after that part.

Figure 1

1. (10 points, suggested time 20 minutes)

A rectangular tank with a mirrored bottom is filled with water (index of refraction n_{w}). A beam of light passes from air (index of refraction n_{a}) into the water at angle θ_{i} from the normal, as shown in Figure 1. Index of refraction n_{w} is greater than index of refraction n_{a}.
(a) On the following diagram, sketch the entire path of the beam as the beam enters, travels through, and then exits the water.

Unauthorized copying or reuse of this page is illegal.
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 1

Continue your response to QUESTION 1 on this page.

Figure 2
Sugar is then added to the water, resulting in a mixture that has a different index of refraction than water. A student considers two models, Model A and Model B, for how the sugar mixes with water. The models are shown in Figure 2.

Model A: The sugar is uniformly mixed throughout the water, resulting in a mixture with index of refraction n_{m} such that $n_{m}>n_{w}$.

Model B: Layers are formed of varying concentrations of sugar in the water. There are three distinct layers of equal volume. The top layer is only water (index of refraction n_{w}). The middle layer has the same concentration of sugar as the mixture in Model A (index of refraction n_{m}). The bottom layer has the highest concentration of sugar (index of refraction n_{b}).
(b) Consider Model A. Briefly describe how the observed wavelength of light changes, if at all, as the beam travels from air into the mixture.

The wavelength will change when going from air to the mixture. The wavelength WIll increase, this is because the light will travel slower in the mixture creating a smaller frequency, increasing wavelength.

Page 3
OO ON TO THE NEXT PAGE.
Use a pencil of a pen with black or dark blue ink. Do NOT wite your name. Do NOT wite outside the box.

Question 1

Continue your response to QUESTION 1 on this page.
(c) Relevant angles between the beam and the normal for the various layers present in models A and B are defined in the following table.

i. Determine an expression for θ_{4} in terms of $\theta_{i}, n_{\mathrm{a}}$, and n_{b}.

$$
n_{a} \sin \theta_{i}=n_{b} \sin \theta_{4}
$$

ii. Rank the angles from greatest to least, with 1 being greatest. If two angles are the same value, give them the same ranking.

Briefly explain your reasoning using appropriate physics principles and/or mathematical models.
θ_{1}. has the largest angle because it travels the fastest, as the index of refraction chonges, so does the speed, resulting in the rankings above. Making θ_{1} the greatest, and θ_{4} the smallest

Unauthorized copying or reuse of this page is illegal.
Page 4
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 1

Continue your response to QUESTION 1 on this page.

Original Tank

For the original tank filled with water, the beam is observed to exit the surface of the water a horizontal distance $d_{\mathbf{w}}$ from the entry point. For models A and B , the horizontal distances are d_{A} and d_{B}, respectively.
(d) Determine whether d_{A} and d_{B} are each greater than, less than, or equal io d_{w}. It is NOT necessary to compare d_{A} to d_{B}. Briefly justify your answer.

$$
d_{A} \text { and } d_{8} \text { are equal to } d w \text {. For }
$$ the distance does not change but at the speed the light travels does.

Use a pencil or a pen with black or dark blue ink. Do NOT withe your name. Do NOT withe outside the box

Question 1

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The responses were expected to demonstrate the ability to:

- Relate the refraction of light passing from one medium to another to the indices of refraction of the two media.
- Relate the index of refraction of a medium and the wavelength of the light in the medium.
- Use Snell's law at an interface between two optical media, including demonstrating an understanding of the correct normal line.
- Apply Snell's law for multiple sequential interfaces between optical media and rank the resulting angles of refraction at each interface.
- Predict path changes for a beam of light entering and exiting a tank filled with layers of liquids of varying indices of refraction.

Sample: 1A

Score: 10
Part (a) earned 2 points. The first point was earned for showing a straight-line path from the point of entry into the water toward the mirror with an angle of refraction that is less than θ_{i}. The second point was earned for showing that the total path is symmetric about a vertical line through the reflection point. Part (b) earned 1 point for stating that the wavelength of the light in the sugar-water mixture decreases compared to the wavelength of the light in air, with no incorrect statements. Part (c) earned 5 points. The first point was earned for correctly applying Snell's law at multiple surfaces. The second point was earned for correctly ranking θ_{4} as the smallest angle. The third point was earned for correctly ranking θ_{2} as the largest angle. The fourth point was earned for correctly indicating that θ_{1} and θ_{3} are equal. The fifth point was earned for correctly relating a greater index of refraction to a smaller angle of refraction. Part (d) earned 2 points. The first point was earned for correctly stating that both d_{A} and d_{B} will be less than d_{W}. The second point was earned for correctly connecting greater refraction toward the normal to shorter horizontal distances between the light beam's entry and exit points.

Question 1 (continued)

Sample: 1B
 Score: 7

Part (a) earned 2 points. The first point was earned for correctly showing a straight-line path from the point of entry into the water to the mirror with an angle of refraction that is less than θ_{i}. The second point was earned for showing that the total path is reasonably symmetric about a vertical line through the reflection point. Part (b) earned no points because the response incorrectly states that the wavelength stays the same in the new substance. Part (c) earned | 3 points. The first point was earned for correctly relating the indexes of refraction and angles of refraction for the top and bottom layers. This relationship cannot be arrived at without correctly applying Snell's law at multiple surfaces. Although it may be unclear in the first line whether the subscript on the first angle is an i or a 1 , the rest of the work makes it clear that the subscript is correct. The second point was earned for correctly ranking θ_{4} as the smallest angle. The third point was not earned because the response does not rank θ_{2} as the largest angle. The fourth point was not earned because the response does not indicate that θ_{1} and θ_{3} are equal. The fifth point was earned for correctly relating a higher index of refraction to a smaller angle of refraction. Part (d) earned 2 points. The first point was earned for correctly stating that both d_{A} and d_{B} will be less than d_{W}. The second point was earned for correctly connecting higher indexes of refraction to shorter horizontal distances between the light beam's entry and exit points.

Sample: 1C

Score: 3

Part (a) earned 1 point for correctly showing a refracted path in the water with an angle of refraction less than θ_{i}. The second point was not earned because the path does not reflect off the mirror. Part (b) earned no points because the response incorrectly states that the wavelength will increase in the sugar-water mixture. Part (c) earned 2 points. The first point was earned for indicating a correct relationship between $\theta_{4}, \theta_{i}, n_{\mathrm{a}}$ and n_{b} that could only be arrived at by applying Snell's law at multiple surfaces. The second point was earned for correctly ranking θ_{4} as the smallest angle. The third point was not earned because the response does not rank θ_{2} as the largest angle. The fourth point was not earned because the response does not indicate that θ_{1} and θ_{3} are equal. The fifth point was not earned because, although the explanation does mention both indexes of refraction and both angles, the response does not link the value of the index of refraction to the value of the angle. Part (d) earned no points because the response incorrectly states that both d_{A} and d_{B} are greater than d_{W}, and the explanation does not involve refraction.

