AP' Physics l: Algebra-Based Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 2
\checkmark Scoring Guidelines
\checkmark Student Samples
\checkmark Scoring Commentary
(a)(i) For indicating two quantities that, when graphed together, produce a straight line whose $\mathbf{1}$ point slope can be used to determine the acceleration a

Example Response

Vertical Axis : __Position Horizontal Axis: Time squared

Position x $(\mathrm{~m})$	Time t $(\mathrm{~s})$	Time squared t^{2} $\left(\mathrm{~s}^{2}\right)$
0.06	0.39	0.15
0.14	0.59	0.35
0.24	0.77	0.59
0.37	0.96	0.92
0.55	1.20	1.44

(a)(ii) The axes have a linear scale and are identified (labels OR units) so that when graphed correctly, the data will span more than half of the horizontal and vertical axes

For plotting at least 4 of the data points correctly	$\mathbf{1}$ point
For drawing a best-fit line that approximates the trend of the data	$\mathbf{1}$ point

Example Response

Alternate Example Response

Scoring Note: The following tables represent the most common linearized graphs with the data that were used to determine the acceleration.

Graph: v vs. t	
$v\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)$	$t(\mathrm{~s})$
0.15	0.20
0.40	0.49
0.56	0.68
0.68	0.87
0.75	1.08

Graph: $2 x$ vs. t^{2}	
$2 x(\mathrm{~m})$	$t^{2}\left(\mathrm{~s}^{2}\right)$
0.12	0.15
0.28	0.35
0.48	0.59
0.74	0.92
1.10	1.44

Graph: $2 v_{\text {avg }}$ vs. t	
$2 v_{\text {avg }}\left(\frac{\mathrm{m}}{\mathrm{s}}\right)$	$t(\mathrm{~s})$
0.31	0.39
0.47	0.59
0.62	0.77
0.77	0.96
0.92	1.20

Graph: x vs. $\frac{1}{2} t^{2}$	
$x(\mathrm{~m})$	$\frac{1}{2} t^{2}\left(\mathrm{~s}^{2}\right)$
0.06	0.08
0.14	0.17
0.24	0.30
0.37	0.46
0.55	0.72

Graph: $v_{\text {avg }}{ }^{2}$ vs. x	
$v_{\text {avg }}{ }^{2}\left(\frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right)$	$x(\mathrm{~m})$
0.02	0.06
0.06	0.14
0.10	0.24
0.15	0.37
0.21	0.55

Graph: \sqrt{x} vs. t	
$\sqrt{x}(\sqrt{\mathrm{~m}})$	$t(\mathrm{~s})$
0.24	0.39
0.37	0.59
0.49	0.77
0.61	0.96
0.74	1.20

(a)(iii) For attempting to find the slope, $\left(\frac{\text { rise }}{\text { run }}\right)$ or $\left(\frac{\Delta y}{\Delta x}\right)$, of the best-fit line drawn in part (a)(ii) 1 point

Scoring Note: An indication that a calculator was used for linear regression to determine the value of the slope may earn this point.

For using the slope in a valid kinematic equation to calculate the acceleration $\quad 1$ point
Scoring Note: This point can be earned if evidence of a kinematic equation exists in graphed quantities (e.g., a graph of position as a function of $\frac{1}{2} t^{2}$).

Example Response

slope $=\frac{\Delta y}{\Delta x}=\frac{\Delta \text { position }}{\Delta \text { time }^{2}}=\frac{0.48 \mathrm{~m}-0.18 \mathrm{~m}}{1.2 \mathrm{~s}^{2}-0.4 \mathrm{~s}^{2}}=0.375 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$\Delta x=v_{0} t+\frac{1}{2} a t^{2}$
$\frac{\Delta x}{t^{2}}=\frac{1}{2} a$
slope $\times 2=a$
$a=0.75 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(b)(i) For indicating a quantity to be measured

Accept one of the following:

- The angle θ with the horizontal
- The height h and length L of the ramp

Scoring Note: Stating only the height needs to be measured can earn this point if an energy approach is used.
(b)(ii) For providing a correct expression relating the acceleration of gravity to the acceleration $\mathbf{1}$ point measured

Scoring Note: If $\cos \theta$ is used, the response must specify that θ was measured from the vertical.

Example Response

$m g_{\exp } \sin \theta=m a$
$g_{\exp }=\frac{a}{\sin \theta}$

OR
$\sin \theta=\frac{h}{L}$
$g_{\exp }=\left(\frac{L}{h}\right) a$

OR
$m g_{\exp } h=\frac{1}{2} m v^{2}$
$g_{\exp } h=\frac{1}{2} v^{2}$
$v=\sqrt{2 g_{\exp } h}$
$v=a t$
$a t=\sqrt{2 g_{\exp } h}$
$g_{\exp }=\frac{a^{2} t^{2}}{2 h}$
(c)(i) For identifying a physical factor that could have affected the result

Accept one of the following:

- A physical factor in the materials used (e.g., the wheels have nonnegligible rotational inertia, the ramp was bumpy, the wheels were wobbly or not perfectly round, the base of the ramp was not level, the floor was not level.)
- A physical factor in the environment (e.g., the room was being accelerated, elevator, the experiment was performed at high elevation or on a different planet.)
- A physical error in measurement collection (e.g., time, position, or angle was measured incorrectly.)

Scoring Note: A statement of "Human error" does not earn this point.
(c)(ii) For correctly indicating the functional dependence between the reason listed in part (c)(i) $\mathbf{1}$ point and $g_{\text {exp }}$

Accept one of the following:

- Correctly indicating the functional dependence between the physical factor in the materials used and $g_{\exp }$ (e.g., if the rotational inertia of the rotating wheels is nonnegligible, the cart will have a smaller acceleration and $g_{\text {exp }}$ will be smaller.)
- Correctly indicating the functional dependence between the physical factor in the environment and $g_{\exp }$ (e.g., if the experiment was performed at a high elevation, the acceleration will be smaller and $g_{\exp }$ will be smaller.)
- Correctly indicating the functional dependence between the physical error in the measurement collection and $g_{\text {exp }}$ (e.g., if the angle of the ramp is smaller than the measured value, the cart will have a smaller acceleration and $g_{\exp }$ will be smaller.)

Example Response

The expression I derived for the value for $g_{\exp }$ did not take into consideration that the wheels had any rotational inertia. If the wheels have rotational inertia and are rotating, the acceleration of the cart would be less than $g \sin \theta$, so the value of $g_{\exp }$ would be less than $9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
(d) For sketching a concave up curve with an initially negative slope for the graph of position 1 point as a function of time

For one of the following:

- Drawing a line with a positive slope and a negative vertical intercept for the v vs. t graph
- Drawing a v vs. t graph that is consistent with the x vs. t graph that shows acceleration

Example Response

Scoring Note: The following are alternate example graphs with the points the response would earn.

Total for part (d) 2 points
Total for question 212 points

P1 Q2 Sample 2A Page 2 of 3

Question 2

Continue your response to QUESTION 2 on this page.

ii. On the following grid, plot the appropriate quantities to create a graph that can be used to determine the acceleration a of the cart as it rolls down the ramp. Clearly scale and label all axes (including units), as appropriate. Draw a straight line that best represents the data.

iii. Using the line you drew in part (a)(ii), calculate an experimental value for the acceleration a of the cart as it rolls down the ramp.

$$
\text { slope }=\frac{0.59-0.35}{0.24-0.14}=2.4 \quad a=\frac{1}{\operatorname{slope}}=\frac{1}{2.4}=0.42 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The students are asked to determine an experimental value for the acceleration due to gravity $g_{\exp }$ using their data.
i. What additional quantities do the students need to measure in order to calculate $g_{\exp }$ from a ?
$\sum F=m a \quad$ Students need to measure angle of ramp
Page 7
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Continue your response to QUESTION 2 on this page.
ii. On the following grid, plot the appropriate quantities to create a graph that can be used to determine the acceleration a of the cart as it rolls down the ramp. Clearly scale and label all axes (including units), as appropriate. Draw a straight line that best represents the data.

iii. Using the line you drew in part (a)(ii), calculate an experimental value for the acceleration a of the cart as it rolls down the ramp.

$$
a=\frac{.46\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)}{1.2(\mathrm{~s})}=0.3833 \overline{3} \approx 0.383 \mathrm{~m} / \mathrm{s}^{2}=0
$$

(b) The students are asked to determine an experimental value for the acceleration due to gravity $g_{\text {exp }}$ using their data.
i. What additional quantities do the students need to measure in order to calculate $g_{\exp }$ from a ?
none, as pirowided frictiom
is megugitsle, an and gexp are the sorme vatuic ous it is the only frovec acting an the systrm
ii. Write an expression for the value of $g_{\exp }$ in terms of a. thent is $n^{\prime} t \operatorname{con} \mathrm{celen}$ out

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT' write outside the box.

P1 Q2 Sample 2B Page 3 of 3

Continue your response to QUESTION 2 on this page.

ii. On the following grid, plot the appropriate quantities to create a graph that can be used to determine the acceleration a of the cart as it rolls down the ramp. Clearly scale and label all axes (including units), as appropriate. Draw a straight line that best represents the data.

iii. Using the line you drew in part (a)(ii), calculate an experimental value for the acceleration a of the cart as it rolls down the ramp.
anexperimentar value woold be

(b) The students are asked to determine an experimental value for the acceleration due to gravity $g_{\text {exp }}$ using their data.
i. What additional quantities do the students need to measure in order to calculate $g_{\exp }$ from a ?
Thestudent wou dineed to measure Rienaforce.
ii. Write an expression for the value of $g_{\exp }$ in terms of a.

$$
g_{\text {exp }}=F_{\text {net }}(m)
$$

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 2

Continue your response to QUESTION 2 on this page.

(c) The students calculate the value of $g_{\exp }$ to be significantly lower than the accepted value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
i. What is a physical reason, other than friction or air resistance, that could lead to a significant difference in the experimentally determined value of $g_{\text {exp }}$?
The signitance reason needs tore Ne to hal mass of nosystemthat is gupaley than earth. Higher he mass $>$ the gravity pull casing he accelaction tore higher.
ii. Briefly explain how the physical reason you identified in part (c)(i) would lead to the decrease in the experimentally determined value of $g_{\text {exp }} \cdot 7$

Since ne gravity acceleration on goop is lower inthes system. A physical reason would be sincertemass of cat is simile the eathe ne granitationpull world be lower making
he accelorovion of he corr hobelav.

The students want to confirm that the acceleration is the same whether the cart rolls up or down the ramp. The students start the cart at the bottom and give the cart a quick push so that it rolls up the ramp and momentarily comes to rest. The x-axis is still defined to be parallel to the ramp with the origin at the top.
(d) On the following graphs, sketch the position x and velocity v as functions of time t that correspond to the scenario shown while the cart moves up the ramp.

Page 8
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 2

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

The responses were expected to demonstrate the ability to:

- Identify a pair of variables (i.e., x vs. t^{2}) whose slope can be used with kinematics equations to determine the acceleration of the cart moving down a ramp.
- Apply an appropriate linear scale to the graph.
- Draw a reasonable best-fit line that follows the trend of the data points in the graph and that is not forced to go through data points or the origin.
- Use the slope of the best-fit line to calculate the acceleration of the cart down the ramp.
- Identify additional information needed to determine a relationship between $g_{\text {exp }}$ and acceleration.
- Derive an equation to determine $g_{\text {exp }}$ from acceleration.
- Identify a physical reason beyond friction and air resistance that would reduce $g_{\exp }$.
- Develop arguments to justify a correct functional dependence between the physical reason and $g_{\exp }$.
- Graph the position versus time and the velocity versus time for a cart going up a ramp.

Sample: 2A
 Score: 10

Part (a)(i) earned 1 point for correctly identifying two variables that will yield a straight line that could be used to determine a value for acceleration. If there are multiple conflicting labels, of which at least one is correct, look at the data table for clarification. If the data in the data table does not help clarify, use the following priority, if present: quantity, variable, and lastly units. The response initially is unclear if time or t squared was graphed, but the values in the data table confirm that the response is graphing time squared. Part (a)(ii) earned 3 points. One point was earned for scaling the axes so that the data spans more than half the horizontal and vertical axes. Both axes are appropriately identified. The second point was earned for plotting at least four points correctly. The third point was earned for showing a best-fit line that approximates the trend of the data. Part (a)(iii) earned 1 point for using two points from the best-fit line to calculate the slope of the line. The second point was not earned because the response does not use the slope in a valid kinematic equation to calculate the acceleration. Part (b)(i) earned 1 point for correctly identifying a quantity that is needed to calculate $g_{\text {exp }}$ from a. Part (b)(ii) earned 1 point for providing a correct expression relating the acceleration of gravity to the acceleration measured. Part (c)(i) earned 1 point for identifying a physical factor that might have affected the experimentally determined value of $g_{\text {exp }}$. Part (c)(ii) earned 1 point for correctly indicating the functional dependence between the reason listed in part (c)(i) and $g_{\text {exp }}$. Part (d) earned 1 point for showing a v versus t line with a positive slope and a negative intercept. The second half of this graph does not affect this point. The other point was not earned because the response does not show an x versus t curve that is concave up and has an initially negative slope.

Question 2 (continued)

Sample: 2B
 Score: 5

Part (a)(i) earned 1 point for correctly identifying two variables that will yield a straight line that could be used to determine a value for acceleration. Part (a)(ii) earned 3 points. One point was earned for scaling the axes so that the data spans more than half the horizontal and vertical axes. Both axes are appropriately identified. The second point was earned for plotting at least four points correctly. The third point was earned for showing a best-fit line that approximates the trend of the data. Part (a)(iii) earned 1 point for using the origin and another point from the best-fit line to calculate the slope of the line. The second point was not earned because the response does not use the slope in a valid kinematic equation to calculate the acceleration. Part (b)(i) earned no points because the response does not correctly identify a quantity that is needed to calculate $g_{\text {exp }}$ from a. Part (b)(ii) earned no points because the response does not provide a correct expression relating the acceleration of gravity to the acceleration measured. Part (c)(i) earned no points because the response does not identify a physical factor that might have affected the experimentally determined value of $g_{\text {exp }}$. Part (c)(ii) earned no points because the response does not correctly indicate the functional dependence between the reason listed in part (c)(i) and $g_{\text {exp }}$. Part (d) earned no points because the response does not show an x versus t curve that is concave up and has an initially negative slope. The second point was not earned because the response shows a v versus t graph that is neither a line with a positive slope and a negative intercept nor a line consistent with the x versus t graph.

Sample: 2C
 Score: 1

Part (a)(i) earned 1 point for correctly identifying two variables that will yield a straight line that could be used to determine a value for acceleration. Part (a)(ii) earned no points. The first point was not earned because the response uses a nonlinear scaling, and one axis is unscaled. The second point was not earned because the response does not plot at least four points correctly. The third point was not earned because the response does not have a best-fit line that approximates the trend of the data. Part (a)(iii) earned no points. The first point was not earned because the response does not use correct y values from the best-fit line. The second point was not earned because the response does not use the slope in a valid kinematic equation to calculate the acceleration. Part (b)(i) earned no points because the response does not correctly identify a quantity that is needed to calculate $g_{\text {exp }}$ from
a. Part (b)(ii) earned no points because the response does not provide a correct expression relating the acceleration of gravity to the acceleration measured. Part (c)(i) earned no points because the response does not identify a physical factor that might have affected the experimentally determined value of $g_{\exp }$. Part (c)(ii) earned no points because the response does not correctly indicate the functional dependence between the reason listed in part (c)(i) and $g_{\text {exp }}$. Part (d) earned no points because the response does not show an x versus t curve that is concave up and has an initially negative slope. The second point was not earned because the response shows a v versus t graph that is neither a line with a positive slope and a negative intercept nor a line consistent with the x versus t graph.

