AP Chemistry Sample Student Responses and Scoring Commentary

Inside:

Free-Response Question 2
\checkmark Scoring Guidelines
\checkmark Student Samples
\checkmark Scoring Commentary

Question 2: Long Answer

(a) For the correct calculated value reported with the correct number of significant figures: 1 point
$1.25 \mathrm{~mol} \mathrm{AlCl} 3 \times \frac{3 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{AlCl}_{3}} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=133 \mathrm{~g} \mathrm{Cl}$
(b) For the correct algebraic manipulation of either ΔH_{2}° or ΔH_{4}° (may be implicit):

Accept one of the following:

- Reversing reaction 2 :

$$
\mathrm{AlCl}_{3}(g) \rightarrow \mathrm{Al}(s)+\frac{3}{2} \mathrm{Cl}_{2}(g) \quad \Delta H_{r x n}^{\circ}=-(-583)=+583 \mathrm{~kJ} / \mathrm{mol}_{r x n}
$$

- Multiplying reaction 4 by $\frac{3}{2}$:
$\frac{3}{2}\left(\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}(g)\right) \quad \Delta H_{r x n}^{\circ}=\frac{3}{2}(+243)=+365 \mathrm{~kJ} / \mathrm{mol}_{r x n}$
For the correct calculated value:
$\Delta H_{1}^{\circ}=-\Delta H_{2}^{\circ}+\Delta H_{3}^{\circ}+1.5\left(\Delta H_{4}^{\circ}\right)=-(-583)+326+1.5(243)=1274 \mathrm{~kJ} / \mathrm{mol}_{r x n}$

		Total for part (b)	$\mathbf{2}$ points
(c) (i)	For the correct answer:	$\mathbf{1}$ point	
	200 picometers $(\pm 10 \mathrm{pm})$		
(ii)	For a curve with a minimum at an internuclear distance of $220 \pm 10 \mathrm{pm}:$	$\mathbf{1}$ point	
	See sample curve below		

For a curve with a minimum energy value of $-425 \pm 20 \mathrm{~kJ} / \mathrm{mol}$ that approaches zero as the $\mathbf{1}$ point internuclear distance approaches 500 pm :

(d) (i) For the correct answer and a valid justification:

Diagram 2. Al has four electron domains in Diagram 2, which would be trigonal pyramidal, not trigonal planar.
(ii) For the correct answer and a valid justification:

Diagram 1. All atoms in diagram 1 have a formal charge of zero, whereas atoms in diagrams 2 and 3 have nonzero formal charges.

Total for part (d) $\mathbf{2}$ points
(e) For the correct answer:

1 point

$$
K_{p}=\frac{P_{\mathrm{Al}_{2} \mathrm{Cl}_{6}}}{\left(P_{\mathrm{AlCl}_{3}}\right)^{2}}
$$

(f) For the correct calculated value, consistent with part (e):

1 point

$$
K_{p}=\frac{\chi_{\mathrm{Al}_{2} \mathrm{Cl}_{6}}\left(P_{\text {total }}\right)}{\left(\chi_{\mathrm{AlCl}_{3}}\left(P_{\text {total }}\right)\right)^{2}}=\frac{\frac{3}{10}(22.1)}{\left(\frac{7}{10}(22.1)\right)^{2}}=0.0277
$$

Question 2
Begin your response to QUESTION 2 on this page.
2. In the gas phase, AlCl_{3} is a molecular substance. A reaction of gaseous AlCl_{3} at high temperature is represented by the following balanced equation.

$$
\text { Reaction 1: } \mathrm{AlCl}_{3}(g) \rightarrow \mathrm{Al}(g)+3 \mathrm{Cl}(g) \quad \Delta H_{1}^{0}=\text { ? }
$$

(a) How many grams of $\mathrm{Cl}(\mathrm{g})$ can be formed from $1.25 \mathrm{~mol}^{\text {of }} \mathrm{AlCl}_{3}(\mathrm{~g})$?

Additional reactions that involve Al or Cl are shown in the following table.

Reaction Number	Equation	$\Delta H_{r x n}^{\circ}\left(\mathrm{kJ} / \mathrm{mol}_{r a n}\right)$
2	$\mathrm{Al}(s)+\frac{3}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{AlCl}_{3}(g)$	-583
3	$\mathrm{Al}(s) \rightarrow \mathrm{Al}(g)$	+326
4	$\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}(g)$	+243

(b) Calculate the value of ΔH_{1}°, in $\mathrm{kJ} / \mathrm{mol}_{r a n}$, for reaction 1 above using reactions 2,3 , and 4 .

$$
\begin{array}{lll}
\mathrm{AlCl}_{3(g)} \longrightarrow \mathrm{AX}(\mathrm{~s})+\frac{3}{Z} \mathrm{Cl}_{2(\mathrm{~g})} & +583 \\
\text { A }(\mathrm{s}) \longrightarrow \mathrm{Al}(\mathrm{~g}) & +326 \\
\frac{3}{2} \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 3 \mathrm{Cl}_{(\mathrm{g})} & & +364.5
\end{array}
$$

$$
\mathrm{AlCl}_{3(g)} \longrightarrow \mathrm{Al}_{(g)}+3 \mathrm{Cl}_{(g)}
$$

Unauthorized copying or reuse of this page is illegal.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Sample 2A 2 of 3

Question 2

Continue your response to QUESTION 2 on this page.
(ii) Which of the three diagrams is the best representation for the bonding in AlCl_{3} ? Justify your choice based on formal charges.
Diagram I is best because all atoms have a formal charge

AlCl_{3} is known to dimerize reversibly in the gas phase. The dimerization equilibrium is represented by the following equation.

$$
2 \mathrm{AlCl}_{3}(\mathrm{~g}) \rightleftarrows \mathrm{Al}_{2} \mathrm{Cl}_{6}(\mathrm{~g})
$$

(e) Write the expression for the equilibrium constant, $\boldsymbol{K}_{\boldsymbol{p}}$, for this reaction.

$$
K_{P}=\frac{P_{\mathrm{Al}_{2} \mathrm{Cl}_{6}}}{\left(\mathrm{P}_{\mathrm{AlCl}}^{3}\right)^{2}}
$$

A particle-level diagram of an equilibrium mixture of $\mathrm{AlCl}_{3}(g)$ and $\mathrm{Al}_{2} \mathrm{Cl}_{6}(\mathrm{~g})$ at $400^{\circ} \mathrm{C}$ in a 25 L closed container is shown.

(f) Using the particle-level diagram, calculate the value of $\boldsymbol{K}_{\boldsymbol{p}}$ for the reaction if the total pressure in the container is 22.1 atm .

$$
\begin{aligned}
& P_{\mathrm{A}_{2} \mathrm{Cl}_{0}}=\frac{3}{10} \cdot 22.1=6.63 \mathrm{~atm} \\
& P_{\text {All }_{3}}=\frac{7}{10} \cdot 22,1=15.47 \mathrm{~atm} \\
& K_{\varphi}=\frac{6.63}{(5.47)^{2}}=0.0277 \\
& \text { Unauthorized copying or reuse of this page is illegal. } \\
& \text { Page } 7 \\
& \text { GO ON TO THE NEXT PAGE. } \\
& \text { Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box. }
\end{aligned}
$$

Sample 2B 1 of 3

Question 2

Begin your response to QUESTION 2 on this page.

2. In the gas phase, AlCl_{3} is a molecular substance. A reaction of gaseous AlCl_{3} at high temperature is represented by the following balanced equation.

$$
\text { Reaction 1: } \mathrm{AlCl}_{3}(g) \rightarrow \mathrm{Al}(g)+3 \mathrm{Cl}(g) \Delta H_{1}^{\circ}=\text { ? }
$$

(a) How many grams of $\mathrm{Cl}(\mathrm{g})$ can be formed from 1.25 mol of $\mathrm{AlCl}_{3}(\mathrm{~g})$?

Additional reactions that involve Al or Cl are shown in the following table.

Reaction Number	Equation	$\Delta H_{r x n}^{\circ}\left(\mathrm{kJ} / \mathrm{mol}_{r x n}\right)$
2	$\mathrm{Al}(s)+\frac{3}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{AlCl}_{3}(g)$	-583
3	$\mathrm{Al}(s) \rightarrow \mathrm{Al}(g)$	+326
4	$\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}(g)$	+243

(b) Calculate the value of ΔH_{1}°, in $\mathrm{kJ} / \mathrm{mol}_{r x n}$, for reaction 1 above using reactions 2,3 , and 4 .

$\Delta H=+729$

Unauthorized copying or reuse of this page is illegal.
Page 5
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 2

Continue your response to QUESTION 2 on this page.

(ii) Which of the three diagrams is the best representation for the bonding in AlCl_{3} ? Justify your choice
based on formal charges.
Diagram diogrom one, the formal charge for
exch atom would be \varnothing.
AlCl_{3} is known to dimerize reversibly in the gas phase. The dimerization equilibrium is represented by the following equation.

$$
2 \mathrm{AlCl}_{3}(g) \rightleftarrows \mathrm{Al}_{2} \mathrm{Cl}_{6}(g)
$$

(e) Write the expression for the equilibrium constant, K_{p}, for this reaction.

A particle-level diagram of an equilibrium mixture of $\mathrm{AlCl}_{3}(g)$ and $\mathrm{Al}_{2} \mathrm{Cl}_{6}(g)$ at $400^{\circ} \mathrm{C}$ in a 25 L closed container is shown.

(f) Using the particle-level diagram, calculate the value of $\boldsymbol{K}_{\boldsymbol{p}}$ for the reaction if the total pressure in the container is 22.1 atm .

$7 \mathrm{~mol} \mathrm{AlCl}_{3}(\mathrm{~g})$

Unauthorized copying or reuse of this page is illegal.
Page 7
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 2

Begin your response to QUESTION 2 on this page.

2. In the gas phase, AlCl_{3} is a molecular substance. \mathbf{A} reaction of gaseous AlCl_{3} at high temperature is represented by the following balanced equation.

$$
\text { Reaction 1: } \mathrm{AlCl}_{3}(g) \rightarrow \mathrm{Al}(g)+3 \mathrm{Cl}(g) \quad \Delta H_{1}^{\circ}=\text { ? }
$$

(a) How many grams of $\mathrm{Cl}(\mathrm{g})$ can be formed from 1.25 mol of $\mathrm{AlCl}_{3}(\mathrm{~g})$?

$$
\begin{array}{rlrl}
A l C_{3}= & 27+35.5 x) & \\
& =133.5 \mathrm{~g} / \mathrm{mol} & C C & =166.88 \times 3 \\
1.25 \mathrm{~mol} & =166.88 \mathrm{~g} & & =500.63 \mathrm{~g}
\end{array}
$$

Additional reactions that involve Al or Cl are shown in the following table.

Reaction Number	Equation	$\Delta H_{r x n}^{\circ}\left(\mathrm{kJ} / \mathrm{mol}_{r n}\right)$
2	$\mathrm{Al}(\mathrm{s})+\frac{3}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{~g})$	-583
3	$\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}(\mathrm{g})$	+326
4	$\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g})$	+243

(b) Calculate the value of ΔH_{1}°, in $\mathrm{kJ} / \mathrm{mol}_{r \text { rn }}$, for reaction 1 above using reactions 2,3 , and 4.

$$
\begin{gathered}
-583+326+243=-14 \\
\Delta H_{1}^{0}=-14
\end{gathered}
$$

Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 2

Continue your response to QUESTION 2 on this page.

(ii) Which of the three diagrams is the best representation for the bonding in AlCl_{3} ? Justify your choice based on formal charges.

> Diagram 2, because it has a bose pair of electron in the
AlCl_{3} is known to dimerize reversibly in the gas phase. The dimerization equilibrium is represented by the following equation.

$$
2 \mathrm{AlCl}_{3}(\mathrm{~g}) \rightleftarrows \mathrm{Al}_{2} \mathrm{Cl}_{6}(\mathrm{~g})
$$

(e) Write the expression for the equilibrium constant, K_{p}, for this reaction.

$$
K_{p}=\frac{\left[A A_{2} C_{6}\right]}{\left[A C C_{3}\right]^{2}}
$$

A particle-level diagram of an equilibrium mixture of $\mathrm{AlCl}_{3}(g)$ and $\mathrm{Al}_{2} \mathrm{Cl}_{6}(g)$ at $400^{\circ} \mathrm{C}$ in a 25 L closed container is shown.

(f) Using the particle-level diagram, calculate the value of $\boldsymbol{K}_{\boldsymbol{p}}$ for the reaction if the total pressure in the container is 22.1 atm .

$$
\begin{aligned}
& \mathrm{AlCl}_{3}=7 \\
& \mathrm{Al}_{2} \mathrm{Cl}_{6}=3
\end{aligned}
$$

$$
k_{p}=\frac{7}{3^{2}}
$$

$$
=0.778
$$

$$
=0.778
$$

Unauthorized copying or reuse of this page is illegal.
Page 7
GO ON TO THE NEXT PAGE.
Use a pencil or a pen with black or dark blue ink. Do NOT write your name. Do NOT write outside the box.

Question 2

Note: Student samples are quoted verbatim and may contain spelling and grammatical errors.

Overview

Question 2 presented students with a series of chemical reactions involving aluminum, chlorine, and the compound AlCl_{3}.

Part (a) of this question required students to apply the concepts of stoichiometry (Learning Objective SPQ-4.A, Skill 5.F from the AP Chemistry Course and Exam Description) to calculate the mass in grams of $\mathrm{Cl}(g)$ from a balanced equation that represents the decomposition of gaseous AlCl_{3} into gaseous Al and gaseous Cl .

Part (b) asked students to apply the concepts of Hess's law (ENE-3.C, 5.F) to calculate the value of $\Delta H_{r x n}$ for the decomposition reaction in part (a). Given a table of standard enthalpy values for three formation reactions, the first of two points was earned by either properly reversing the sign of ΔH_{2} or multiplying the value of ΔH_{4} by the factor of $3 / 2$. The students earned the second point by correctly calculating the value of ΔH_{1} for the overall reaction by manipulating both ΔH_{2} and ΔH_{4} correctly and adding them to ΔH_{3}.

Part (c)(i) required students to properly interpret a potential energy diagram to determine the bond length for molecular chlorine, Cl_{2} (SAP-3.B, 5.D).

Part (c)(ii) provided the bond length and bond energy for the $\mathrm{Al}-\mathrm{Cl}$ bond and asked the students to draw the potential energy diagram for the $\mathrm{Al}-\mathrm{Cl}$ bond, indicating the correct bond length (lst point) and the correct bond energy (2nd point) (SAP-3.B, 3.A).

Part (d)(i) provided three Lewis diagrams of AlCl_{3} and asked students to identify the one structure that is not representative of trigonal planar geometry using the principles of VSEPR theory (SAP-4.C, 6.E).

Part (d)(ii) asked students to identify which of the three provided Lewis diagrams was the best representation of AlCl_{3} and justify that choice based on formal charges (SAP-4.B, 6.E).

Part (e) provided students with the dimerization reaction of AlCl_{3} and required students to write the expression for the equilibrium constant, K_{p}, for the reaction (TRA-7.B, 5.B).

Part (f) prompted students to calculate the value of K_{p} using the equilibrium expression from part (e), the total pressure of the system, and a particle-level diagram that depicts the equilibrium mixture of AlCl_{3} and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ (TRA-7.B, 5.F).

Sample: 2A

Score: 10
This response earned 10 points. In part (a) the point was earned for the correct calculated value reported with the correct number of significant figures. In part (b) the first point was earned for the correct manipulation of reaction 2 and/or reaction 4 . The second point was earned for the correct

Question 2 (continued)

calculated value using Hess's Law. In part (c)(i) the point was earned for the correct bond length. In part (c)(ii) the first point was earned for drawing a curve with a minimum at an internuclear distance of $220 \mathrm{pm}(\pm 10 \mathrm{pm})$. The second point was earned for drawing the curve with a minimum energy value at $-425 \mathrm{~kJ} / \mathrm{mol}(\pm 20 \mathrm{~kJ} / \mathrm{mol})$ that approaches zero as the internuclear distance approaches 500 pm . In part (d)(i) the point was earned for choosing diagram 2 and correctly explaining that diagram 2 has trigonal pyramidal geometry. In part (d)(ii) the point was earned for choosing diagram 1 and providing a valid justification that each atom in diagram 1 has a formal charge of zero. In part (e) the point was earned for the correct K_{p} expression. In part (f) the point was earned for using the correct partial pressure values for $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ and AlCl_{3} and reporting the correct calculated value for K_{p}.

Sample: 2B

Score: 7

This response earned 7 points. In part (a) the point was earned for the correct calculated value reported to the correct number of significant figures. In part (b) the first point was earned for the correct manipulation of reaction 2 . The second point was not earned because the value of ΔH° for the manipulated version of reaction 4 is incorrect, giving an incorrect value for ΔH_{1}°. In part (c)(i) the point was earned for the correct bond length. In part (c)(ii) the first point was earned for drawing a curve with a minimum at an internuclear distance of $220 \mathrm{pm}(\pm 10 \mathrm{pm})$. The second point was earned for drawing the curve with a minimum energy value at $-425 \mathrm{~kJ} / \mathrm{mol}(\pm 20 \mathrm{~kJ} / \mathrm{mol})$ that approaches zero as the internuclear distance approaches 500 pm . In part (d)(i) the point was earned for choosing diagram 2 and stating that diagram 2 cannot have trigonal planar geometry because it has four electron domains. In part (d)(ii) the point was earned for correctly choosing diagram 1 and providing a valid justification that all atoms in diagram 1 have a formal charge of zero. In part (e) no point was earned because " P " is not included in the equilibrium expression for the reaction. In part (f) no point was earned because no calculation of K_{p} is provided.

Sample: 2C

Score: 3

This response earned 3 points. In part (a) no point was earned because the calculation is done incorrectly. In part (b) the first point was not earned because ΔH° for neither reaction 2 nor reaction 4 is manipulated correctly. The second point was not earned because the value of ΔH_{1}° is incorrect. In part (c)(i) the point was earned for the correct bond length. In part (c)(ii) the first point was earned for drawing a curve with a minimum at an internuclear distance of $220 \mathrm{pm}(\pm 10 \mathrm{pm}$). The second point was earned for drawing the curve with a minimum energy value at $-425 \mathrm{~kJ} / \mathrm{mol}(\pm 20 \mathrm{~kJ} / \mathrm{mol})$ that approaches zero as the internuclear distance approaches 500 pm . In part (d)(i) no point was earned because diagram 3 is incorrectly selected. Additionally, the justification provided is based on hybridization instead of geometry. In part (d)(ii) no point was earned because diagram 2 is incorrectly selected. Additionally, the justification provided is not based on formal charges. In part (e) no point was earned because " P " is not included in the equilibrium expression for the reaction. Also, the brackets represent molarity, not partial pressure. In part (f) no point was earned because the calculated value for K_{p} is incorrect.

