
© 2022 College Board.
Visit College Board on the web: collegeboard.org.

Chief Reader Report on Student Responses:
2022 AP® Computer Science Principles Free-Response Questions

• Number of Students Scored 134,651
• Number of Readers 403
• Score Distribution Exam Score N %At
 5 15,322 11.4
 4 28,249 21.0
 3 41,931 31.1
 2 26,799 19.9
 1 22,350 16.6
• Global Mean 2.91

The following comments on the 2022 free-response questions for AP® Computer Science Principles
were written by the Chief Reader, Tom Cortina, Carnegie Mellon University. They give an overview
of each free-response question and of how students performed on the question, including typical
student errors. General comments regarding the skills and content that students frequently have the
most problems with are included. Some suggestions for improving student preparation in these areas
are also provided. Teachers are encouraged to attend a College Board workshop to learn strategies
for improving student performance in specific areas.

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

Question 1

Task: Create Performance Task
Topic: Application from Ideas

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Max. Points:

1

1

1

1

1

1

Mean Score:

0.47

0.64

0.33

0.46

0.43

0.37

What were the responses to this question expected to demonstrate?

The Create Performance Task is designed to give students an opportunity to develop a program that solves
a problem for the user or allows the pursuit of a creative interest. Students should be able to demonstrate
the program running in a short video and explain its purpose, how it functions, and how it handles input
and output of information as shown in the video.

Programs typically process collections of data to help the user gain insight and make decisions. This task
also requires students to demonstrate their understanding of data abstraction, using at least one list (or
equivalent collection type) to hold data that is critical to fulfilling the program’s purpose. Students must
explain how the list manages complexity in the program, by either explaining why their program could not
function without the list or why their program would require a more complex implementation without the
use of the list, to demonstrate the importance of using this abstraction when processing larger amounts of
data.

Programs use procedures to break a larger computational task into smaller subtasks to make a program
easier to develop and test. This task also requires students to use procedural abstraction to write a
procedure with at least one explicit parameter that demonstrates the use of sequencing, selection, and
iteration, along with a call to this procedure. The student should be able to explain how the procedure works
in detail, what the procedure does in summary, and how the procedure contributes to the overall
functionality of the program. Finally, the student should be able to explain how to test the procedure for
correctness using its parameter(s), using two examples that cause different behavior and results to occur.

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

How well did the responses address the course content related to this question? How well did the
responses integrate the skills required on this question?

Program Purpose and Function

● Students were asked to develop a working program with a purpose to solve a problem for the user or
pursue a creative interest. Students were also asked to create a video that demonstrated some
functionality of their program that requires user input and program output. In general, most students
were able to write a working program and create a video that demonstrated the program’s
functionality, input, and output. In addition, most students were able to accurately describe the
functionality, input, and output in their written response.

● Some students were able to state the purpose of the program by describing a broader problem that is
being solved for the user or the creative, artistic interest being explored, whereas other students
incorrectly stated the functionality as the purpose. In the case of game programs, some students
incorrectly stated the object of the game (i.e., how to win) as the purpose of the program. Some
students did not describe what was being illustrated in their video.

Data Abstraction and Managing Complexity

● Students were asked to provide two code segments from their program, the first showing the
initialization of a list of data and the second showing how that list is used in their program to reduce
complexity. Some responses used other acceptable representations of lists, including arrays and
dictionaries (associative arrays). Most students were able to identify a list in their program and
provide two code segments that demonstrated the initialization and use of the identified list. Some
students confused creating an empty list with initializing the list with data. Some students accessed
only one specific element of the list instead of multiple elements, although accessing a single
random element of the list was allowed.

● Some students were able to use the lists in a manner that reduces complexity by generalizing list
element access using an index or subscript to allow for arbitrary-sized lists and iteration over lists. In
general, these students were able to explain in their written response how the list managed
complexity in their program. On the other hand, some students wrote about managing complexity
with lists in general and did not describe how their own program managed complexity with a list.
Some students inaccurately described that their program could not be completed without lists when
the use of the list was simplistic and could be replaced with a few individual variables.

Procedural Abstraction, Algorithm Implementation, and Testing

● Students were asked to provide two code segments from their program, the first showing a
procedure using at least one explicit parameter required to perform its function and the second
which shows a call to this procedure with argument(s) for the parameter(s). Students were also
asked to write about what the procedure does and how it contributes to the overall program.
Students who described what the procedure does at a higher level, rather than giving a line-by-line
explanation, found it easier to connect the procedure to its contribution to the program. Most
students were able to provide the two code segments and describe what the procedure does. Some
students had trouble explaining how the procedure contributed to the overall program, particularly
when the selected procedure performed almost the entirety of the overall functionality of the
program. Some students submitted procedures with no explicit parameters (e.g., using global
variables to “pass” data to the procedure) or code fragments not enclosed in a procedure. When

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

students submit multiple procedures, the score is based on the first procedure and those that it calls.
Some students were confused about the requirement of two code segments and submitted two
procedures that weren’t related.

• Students were asked to demonstrate sequencing, selection, and iteration in their code segment.
While the requirements state that the algorithm should be included in a procedure, an exception is
made to allow students to earn credit for demonstrating their ability to write an algorithm with
sequencing, selection, and iteration even if it isn’t included in a procedure with parameters.
Additionally, students were asked to write a description of how their code segment works in enough
detail so that someone else could recreate it. In general, most students were able to present a code
segment that used sequencing, selection, and iteration, but some failed to explain the code in enough
detail to allow someone else to write a similar code segment. Some students used a built-in
timedLoop function as an iteration instead of using a built-in iteration command with a loop
condition.

● Students were asked to describe two calls to the code segment representing their procedure, with
each call passing a different argument(s), explicit or implicit, that cause a different segment of code
to execute in their procedure. In each case, students were asked to describe what condition was
being tested by each call and what results from each call. Some students were able to describe
different argument(s) that caused separate paths to execute in the procedure, resulting in unique
results. On the other hand, some students described calls to two different procedures, or they
described calls to the same procedure with different arguments and different results but that
followed the same sequence of instructions in the procedure. While the requirements state that the
algorithm should have one or more parameters explicitly shown, an exception is made to allow
students to earn credit if the response uses an implicit parameter to simulate the passing of an
argument to a procedure by setting a global variable to be used by the procedure just prior to calling
the procedure.

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

What common student misconceptions or gaps in knowledge were seen in the responses to this
question?

Common Misconceptions/Knowledge Gaps Responses that Demonstrate Understanding

Video and Written Response 3a: Program Purpose and Function

Row 1

• Confusing purpose and function when
describing the program illustrated in the video
component. The function of the program is not
its purpose. For example, “The purpose of the
program is to display statistics (rank, % of World
Population that speaks the language) about a
language the user inputs in the
languageInput box” describes the function of
the program by describing what it does, rather
than the purpose, which should explain why
someone would use the program. If the program
is a game, the purpose is not the object of the
game. For example, “the purpose of this program
is to find out how many turtles the user can load
into the elevator in 15 seconds” describes the
object of the game, rather than the purpose,
which would address why someone would use
the program.

Row 1

• High-scoring responses stated a purpose for
the program that went beyond the function of
the program itself. These responses indicated
how the program would be used to solve a
problem for the user or improve their lives in
some way; that is, a reason why someone
would use the program. For example, “a major
problem in healthcare today is that patient
files can easily be lost or mixed up, so I made
a program with the overall purpose to solve
the problem if a mix up were to happen.”

Written Response 3b: Data Abstraction and Managing Complexity

Row 2

• Providing several lists and not showing how
either list is being used. For example, a
student may provide two code segments, one
that initializes animalImages and one that
initializes animalList (containing names of
the animals). However, neither code segment
shows how these data values are being used
in the program.

Row 2

• High-scoring responses identify only one list and
show how data is added to that list in the first
code segment and how multiple elements of the
list are accessed in the second code segment.

• Only accessing the length of the list instead of
elements within the list. For example, score =
captureList.length.

• High-scoring responses access multiple elements
of the list rather than its length. For example, for
the list priceList, a loop is set up with loop
variable i that runs from index 0 to
length(priceList) - 1, and the body of the
loop computes sum += priceList[i].

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

• Not indicating that a list parameter is the same
as the identified list. For example, when the
list x is passed as an argument to the
parameter myl, the response does not
explicitly mention that the two names (x and
myl) refer to the same list.

• High-scoring responses identify in a reasonable
manner that when using a procedure to process
the list, the list parameter is the same list as the
one initialized in the prior code segment. For
example, “the specific list I chose is nounList.
As it is called and used in the procedure
selectWord, however, it is referred to as the
parameter wordList instead.”

Row 3

• Explaining how the use of the list manages
complexity by stating how the program would
be rewritten in a generic way that does not
reference the submitted program or explaining
that writing the program would be impossible
without the use of the list even though it is
possible to write. For example, “This list
manages complexity in the program because
if it weren’t for the lists, each individual
variable would have had to be written out and
given its own name.” This generic answer
applies to all uses of lists and does not
address how the program code of the specific
program would need to be modified to
accommodate all the additional variables.
Another example: “If I didn’t have a list
containing the artist names, I wouldn’t be able
to show the user who sang the song they are
looking for, or even find the artist they are
looking for when they input the one they want
to find.” In this case there are other
programming solutions that would allow them
to write the program.

Row 3

• High-scoring responses describe how the
program would need to be rewritten in a more
complex manner without the list, referencing
specific instructions and functionality in the
submitted program. For example, “Without the
list over 110+ different sprites would have to be
spawned manually. As an example the code for
the tree would look something like this:
Tile((1038,587),
[self.visible_sprites,

self.obstacle_sprites]) but repeated over
30 times, each time a different number would
have to be found out for the x and y coordinates.
The cat code would be even more complex as
with each instance of a cat there is a 50 percent
chance of it spawning at that location, so that
piece of code along with the code that draws the
cat would have to be repeated over 79 times!”

• Using a list in a manner that does not manage
complexity, such as:
o Using a list with only two elements in it,

which could be replaced with two variables.
o Using a list of strings that are only output in

the same order as they are stored in the list,
which could be replaced with a single string
using concatenation.

o Using a list as a counter, storing arbitrary
data in the list just to determine its length.
For example, storing five copies of the
number 1 in a list and then reporting the
score is 5 because the length of the list is 5.

• High-scoring responses display lists that are
used to manage complexity by storing a variable
number of data values that need to be processed
using a loop or iterator. For example,

for (var j = 0; j < ltrs.length;
 j++)
{
 if (letter == ltrs[j])
 {
 setText("let" + j,
 letter);
 check = true;
 count = count + 1;
 }
}

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

Written Response 3c: Procedural Abstraction and Algorithm Implementation

Row 4

• Not including both what the procedure does at
a high level AND how it contributes to the
functionality of the program. For example,
“startgame() creates the terminal and
begins a 15-second timer.” This response
does not state how this procedure contributes
to the overall program, such as stating when it
is used or what triggers it to be executed.

Row 4

• High-scoring responses include two parts to the
response, stating the overall function of the
procedure in a sentence and then also stating
how it contributes to the overall program by
describing when it is executed or what
subsequent code is run in the program as a result
of this procedure having been executed. For
example, “This identified procedure uses
selection to test the user input to see which option
it equals. This contributes to the functionality of
the overall program by deciding which character
function to run and call based on user input.”

• Including a parameter that has no effect on
the procedure either by ignoring the
parameter or initializing it to another value.
For example,

def winner(player):
 player = 1
 ...

• High-scoring responses use the parameter
value(s) in the procedure body without
overwriting the argument being passed into the
procedure.

• Failing to use one or more explicit parameters
in the submitted procedure, instead “passing”
data to the procedure using global variables.

• High-scoring responses include a procedure that
has one or more explicit parameters that allow
some part of the program to send specific data to
the procedure for its use without other parts of
the code modifying the data while it is being
used.

• Including a larger segment of code that
contains multiple procedures; either the
procedures aren’t related to each other through
calls, or the response includes two different
procedures as the two code segments without
showing a proper procedure call for either one.

• High-scoring responses include one clearly
defined procedure with explicit parameters in the
first code segment and a single procedure call
with relevant argument(s) in the second code
segment.

• Including code that is not encapsulated in a
procedure.

• High-scoring responses include one clearly
defined procedure with explicit parameters in the
first code segment.

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

 Row 5

• Including an algorithm that does not contain
iteration or have meaningful iteration. Some
responses included extensive nested selection
(if/else if/else if/…) but no iteration. Some
responses included a loop that only ran
through one iteration. For example,

y = 1;
for (var x = 1; x <= y; x++) {
 total = total + score;
}

Row 5

• High-scoring responses included a loop that
contributed meaningfully to the algorithm. These
loops often repeated a number of times greater
than 3 or ran until a specific condition was met
(e.g., by using a while loop).

• Using selection in a trivial manner. For
example, testing if players > 0 when
players is always greater than 0.

• High-scoring responses included reasonable
uses of selection with conditions that were
nontrivial and caused different parts of the
algorithm to execute.

• Providing a very vague and brief description
that does not include enough detail for
someone else to recreate the algorithm.

• High-scoring responses included enough detail
of each step of the algorithm to allow someone to
reasonably recreate the algorithm. Some
responses included line numbers that were
referenced in the response to make the
description easier to follow.

Written Responses 3d: Testing

Row 6

• Describing calls to two different procedures
rather than two calls to the same procedure
with different arguments. For example,
move_left(2) and move_right(2).

Row 6

• High-scoring responses included two calls to the
same procedure with different arguments that
caused different behavior to occur in the
procedure. For example, move_down(4) and
move_down(-2). (In the case of a negative
argument, this procedure returns immediately
and does not perform the move.)

• Describing two different parts of the program
and what behavior occurs during these parts.

• High-scoring responses identify the single
procedure given in response 3c and provide two
different sets of values for the parameters that
cause different behavior to occur inside the
procedure.

• Describing two calls to the same procedure
with different arguments that cause the same
sequence of code to execute in both cases. A
common misconception in this situation is that
a procedure that has two different return

• High-scoring responses provided two different
arguments that would cause a different sequence
of code to execute in each case, leading to a
unique result (output or return value). For
example, using the function search(mylist,

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

values must be executing different instructions
inside. For example, using the function
search(mylist, val) to find the index of
the value in the list, where mylist =
[1,2,3,4,5] and val = 1 for the first call
and val = 4 for the second call. Both calls
cause the same set of instructions to execute
but return different results.

val) to find the index of the value in the list,
where mylist = [1,2,3,4,5] and val =
1 for the first call and val = 8 for the second
call. Each call causes a different sequence of
instructions to execute since in one case, the
value is found in the list and in the other case,
the value is not found in the list.

• Setting the value of an implicit parameter
inside the procedure instead of immediately
before the procedure is called. For example,
using choice as the implicit parameter,

function select()
{
 choice = getText("Name");
 ...
}

• High-scoring responses that used implicit
parameters set the value of the parameter
immediately before the call to the procedure to
simulate parameter passing. For example, using
choice as the implicit parameter,

choice = getText("Name");
select();
...
function select()
{
 ...
}

• Identifying input arguments and output values
but not describing what conditions are being
tested in each case.

• High-scoring responses included a description of
each call, stating what code is being tested in
each case and how these tests are unique.

• Providing descriptions that were implausible
given the code supplied in response 3c. For
example, a response indicates that an
argument will cause a specific output after a
loop is completed, but the loop never executes
given the specific argument.

• High-scoring responses accurately described
what conditions were being tested for each test
case without making statements that were
inconsistent or implausible with the submitted
procedure.

• Including code that is not encapsulated in a
procedure.

• High-scoring responses that addressed two
separate testing cases included one clearly
defined procedure with explicit or implicit
parameters in the first code segment.

Based on your experience at the AP® Reading with student responses, what advice would you offer
teachers to help them improve the student performance on the exam?

In general, give students several opportunities to complete a practice Create Performance Task of shorter
duration to gain a better understanding of the learning objectives and skills required for the task. Score
these against the established scoring criteria to help students improve their understanding. Alternatively,
provide several completed tasks for students to review and analyze, asking them to determine whether each
requirement was met or not, and why. As a teacher, review the high-quality examples to make sure you
understand the nuances of the scoring criteria so that you can score the shorter student examples
accurately.

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

Students need explicit instruction and experience taking screen captures of code segments and
incorporating them into their responses. Code submitted for scoring should be as clear as possible (not
blurry), and text should be at least 10-point font size.

If a student wishes to use an unconventional programming language for the Create Performance Task,
evaluate its ability to clearly address the requirements of the task and advise the student accordingly.

The following bulleted list gives more specific advice for each part of the Create Performance Task.

Responses 2 and 3a: Program Purpose and Function

● Have students review high-quality examples of the Create Performance Task to become familiar with
the difference between function and purpose. Give students additional examples of computer
programs and ask them what the purpose of each program is to see if they can identify the problem
being solved by the program or the creative or artistic pursuit. Ask students to think about “why” the
program exists as opposed to “what” the program does or “how” to win the computer game.

● Ensure that students have access and opportunity to practice using computational video tools to
capture their program features. Integrate the use of computational tools such as screen capture and
creating short videos into multiple assignments. Assist students in learning how to make sure any
text in the video is clearly visible and readable for scoring.

● Give students examples of computer programs and ask them to identify what explicit data are being
input to the program and what explicit data are being output to the user.

● Make it clear to students that while it is okay to base their program on a program used in class, they
must make significant changes to the program by adding additional functionality. The program code
used for their written responses should be newly student-developed program code.

Response 3b: Data Abstraction and Managing Complexity

● Give students examples of program code that initializes and uses a list, highlighting the difference
between initializing a list and creating an empty list. Have students identify in the code where the
initialization and use of the list are happening.

● Give examples that use lists that can be of arbitrary length to illustrate the power of using lists to
store a collection of data. Compare these to examples where the lists are of fixed length. Have
students write code to process elements of an arbitrary length list by using an index (e.g.,
numlist[j]) rather than hardcoding access (e.g., numlist[1]).

● Provide practice using lists with a large number of elements that will require students to write code
that is more abstract and able to handle a change in the number of elements more easily than if the
code was written in a more hardcoded way with a list containing just a few elements.

● Discuss why a well-designed list makes the code less complex by showing what would happen if the
list were not present. Have students explain in their own words why the list is necessary by
referencing the code. Show students examples of lists that can be replaced easily without making the
code more complex (e.g., a list containing data only to later determine how many items are in the list,
which can be replaced with a counter variable).

© 2022 College Board.
Visit College Board on the web: collegeboard.org.

● Remind students that even if their code segment uses multiple lists, they should clearly identify one
list and respond to the prompts based on this one identified list only. The list they identify and
describe must be one they create, not one that they are given, such as a data table from a third-party
provider.

Response 3c: Procedural Abstraction and Algorithm Implementation

● Give students examples of program code that contain procedures with explicit parameter(s), and
have the student identify what code makes up the procedure and where the parameter(s) get their
values. Show how using global variables is not the same communication mechanism as using
parameters to pass data into a procedure.

● Encourage students to use explicit parameters over implicit parameters since this will make their
code easier to debug and easier to explain for the Create Performance Task. Remember that points
are not awarded in row 4 if only implicit parameters are used.

● Remind students to identify one procedure with explicit parameter(s) to focus their response and to
only include this procedure and a call to this procedure in response 3c. If the procedure calls
additional student-developed procedures, students can include them as well in the first code
segment, but they should be listed as subsequent to the first procedure, and the student should be
sure to focus their response on the first procedure.

Response 3d: Testing

● Give examples of testing a single procedure with different arguments, and trace the path taken in the
code to generate each result to show that the paths are different or that different parts of the code are
being tested.

● Give an example where a response shows two different procedures, with one test case per procedure,
and explain why this response does not address the requirements for the task.

What resources would you recommend to teachers to better prepare their students for the content
and skill(s) required on this question?

● The endorsed providers for AP Computer Science Principles have a wealth of resources and
examples, including guides, for completing the Create Performance Task. We recommend teachers
leverage these resources as instructional tools to help students understand the requirements for the
Create Performance Task. When doing so, be sure to clearly communicate to students that when
completing their task, they need to write their answers in their own words and avoid modelling their
answers too closely to the example responses. Using phrasing from public samples is a violation of
the plagiarism policy and will result in students receiving a zero on the task.

● The College Board webinar “Tips for Completing the Create Performance Task—AP CSP” provides
guidance on how to break down the Create Performance Task over the course of 12 hours. It also
answers many frequently asked student questions.
(https://www.youtube.com/watch?v=LfzpMASeNHg)

● The College Board webinar “Score the Create Performance Task, Just Like an AP Reader” provides
teachers with insight on how each row of the scoring guidelines is applied to the samples and was
conducted in a similar manner to how readers are trained.
(https://www.youtube.com/watch?v=mCM3cFBBJvo)

