

SAMPLE SYLLABUS #2

AP[°] Physics C: Mechanics

Curricular Requirements

CR1	Students and teachers have access to college-level resources, including a college-level textbook and reference materials in print or electronic format.	See page: 2
CR2	The course provides opportunities to develop student understanding of the required content outlined in each of the units described in the AP Physics C: Mechanics Course and Exam Description.	See page: 2
CR3	The course provides opportunities for students to develop the skills related to Science Practice 1: Creating Representations.	See page: 2
CR4	The course provides opportunities for students to develop the skills related to Science Practice 2: Mathematical Routines.	See page: 2
CR5	The course provides opportunities for students to develop the skills related to Science Practice 3: Scientific Questioning & Argumentation.	See page: 2
CR6	Students spend a minimum of 25% of instructional time engaged in hands-on laboratory investigations.	See page: 3
CR7	Students engage in hands-on laboratory investigations representative of the topics outlined in the AP Physics C: Mechanics Course and Exam Description.	See page: 3
CR8	The course provides opportunities for students to record evidence of their scientific investigations in a portfolio of lab reports or a lab notebook (print or digital format).	See page: 3

Advanced Placement Physics C: Mechanics Sample Syllabus #2

Textbook provided on the AP Course Audit form. CR1

***Topics Covered**

All the content in the current AP[®] Physics C: Mechanics Course and Exam Description will be covered in this course. CR2

- Unit 1: Kinematics (1D and 2D motion)
- Unit 2: Forces (Newton's Laws, FBDs, circular motion, gravitation and orbits)
- Unit 3: Conservation Laws (work, energy, power, conservation of energy, impulse, momentum and conservation of momentum)
- Unit 4: Rotation (rotational kinematics, rotational dynamics, torque, rotational energy, angular momentum, conservation of angular momentum)
- Unit 5: Oscillations (simple harmonic motion, pendulums, masses on springs)

*This course will incorporate the Science Practices 1, 2, and 3 into the curriculum within each unit. Here are some examples of how that is happening:

Science Practice 1 CR3

During the kinematics unit, students will be asked to sketch position vs. time, velocity vs. time, and acceleration vs. time for a variety of situations.

Science Practice 2 CR4

During the forces unit, student will be asked to calculate the accelerations for a variety of situations, including objects on flat surfaces, objects on inclines, and connected systems.

Science Practice 3 CR5

During the oscillations unit, students will design an experiment to determine what factors affect the period of a pendulum. They will present their findings and will have to come to a consensus as a class through discussion and argumentation.

CR2

The syllabus must include an outline of course content by unit title to demonstrate the inclusion of the required course content listed in the current AP Physics C: Mechanics Course and Exam Description.

CR3

The syllabus must include a section labeled "Science Practice 1" describing one assignment, activity, or lab where students create representations that depict physical phenomena.

CR4

The syllabus must include a section labeled "Science Practice 2" describing one assignment, activity, or lab where students use mathematical routines.

CR5

The syllabus must include a section labeled "Science Practice 3" describing one assignment, activity, or lab where students design experimental procedures, and make and justify claims. *Students in this course will spend a minimum of 25% of the instructional time on hands-on, mostly inquiry-based labs. **CR6** Students are required to maintain a lab notebook for each lab. **CR8** The following labs will be done: **CR7**

- 1. Constant Velocity Lab Students design a lab to show an object moves with constant velocity.
- 2. Constant Acceleration Lab Students design a lab to show an object moves with constant acceleration.
- 3. Predict the Projectile Lab Students predict the landing site of a ball when launched from the top of a lab table at a given angle.
- 4. Friction Lab Students design a lab to determine the coefficient of friction between a book and the lab table using only a ruler and stopwatch.
- 5. Atwood's Machine Lab Students determine the relationship between total mass and acceleration and the mass difference and acceleration.
- 6. Flying Cow Lab Students design a lab to determine the velocity of the flying cow using only a ruler and stopwatch.
- 7. Impulse Lab Using video analysis, students determine the impulse of 2 people who are pushing off each other on carts.
- 8. 1D Collisions Lab Students design a lab using carts and a track to determine if momentum is conserved and to identify if a collision is elastic or inelastic.
- 9. 2D Collisions Lab Students design a lab to determine if momentum is conserved in 2D using hover disks.
- 10. Rotational PVC Lab Students design a lab to determine the moment of inertia (*I*) of a PVC structure. They then have to compare it to a calculated value.
- 11. Toilet Paper Lab Students predict where to place an unrolling roll of toilet paper so that it hits the ground at the same time a roll of toilet paper is dropped from 2 meters. Students must use forces and torques.
- 12. Conservation of Angular Momentum Lab Students design a lab to determine if angular momentum is conserved when various objects are dropped onto a spinning disk.
- 13. Popper Lab Students determine the spring constant of a popper toy.
- 14. Pendulum Lab Students design a lab to determine which variables affect the period of a pendulum.
- 15. Beats Lab Students design a lab to construct a mass on a spring and a pendulum that have a period made to match the beat of a song.

CR6

The syllabus must include an explicit statement that at least 25% of instructional time is spent engaged in hands-on laboratory investigations, with an emphasis on inquiry-based labs.

CR8

The syllabus must include an explicit statement that students are required to maintain a lab notebook or portfolio (hard copy or electronic) that includes all their lab reports.

CR7

The syllabus must include a title and brief description for each laboratory investigation. The labs listed should be representative of the topics outlined in the AP Physics C: Mechanics Course and Exam Description.