ADVANCED PLACEMENT PHYSICS MECHANICS TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity at Earth's surface, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Magnitude of the gravitational field strength at the Earth's surface, $g=9.8 \mathrm{~N} / \mathrm{kg}$

PREFIXES		
Factor	Prefix	Symbol
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

UNIT	hertz,	Hz	newton,	N	
	joule,	J	second,	s	
	kilogram,	kg	watt,	W	
	meter,	m			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR								
θ	0°	30°	37°	45°	53°	60°	90°	
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1	
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0	
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞	

The following assumptions are used in this exam.

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.

MECHANICS	

VECTORS	CALCULUS	IDENTITIES
$\begin{aligned} & \vec{A} \cdot \vec{B}=A B \cos \theta \\ & \|\vec{A} \times \vec{B}\|=A B \sin \theta \\ & \vec{r}=(A \hat{i}+B \hat{j}+C \hat{k}) \\ & \vec{C}=\vec{A}+\vec{B} \\ & \vec{C}=\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j} \end{aligned}$	$\begin{aligned} & \frac{d f}{d x}=\frac{d f}{d u} \frac{d u}{d x} \\ & \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\ & \frac{d}{d x}\left(e^{a x}\right)=a e^{a x} \\ & \frac{d}{d x}(\ln a x)=\frac{1}{x} \\ & \frac{d}{d x}[\sin (a x)]=a \cos (a x) \\ & \frac{d}{d x}[\cos (a x)]=-a \sin (a x) \\ & \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 \\ & \int e^{a x} d x=\frac{1}{a} e^{a x} \\ & \left.\int \frac{d x}{x+a}=\ln \right\rvert\, x+a \\ & \int \cos (a x) d x=\frac{1}{a} \sin (a x) \\ & \int \sin (a x) d x=-\frac{1}{a} \cos (a x) \end{aligned}$	$\begin{aligned} & \log \left(a \cdot b^{x}\right)=\log a+x \log b \\ & \sin ^{2} \theta+\cos ^{2} \theta=1 \\ & \sin (2 \theta)=2 \sin \theta \cos \theta \\ & \frac{\sin \theta}{\cos \theta}=\tan \theta \end{aligned}$

