ADVANCED PLACEMENT PHYSICS MECHANICS TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$

Magnitude of the gravitational field strength at the Earth's surface, g = 9.8 N/kg

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	Т		
10 ⁹	giga	G		
10^{6}	mega	М		
10 ³	kilo	k		
10 ⁻²	centi	с		
10 ⁻³	milli	m		
10^{-6}	micro	μ		
10 ⁻⁹	nano	n		
10 ⁻¹²	pico	р		

	hertz,	Hz	newton,	Ν
UNIT	joule,	J	second,	s
SYMBOLS	kilogram,	kg	watt,	W
	meter,	m		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following assumptions are used in this exam.

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.

$$\begin{split} \label{eq:constant} \begin{array}{|c|c|c|c|c|} \hline \text{MECHANICS} & a = \operatorname{acceleration} & a = \operatorname{accceleration} & a = \operatorname{acceleration} & a = \operatorname{acc$$

GEOMETRY AND TRIGONOMETRY				
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base	$a^2 + b^2 = c^2$
Triangle $A = \frac{1}{2}bh$	Cylinder $V = \pi r^2 \ell$	s dr	C = circumference h = height $\ell = \text{length}$ r = radius	$\sin \theta = \frac{a}{c}$
2	$S = 2\pi r\ell + 2\pi r^2$		s = arc length	$\cos\theta = -\frac{1}{c}$
Circle	Sphere		S = surface area V = volume	$\tan \theta = \frac{a}{b}$
$A = \pi r^2$	$V = \frac{4}{\pi}\pi r^3$		w = width	c a
$C = 2\pi r$	3		θ = angle	θ 90°
$s = r\theta$	$S = 4\pi r^2$			b

VECTORS	CALCULUS	IDENTITIES
$\vec{A} \cdot \vec{B} = AB\cos\theta$ $\left \vec{A} \times \vec{B}\right = AB\sin\theta$ $\vec{r} = \left(A\hat{i} + B\hat{j} + C\hat{k}\right)$	$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$ $\frac{d}{dx}(x^n) = nx^{n-1}$	$log(a \cdot b^{x}) = log a + x log b$ $sin^{2} \theta + cos^{2} \theta = 1$ $sin(2\theta) = 2 sin \theta cos \theta$
$\vec{C} = \vec{A} + \vec{B}$ $\vec{C} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$	$\frac{d}{dx}(e^{ax}) = ae^{ax}$ $\frac{d}{dx}(\ln ax) = \frac{1}{2}$	$\frac{\sin\theta}{\cos\theta} = \tan\theta$
	$\frac{dx}{dx} \begin{bmatrix} \sin(ax) \end{bmatrix} = a\cos(ax)$	
	$\frac{d}{dx} \left[\cos(ax) \right] = -a\sin(ax)$ $\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1$	
	$\int e^{ax} dx = \frac{1}{a} e^{ax}$ $\int \frac{dx}{x+a} = \ln x+a $	
	$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$ $\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$	