

AP[®] Physics C: Mechanics

Your Course at a Glance

Plan

The Course at a Glance provides a useful visual organization for the AP Physics C: Mechanics course components, including:

- Sequence of units, along with approximate weighting and suggested pacing. Note, suggested pacing options are provided for both 45 minute periods meeting daily for a full year and for 90 minute periods meeting daily for a single semester.
- Progression of topics within each unit.
- Spiraling of the science practices across units.

Teach

PRACTICES Science Practices spiral throughout the course.

Routines

3 Scientific Creating Representations 2 Mathematical

Questioning and Argumentation

Required Course

Each topic contains required Learning Objectives and Essential Knowledge Statements that form the basis of the assessment on the AP Exam.

Assess

Assign the Progress Checks—either as homework or in class—for each unit. Each Progress Check contains formative multiple-choice and freeresponse questions. The feedback from these checks shows students the areas where they need to focus.

UNIT

Kinematics

~14/~19 Class Periods 10-15% AP Exam Weighting

1.1 Scalars and Vectors 1.2 Displacement, Velocity, and Acceleration

1.3 Representing Motion

1.4 Reference Frames & Relative **Motion**

1.5 Motion in Two or Three

UNIT

Force and Translational Dynamics

~15/~25 Class Periods 20-25% AP Exam Weighting

2.1 Systems and Center of Mass

2.2 Forces and Free-Body

2.3 Newton's Third Law

2.4 Newton's First Law

2.5 Newton's Second Law

2.6 Gravitational Force

2.7 Kinetic and Static Friction

2.8 Spring Forces

2.9 Resistive Forces

2.10 Circular Motion

UNIT

Work, Energy, and Power

~12/~17 Class Periods 15-25% AP Exam Weighting

3.1 Translational Kinetic Energy

1 3.2 Work

3.3 Potential Energy

3.4 Conservation of Energy

3.5 Power

UNIT

Linear Momentum

~11/~15 Class Periods 10-20% AP Exam Weighting

4.1 Linear Momentum

4.2 Change in Momentum and Impulse

4.3 Conservation of Linear

4.4 Elastic and Inelastic Collisions

UNIT

Torque and Rotational Dynamics

~14/~20 Class Periods 10-15% AP Exam Weighting

5.1 Rotational Kinematics

5.2 Connecting Linear and Rotational Motion

5.3 Torque

5.4 Rotational Inertia

5.5 Rotational Equilibrium and Newton's First Law in

5.6 Newton's Second Law in **Rotational Form**

UNIT

Energy and Momentum of Rotating Systems

~13/~19 Class Periods 10-15% AP Exam Weighting

6.1 Rotational Kinetic Energy

6.2 Torque and Work

6.3 Angular Momentum and **Angular Impulse**

6.4 Conservation of Angular

6.5 Rolling

6.6 Motion of Orbiting Satellites

UNIT

Oscillations

~12/~17 Class Periods 10-15% AP Exam Weighting

7.1 Defining Simple Harmonic Motion (SHM)

7.2 Frequency and Period of SHM

7.3 Representing and Analyzing SHM

7.4 Energy of Simple Harmonic Oscillators

7.5 Simple and Physical Pendulums

Progress Check 7

Free-response: 4 question Mathematical Routines

 Translation Between Representations Experimental Design and Analysis

Qualitative/Quantitative Translation

Multiple-choice: ~18 questions

Progress Check 1

Multiple-choice: ~18 questions Free-response: 4 question

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

Progress Check 2

Multiple-choice: ~30 questions Free-response: 4 question

 Mathematical Routines Translation Between Representations

Experimental Design and Analysis

Qualitative/Quantitative Translation

Progress Check 3 Multiple-choice: ~18 questions

Free-response: 4 question Mathematical Routines Translation Between Representations Experimental Design and Analysis Qualitative/Quantitative Translation

Multiple-choice: ~18 questions Free-response: 4 question Mathematical Routines

Progress Check 4

 Translation Between Representations Experimental Design and Analysis

Qualitative/Quantitative Translation

Multiple-choice: ~18 questions

 Experimental Design and Analysis Qualitative/Quantitative Translation

Progress Check 5

Free-response: 4 question Mathematical Routines Translation Between Representations

Progress Check 6

Multiple-choice: ~18 questions Free-response: 4 question Mathematical Routines Translation Between Representations

Experimental Design and Analysis

Qualitative/Quantitative Translation

00762-115-AP-CED-CAAG-Poster-Physics-C-Mechanics.indd All Pages