

SAMPLE SYLLABUS #2

AP[°] Physics C: Electricity and Magnetism

Curricular Requirements

CR1	Students and teachers have access to college-level resources, including a college-level textbook and reference materials in print or electronic format.	See page: 2
CR2	The course provides opportunities to develop student understanding of the required content outlined in each of the units described in the AP Physics C: Electricity and Magnetism Course and Exam Description.	See page: 2
CR3	The course provides opportunities for students to develop the skills related to Science Practice 1: Creating Representations.	See page: 2
CR4	The course provides opportunities for students to develop the skills related to Science Practice 2: Mathematical Routines.	See page: 2
CR5	The course provides opportunities for students to develop the skills related to Science Practice 3: Scientific Questioning & Argumentation.	See page: 2
CR6	Students spend a minimum of 25% of instructional time engaged in hands-on laboratory investigations.	See page: 3
CR7	Students engage in hands-on laboratory investigations representative of the topics outlined in the AP Physics C: Electricity and Magnetism Course and Exam Description.	See page: 3
CR8	The course provides opportunities for students to record evidence of their scientific investigations in a portfolio of lab reports or a lab notebook (print or digital format).	See page: 3

Advanced Placement Physics C: Electricity and Magnetism Sample Syllabus #2

Textbook provided on the AP Course Audit form. CR1

Course Content

The course will consist of these units listed in the AP® Physics C: Electricity & Magnetism Course and Exam Description: CR2

Unit 8: Electric Charges, Fields, and Gauss's Law

Unit 9: Electric Potential

Unit 10: Conductors and Capacitors

Unit 11: Electric Circuits

Unit 12: Magnetic Fields and Electromagnetism

Unit 13: Electromagnetic Induction

Science Practices Alignment

Science Practice 1: Creating Representations	Students will sketch graphs and collect data in tables as they monitor and create an RC circuit	
Science Practice 2: Mathematical Routines	Students will compare a physical quantity (a magnetic field) across the areas around a current-carrying coil spring and draw conclusions about where it is the strongest	
Science Practice 3: Scientific Questioning and Argument CR5	Students must be able to support claims about the important properties that affect a magnetic field during the electromagnet experiment	

CR2

The syllabus must include an outline of course content by unit title to demonstrate the inclusion of the required course content listed in the current AP Physics C: Electricity and Magnetism Course and Exam Description.

CR3

The syllabus must include a section labeled "Science Practice 1" describing one assignment, activity, or lab where students create representations that depict physical phenomena.

CR4

The syllabus must include a section labeled "Science Practice 2" describing one assignment, activity, or lab where students use mathematical routines.

CR5

The syllabus must include a section labeled "Science Practice 3" describing one assignment, activity, or lab where students design experimental procedures, and make and justify claims.

Lab Collection Requirement

Students are provided with their laboratory experiment after completion and grading. Those students who complete them electronically are encouraged to collect them as a folder that acts as a lab notebook. Students who complete the experiments by hand are provided with a physical folder that can be used to create a lab notebook. **CR8**

Laboratory Work

Students are engaged in laboratory work at least 25% of the class time. **CR6** The labs are listed and described below: **CR7**

- Sticky Tape Lab: Students are expected to identify and describe behavior of various charged and neutral objects using electrostatic concepts, based on their own actions
- Electroscope Lab: Students are expected to accurately describe the methods for charging and discharging electroscopes using principles of electric charge
- Ohm's Law Lab: Students find the relationship between voltage and current for two different light bulbs, describe changes in the relationship as voltage increases, and explore internal resistance of a power source
- Series and Parallel Circuits Lab: Students design an experiment to find the changes in voltage and current for resistors in series and resistors in parallel
- Kirchhoff's Rules Lab: Students are provided with a complex electric circuit using resistors and batteries, make a prediction of how voltage and current might be distributed within it, then find values that either support or refute their ideas about those values
- R-C Circuit Lab: Students set up an RC circuit, predict the shapes of voltage-time and current-time graphs, check their predictions, and determine which factors influence the time needed for the capacitor to charge
- Electromagnet Lab: Students determine the effect of a magnet on a compass and wire, as well as how factors like electric current, number of wraps, and number of nails affect the strength of an electromagnet
- e/m Lab: Students derive an expression for the radius of a charge's curvature due to
 a magnetic field; they also use data relating coil current and magnetic field to create
 an algebraic representation of their relationship, then use this data to determine the
 permeability of free space
- Slinky Solenoid Lab: Students derive an algebraic relationship between coils and magnetic field, then determine the quality of their relationship through graphing data they collected
- R-L Circuits Lab: Students set up an RL circuit, predict the shapes of voltage-time and current-time graphs, check their predictions, and determine which factors influence the time needed for the capacitor to charge

CR8

The syllabus must include an explicit statement that students are required to maintain a lab notebook or portfolio (hard copy or electronic) that includes all their lab reports.

CR6

The syllabus must include an explicit statement that at least 25% of instructional time is spent engaged in hands-on laboratory investigations, with an emphasis on inquiry-based labs.

CR7

The syllabus must include a title and brief description for each laboratory investigation. The labs listed should be representative of the topics outlined in the AP Physics C: Electricity and Magnetism Course and Exam Description.