About the Advanced Placement Program® (AP®)
The Advanced Placement Program® has enabled millions of students to take college-level courses and earn college credit, advanced placement, or both, while still in high school. AP Exams are given each year in May. Students who earn a qualifying score on an AP Exam are typically eligible, in college, to receive credit, placement into advanced courses, or both. Every aspect of AP course and exam development is the result of collaboration between AP teachers and college faculty. They work together to develop AP courses and exams, set scoring standards, and score the exams. College faculty review every AP teacher’s course syllabus.

AP Physics Program

The AP Program offers four physics courses:

AP Physics 1: Algebra-Based is a full-year course that is the equivalent of a first-semester introductory college course in algebra-based physics.

AP Physics 2: Algebra-Based is a full-year course, equivalent to a second-semester introductory college course in physics.

AP Physics C: Mechanics is a half-year course equivalent to a semester-long, introductory calculus-based college course.

AP Physics C: Electricity and Magnetism, a half-year course following Physics C: Mechanics, is equivalent to a semester-long, introductory calculus-based college course.

AP Physics C: Electricity and Magnetism

Course Overview

AP Physics C: Electricity and Magnetism is a calculus-based, college-level physics course, especially appropriate for students planning to specialize or major in physical science or engineering. The course explores topics such as electrostatics; conductors, capacitors, and dielectrics; electric circuits; magnetic fields; and electromagnetism. Introductory differential and integral calculus are used throughout the course.

PREREQUISITES

Students should have taken or be concurrently taking calculus.

LABORATORY REQUIREMENT

This course requires that 25% of instructional time be spent in hands-on laboratory work, with an emphasis on inquiry-based investigations that provide students with opportunities to demonstrate the foundational physics principles and apply the science practices. Colleges may require students to present their laboratory materials from AP science courses before granting college credit for laboratory work, so students are encouraged to retain their notebooks, reports, and other materials.

AP Physics C: Electricity and Magnetism

Course Content

The course content is organized into six commonly taught units, which have been arranged in the following suggested, logical sequence:

- **Unit 8:** Electric Charges, Fields, and Gauss’s Law
- **Unit 9:** Electric Potential
- **Unit 10:** Conductors and Capacitors
- **Unit 11:** Electric Circuits
- **Unit 12:** Magnetic Fields and Electromagnetism
- **Unit 13:** Electromagnetic Induction

Each unit is broken down into teachable segments called topics.

AP Physics C: Electricity and Magnetism

Science Practices

The following science practices describe what skills students should develop during the course:

- **Creating Representations:** Create representations that depict physical phenomena.
- **Mathematical Routines:** Conduct analyses to derive, calculate, estimate, or predict.
- **Scientific Questioning and Argumentation:** Describe experimental procedures, analyze data, and support claims.
AP Physics C: Electricity and Magnetism Exam Structure

Assessment Overview

The AP Physics C: Electricity and Magnetism Exam assesses student application of the science practices and understanding of the learning objectives outlined in the course framework. The exam is 3 hours long and includes 40 multiple-choice questions and 4 free-response questions. The 4 free-response questions appear in the order listed in the table on the right. A four-function, scientific, or graphing calculator is allowed on both sections of the exam.

Format of Assessment

Section I: Multiple-choice | 40 Questions | 80 Minutes | 50% of Exam Score

Section II: Free-response | 4 Questions | 100 Minutes | 50% of Exam Score

- Question 1: Mathematical Routines (10 points).
- Question 2: Translational Between Representations (12 points).
- Question 3: Experimental Design and Analysis (10 points).
- Question 4: Qualitative/Quantitative Translation (8 points each).

SAMPLE QUESTIONS APPEAR ON THE NEXT PAGE
Sample Multiple-Choice Question

When a nonideal battery is connected to a resistor with resistance R, as shown in Figure 1, the current in the circuit is I. When the same nonideal battery is connected to a resistor with resistance $3R$, as shown in Figure 2, the current in the circuit is $\frac{I}{2}$. What is the internal resistance r of the battery?

(a) $\frac{R}{4}$
(b) $\frac{R}{2}$
(c) R
(d) $2R$

Correct Answer: C

Sample Free-Response Question – Mathematical Routines

A thin, nonconducting ring is held fixed in the xy-plane with its center at the origin O. The ring has radius R and a positive charge $+Q$ uniformly distributed around its circumference. A small sphere of mass m and negative charge $-Q$ is on the z-axis, as shown in Figure 1. Point A is located on the z-axis at $z = R$.

(a) i. In which of the following regions, if any, can the sphere be placed on the z-axis so that the net electric potential at Point A due to the sphere and the ring is zero? Indicate your answer by selecting one of the options below.

- Above Point A only
- Below Point A only
- Either above or below point A
- There is no location the sphere can be placed so that the net electric potential is zero

Briefly justify your reasoning.

ii. The sphere is released from rest on the z-axis some distance above the ring. All forces other than the electric force exerted by the ring are negligible. The sphere passes through the origin O, where it has speed v_0, and continues moving, eventually passing through location $z = -3R$. Derive an expression for the speed of the sphere at the instant the sphere passes through the location $z = -3R$. Express your answer in terms of m, Q, R, v_0, and physical constants, as appropriate.

The sphere is then removed. Figure 2 shows the ring and Point C, which is located at $z = 2R$ on the z-axis.

(b) Derive an expression for the magnitude of the electric field due to the ring at Point C. Express your answer in terms of Q, R, and physical constants, as appropriate.