AP® Physics 1: Algebra-Based

COURSE AND EXAM DESCRIPTION

Effective Fall 2024

INCLUDES
☑ Course framework
☑ Instructional section
☑ Sample exam questions
What AP® Stands For

Thousands of Advanced Placement teachers have contributed to the principles articulated here. These principles are not new; they are, rather, a reminder of how AP already works in classrooms nationwide. The following principles are designed to ensure that teachers’ expertise is respected, required course content is understood, and that students are academically challenged and free to make up their own minds.

1. AP stands for clarity and transparency. Teachers and students deserve clear expectations. The Advanced Placement Program makes public its course frameworks and sample assessments. Confusion about what is permitted in the classroom disrupts teachers and students as they navigate demanding work.

2. AP is an unflinching encounter with evidence. AP courses enable students to develop as independent thinkers and to draw their own conclusions. Evidence and the scientific method are the starting place for conversations in AP courses.

3. AP opposes censorship. AP is animated by a deep respect for the intellectual freedom of teachers and students alike. If a school bans required topics from their AP courses, the AP Program removes the AP designation from that course and its inclusion in the AP Course Ledger provided to colleges and universities. For example, the concepts of evolution are at the heart of college biology, and a course that neglects such concepts does not pass muster as AP Biology.

4. AP opposes indoctrination. AP students are expected to analyze different perspectives from their own, and no points on an AP Exam are awarded for agreement with any specific viewpoint. AP students are not required to feel certain ways about themselves or the course content. AP courses instead develop students’ abilities to assess the credibility of sources, draw conclusions, and make up their own minds.

As the AP English Literature course description states: “AP students are not expected or asked to subscribe to any one specific set of cultural or political values, but are expected to have the maturity to analyze perspectives different from their own and to question the meaning, purpose, or effect of such content within the literary work as a whole.”

5. AP courses foster an open-minded approach to the histories and cultures of different peoples. The study of different nationalities, cultures, religions, races, and ethnicities is essential within a variety of academic disciplines. AP courses ground such studies in primary sources so that students can evaluate experiences and evidence for themselves.

6. Every AP student who engages with evidence is listened to and respected. Students are encouraged to evaluate arguments but not one another. AP classrooms respect diversity in backgrounds, experiences, and viewpoints. The perspectives and contributions of the full range of AP students are sought and considered. Respectful debate of ideas is cultivated and protected; personal attacks have no place in AP.

7. AP is a choice for parents and students. Parents and students freely choose to enroll in AP courses. Course descriptions are available online for parents and students to inform their choice. Parents do not define which college-level topics are suitable within AP courses; AP course and exam materials are crafted by committees of professors and other expert educators in each field. AP courses and exams are then further validated by the American Council on Education and studies that confirm the use of AP scores for college credits by thousands of colleges and universities nationwide.

The AP Program encourages educators to review these principles with parents and students so they know what to expect in an AP course. Advanced Placement is always a choice, and it should be an informed one. AP teachers should be given the confidence and clarity that once parents have enrolled their child in an AP course, they have agreed to a classroom experience that embodies these principles.
EXAM INFORMATION

177 Exam Overview
179 How Student Learning Is Assessed on the AP Exam
182 Task Verbs Used in Free-Response Questions
183 Sample Exam Questions

SCORING GUIDELINES

201 Question 1: Mathematical Routines
203 Question 2: Translation Between Representations
206 Question 3: Experimental Design and Analysis
208 Question 4: Qualitative/Quantitative Translation

APPENDIX

213 Vocabulary and Definitions of Important Ideas in AP Physics
217 Table of Information: Equations
Acknowledgments

College Board would like to acknowledge the following committee members, consultants, and reviewers for their assistance with and commitment to the development of this course. All individuals and their affiliations were current at the time of contribution.

Hamza Balci, Kent State University, Kent, OH
Suzanne Brahmia, University of Washington, Seattle, WA
Eric Burkholder, Stanford University, Stanford, CA
Whitney Coyle, Rollins College, Winter Park, FL
Robert Davis, Brigham Young University, Provo, UT
Veronica Ellingson, Hudson Senior High School, Hudson, WI
Kristin Glover, Prairie Ridge High School, Crystal Lake, IL
Kathy Harper, Case Western Reserve University, Cleveland, OH
Mark Hossler, Landmark Christian School, Fairburn, GA
Stefan Jeglinski, University of North Carolina, Chapel Hill, NC
David Kashinski, United States Military Academy at West Point, West Point, NY
Kathy Koenig, University of Cincinnati, Cincinnati, OH
Kristine Lang, Colorado College, Colorado Springs, CO
Samuel Lofland, Rowan University, Glassboro, NJ
Joe Mancino, Glastonbury High School, Glastonbury, CT
Ricardo Markland, Miami Coral Park Senior High School, Miami, FL
Dee Dee Messer, William Mason High School, Mason, OH
Holley Mosley, Liberty High School, Frisco, TX
Matt Sckalor, Great Neck South High School, Great Neck, NY
Peter Sheldon, Randolph College, Lynchburg, VA
Gay Stewart, West Virginia University, Morgantown, WV
Shelly Strand, West Fargo High School, West Fargo, ND
Oather Strawderman, Lawrence Free State High School, Lawrence, KS
Tiffany Taylor, Rogers High School, Rogers, AR
Brian Utter, University of California Merced, Merced, CA
Matt Vonk, University of Wisconsin, River Falls, WI
About AP

The Advanced Placement® Program (AP®) enables willing and academically prepared students to pursue college-level studies—with the opportunity to earn college credit, advanced placement, or both—while still in high school. Through AP courses in 40 subjects, each culminating in a challenging exam, students learn to think critically, construct solid arguments, and see many sides of an issue—skills that prepare them for college and beyond. Taking AP courses demonstrates to college admission officers that students have sought the most challenging curriculum available to them, and research indicates that students who score a 3 or higher on an AP Exam typically experience greater academic success in college and are more likely to earn a college degree than non-AP students. Each AP teacher’s syllabus is evaluated and approved by faculty from some of the nation’s leading colleges and universities, and AP Exams are developed and scored by college faculty and experienced AP teachers. Most four-year colleges and universities in the United States grant credit, advanced placement, or both on the basis of successful AP Exam scores—more than 3,300 institutions worldwide annually receive AP scores.

AP Course Development

In an ongoing effort to maintain alignment with best practices in college-level learning, AP courses and exams emphasize challenging, research-based curricula aligned with higher education expectations. Individual teachers are responsible for designing their own curriculum for AP courses, selecting appropriate college-level readings, assignments, and resources. This course and exam description presents the content and skills that are the focus of the corresponding college course and that appear on the AP Exam. It also organizes the content and skills into a series of units that represent a sequence found in widely adopted college textbooks and that many AP teachers have told us they follow in order to focus their instruction. The intention of this publication is to respect teachers’ time and expertise by providing a roadmap that they can modify and adapt to their local priorities and preferences. Moreover, by organizing the AP course content and skills into units, the AP Program is able to provide teachers and students with free formative assessments—Progress Checks—that teachers can assign throughout the year to measure student progress as they acquire content knowledge and develop skills.

Enrolling Students: Equity and Access

The AP Program strongly encourages educators to make equitable access a guiding principle for their AP programs by giving all willing and academically prepared students the opportunity to participate in AP. We encourage the elimination of barriers that restrict access to AP for students from ethnic, racial, and socioeconomic groups that have been traditionally underserved. The AP Program also believes that all students should have access to academically challenging coursework before they enroll in AP classes, which can prepare them for AP success. It is only through a commitment to equitable preparation and access that true equity and excellence can be achieved.

Offering AP Courses: The AP Course Audit

The AP Program unequivocally supports the principle that each school implements its own curriculum that will enable students to develop the content understandings and skills described in the course framework. While the unit sequence represented in this publication is optional, the AP Program does have a short list of curricular and resource requirements that must be fulfilled before a school can label a course “Advanced Placement” or “AP.” Schools wishing to offer AP courses must participate in the AP Course Audit, a process through which AP teachers’ course materials are reviewed by college faculty. The AP Course Audit was created to provide teachers and administrators with clear guidelines on curricular and resource requirements for AP courses and to help colleges and universities validate courses marked “AP” on students’ transcripts. This process ensures that AP teachers’ courses meet or exceed the curricular and resource expectations that college and secondary school faculty have established for college-level courses.
The AP Course Audit form is submitted by the AP teacher and the school principal (or designated administrator) to confirm awareness and understanding of the curricular and resource requirements. A syllabus or course outline, detailing how course requirements are met, is submitted by the AP teacher for review by college faculty.

Please visit collegeboard.org/apcourseaudit for more information to support the preparation and submission of materials for the AP Course Audit.

How the AP Program Is Developed

The scope of content for an AP course and exam is derived from an analysis of hundreds of syllabi and course offerings of colleges and universities. Using this research and data, a committee of college faculty and expert AP teachers work within the scope of the corresponding college course to articulate what students should know and be able to do upon the completion of the AP course. The resulting course framework is the heart of this course and exam description and serves as a blueprint of the content and skills that can appear on an AP Exam.

The AP Test Development Committees are responsible for developing each AP Exam, ensuring the exam questions are aligned to the course framework. The AP Exam development process is a multiyear endeavor; all AP Exams undergo extensive review, revision, piloting, and analysis to ensure that questions are accurate, fair, and valid, and that there is an appropriate spread of difficulty across the questions.

Committee members are selected to represent a variety of perspectives and institutions (public and private, small and large schools and colleges), and a range of gender, racial/ethnic, and regional groups. A list of each subject’s current AP Test Development Committee members is available on apcentral.collegeboard.org.

Throughout AP course and exam development, College Board gathers feedback from various stakeholders in both secondary schools and higher education institutions. This feedback is carefully considered to ensure that AP courses and exams are able to provide students with a college-level learning experience and the opportunity to demonstrate their qualifications for advanced placement and/or college credit.

How AP Exams Are Scored

The exam scoring process, like the course and exam development process, relies on the expertise of both AP teachers and college faculty. While multiple-choice questions are scored by machine, the freeresponse questions and through-course performance assessments, as applicable, are scored by thousands of college faculty and expert AP teachers. Most are scored at the annual AP Reading, while a small portion is scored online. All AP Readers are thoroughly trained, and their work is monitored throughout the Reading for fairness and consistency. In each subject, a highly respected college faculty member serves as Chief Faculty Consultant and, with the help of AP Readers in leadership positions, maintains the accuracy of the scoring standards. Scores on the free-response questions and performance assessments are weighted and combined with the results of the computer-scored multiple-choice questions, and this raw score is converted into a composite AP score on a 1–5 scale.

AP Exams are not norm-referenced or graded on a curve. Instead, they are criterion-referenced, which means that every student who meets the criteria for an AP score of 2, 3, 4, or 5 will receive that score, no matter how many students that is. The criteria for the number of points students must earn on the AP Exam to receive scores of 3, 4, or 5—the scores that research consistently validates for credit and placement purposes—include:

- The number of points successful college students earn when their professors administer AP Exam questions to them.
- Performance that researchers have found to be predictive of an AP student succeeding when placed into a subsequent higher-level college course.
- The number of points college faculty indicate, after reviewing each AP question, that they expect is necessary to achieve each AP grade level.

Using and Interpreting AP Scores

The extensive work done by college faculty and AP teachers in the development of the course and exam and throughout the scoring process ensures that AP Exam scores accurately represent students’ achievement in the equivalent college course. Frequent and regular research studies establish the validity of AP scores as follows:

<table>
<thead>
<tr>
<th>AP Score</th>
<th>Credit Recommendation</th>
<th>College Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Extremely well qualified</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>Well qualified</td>
<td>A-, B+, B</td>
</tr>
<tr>
<td>3</td>
<td>Qualified</td>
<td>B-, C+, C</td>
</tr>
<tr>
<td>2</td>
<td>Possibly qualified</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>No recommendation</td>
<td>n/a</td>
</tr>
</tbody>
</table>
While colleges and universities are responsible for setting their own credit and placement policies, most private colleges and universities award credit and/or advanced placement for AP scores of 3 or higher. Additionally, most states in the U.S. have adopted statewide credit policies that ensure college credit for scores of 3 or higher at public colleges and universities. To confirm a specific college’s AP credit/placement policy, a search engine is available at apstudent.collegeboard.org/creditandplacement/searchcreditpolicies.

BECOMING AN AP READER

Each June, thousands of AP teachers and college faculty members from around the world gather for seven days in multiple locations to evaluate and score the free-response sections of the AP Exams. Ninety-eight percent of surveyed educators who took part in the AP Reading say it was a positive experience.

There are many reasons to consider becoming an AP Reader, including opportunities to:

- **Bring positive changes to the classroom:** Surveys show that the vast majority of returning AP Readers—both high school and college educators—make improvements to the way they teach or score because of their experience at the AP Reading.
- **Gain in-depth understanding of AP Exam and AP scoring standards:** AP Readers gain exposure to the quality and depth of the responses from the entire pool of AP Exam takers, and thus are better able to assess their students’ work in the classroom.
- **Receive compensation:** AP Readers are compensated for their work during the Reading. Expenses, lodging, and meals are covered for Readers who travel.
- **Score from home:** AP Readers have online distributed scoring opportunities for certain subjects. Check collegeboard.org/apreading for details.
- **Earn Continuing Education Units (CEUs):** AP Readers earn professional development hours and CEUs that can be applied to PD requirements by states, districts, and schools.

How to Apply

Visit collegeboard.org/apreading for eligibility requirements and to start the application process.
AP Resources
and Support

By completing a simple class selection process at the start of the school year, teachers and students receive access to a robust set of classroom resources.

AP Classroom

AP Classroom is a dedicated online platform designed to support teachers and students throughout their AP experience. The platform provides a variety of powerful resources and tools to provide yearlong support to teachers and students, offering opportunities to give and get meaningful feedback on student progress.

UNIT GUIDES

Appearing in this publication and on AP Classroom, these planning guides outline all required course content and skills, organized into commonly taught units. Each Unit Guide suggests a sequence and pacing of content, scaffolds skill instruction across units, organizes content into topics, and provides tips on taking the AP Exam.

PROGRESS CHECKS

Formative AP questions for every unit provide feedback to students on the areas where they need to focus. Available online, Progress Checks measure knowledge and skills through multiple-choice questions with rationales to explain correct and incorrect answers, and free-response questions with scoring information. Because the Progress Checks are formative, the results of these assessments cannot be used to evaluate teacher effectiveness or assign letter grades to students, and any such misuses are grounds for losing school authorization to offer AP courses.*

REPORTS

The Reports section provides teachers with a one-stop shop for student results on all assignment types, including Progress Checks. Teachers can view class trends and see where students struggle with content and skills that will be assessed on the AP Exam. Students can view their own progress over time to improve their performance before the AP Exam.

QUESTION BANK

The Question Bank is a searchable library of all AP questions that teachers use to build custom practice for their students. Teachers can create and assign assessments with formative topic questions or questions from practice or released AP Exams.

Class Section Setup and Enrollment

- Teachers and students sign in to or create their College Board accounts.
- Teachers confirm that they have added the course they teach to their AP Course Audit account and have had it approved by their school’s administrator.
- Teachers or AP coordinators, depending on who the school has decided is responsible, set up class sections so students can access AP resources and have exams ordered on their behalf.
- Students join class sections with a join code provided by their teacher or AP coordinator.
- Students will be asked for additional information upon joining their first class section.

Instructional Model

Integrating AP resources throughout the course can help students develop skills and conceptual understandings. The instructional model outlined below shows possible ways to incorporate AP resources into the classroom.

Plan
Teachers may consider the following approaches as they plan their instruction before teaching each unit.

- Review the overview at the start of each Unit Guide to identify essential questions, conceptual understandings, and skills for each unit.
- Use the Unit at a Glance table to identify related topics that build toward a common understanding, and then plan appropriate pacing for students.
- Identify useful strategies in the Instructional Approaches section to help teach the concepts and skills.

Teach
When teaching, supporting resources could be used to build students' conceptual understanding and their mastery of skills.

- Use the topic pages in the Unit Guides to identify the required content.
- Integrate the content with a skill, considering any appropriate scaffolding.
- Employ any of the instructional strategies previously identified.

Assess
Teachers can measure student understanding of the content and skills covered in the unit and provide actionable feedback to students.

- As you teach each topic, use AP Classroom to assign student Topic Questions as a way to continuously check student understanding and provide just in time feedback.
- At the end of each unit, use AP Classroom to assign students Progress Checks, as homework or an in-class task.
- Provide question-level feedback to students through answer rationales; provide unit- and skill-level formative feedback using Reports.
- Create additional practice opportunities using the Question Bank and assign them through AP Classroom.
About the AP Physics 1 Course

AP Physics 1 is an algebra-based, introductory college-level physics course. Students cultivate their understanding of physics by developing models of physical phenomena through inquiry-based investigations.

Students build their understanding of physical models as they explore and solve problems in these content areas:

- Kinematics
- Forces and Translational Dynamics
- Work, Energy, and Power
- Linear Momentum
- Torque and Rotational Dynamics
- Energy and Momentum of Rotating Systems
- Oscillations
- Fluids

College Course Equivalent

AP Physics 1 is equivalent to the first course in an introductory college course sequence in algebra-based physics.

Prerequisites

Students should have completed Geometry and be concurrently taking Algebra II or an equivalent course. Although the Physics 1 course includes basic use of trigonometric functions, this understanding can be gained either in the concurrent math course or in the AP Physics 1 course itself.

Laboratory Requirement

This course requires that 25 percent of instructional time be spent in hands-on laboratory work, with an emphasis on inquiry-based investigations that provide students with opportunities to demonstrate the foundational physics principles and apply the science practices.

Inquiry-based laboratory experiences support the AP Physics 1 course and AP Course Audit curricular requirements by providing opportunities for students to engage in the science practices as they design plans for experiments, make predictions, collect and analyze data, apply mathematical routines, develop explanations, and communicate about their work.

Colleges may require students to present their laboratory materials from AP science courses before granting college credit for laboratory work, so students should be encouraged to retain their laboratory notebooks, reports, and other materials.
Introduction

The AP Physics 1 course outlined in this framework reflects a commitment to what physics teachers, professors, and researchers have agreed is the main goal of a college-level physics course: to help students develop a deep understanding of the foundational principles that shape classical mechanics. By confronting complex physical situations or scenarios, the course is designed to enable students to develop the ability to reason about physical phenomena using important science practices, such as explaining relationships, applying and justifying the use of mathematical routines, designing experiments, analyzing data, and making connections across multiple topics within the course.

To foster this deeper level of learning, the AP Physics 1 course defines concepts, science practices, and understandings required by representative colleges and universities for granting college credit and/or placement. Students will practice reasoning skills used by physicists by discussing and debating, with peers, the physical phenomena investigated in class, as well as by designing and conducting inquiry-based laboratory investigations to solve problems through first-hand observations, data collection, analysis, and interpretation.

This document is not a complete curriculum. Teachers create their own local curriculum by selecting, for each concept, content that enables students to explore the course learning objectives and meets state or local requirements. The result is a course that prepares students for college credit and/or placement.
THIS PAGE IS INTENTIONALLY LEFT BLANK.
Course Framework Components

Overview
This course framework provides a clear and detailed description of the course requirements necessary for student success. The framework specifies what students must know, be able to do, and understand to qualify for college credit and/or placement.

The course framework includes two essential components:

1 SCIENCE PRACTICES
The science practices are central to the study and practice of physics. Students should develop and apply the described practices on a regular basis over the span of the course.

2 COURSE CONTENT
The course content is organized into commonly taught units of study that provide a suggested sequence for the course, and detail required content and conceptual understandings that colleges and universities typically expect students to be proficient in, in order to qualify for college credit and/or placement.
Science Practices

The table that follows presents the science practices that students should develop during the AP Physics 1 course. These practices form the basis of many tasks on the AP Physics 1 Exam.

The Unit Guides that follow embed and spiral these practices throughout the course, providing teachers with one way to integrate the practices into the course content with sufficient repetition to prepare students to apply those science practices when taking the AP Physics 1 Exam.

More detailed information about teaching the science practices can be found in the Instructional Approaches section of this publication.
Practice 1

Creating Representations
Create representations that depict physical phenomena.

SKILLS

1. **A** Create diagrams, tables, charts, or schematics to represent physical situations.
2. **B** Create quantitative graphs with appropriate scales and units, including plotting data.
3. **C** Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.

Practice 2

Mathematical Routines
Conduct analyses to derive, calculate, estimate, or predict.

SKILLS

2. **A** Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
3. **B** Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
4. **C** Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
5. **D** Predict new values or factors of change of physical quantities using functional dependence between variables.

Practice 3

Scientific Questioning and Argumentation
Describe experimental procedures, analyze data, and support claims.

SKILLS

3. **A** Create experimental procedures that are appropriate for a given scientific question.
4. **B** Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
5. **C** Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.
The AP Physics 1 course framework provides a clear detailed description of the course requirements for student success. The framework specifies what students must know, be able to do, and understand with a focus on ideals that encompass core principles, theories, and processes of physics. This framework also encourages instruction that prepares students to make connections across domains through a broader way of thinking about the physical world.

UNITS

The course content is organized into commonly taught units. The units have been arranged in a logical sequence frequently found in many college courses and textbooks.

The eight units in AP Physics 1 and their relevant weightings on the multiple-choice section of the AP Exam are listed on the next page.

Pacing recommendations on the Course at a Glance page provide suggestions for how teachers can cover both the required course content and the Progress Checks. The number of suggested class periods is based on a schedule in which the class meets five days a week for 45 minutes each day or for 90 minutes a day for a single semester. While these recommendations have been made to aid in planning, teachers are free to adjust the pacing based on the needs of their students, alternate schedules (e.g., block scheduling), or their school's academic calendar.
Exam Weighting for the Multiple-Choice Section of the AP Physics 1 Exam

<table>
<thead>
<tr>
<th>Units of Instruction</th>
<th>Exam Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1: Kinematics</td>
<td>10–15%</td>
</tr>
<tr>
<td>Unit 2: Force and Translational Dynamics</td>
<td>18–23%</td>
</tr>
<tr>
<td>Unit 3: Work, Energy, and Power</td>
<td>18–23%</td>
</tr>
<tr>
<td>Unit 4: Linear Momentum</td>
<td>10–15%</td>
</tr>
<tr>
<td>Unit 5: Torque and Rotational Dynamics</td>
<td>10–15%</td>
</tr>
<tr>
<td>Unit 6: Energy and Momentum of Rotating Systems</td>
<td>5–8%</td>
</tr>
<tr>
<td>Unit 7: Oscillations</td>
<td>5–8%</td>
</tr>
<tr>
<td>Unit 8: Fluids</td>
<td>10–15%</td>
</tr>
</tbody>
</table>

TOPICS

Each unit is divided into teachable segments called topics. Visit the topic pages (starting on page 31) to see all the required content for each topic.

Learning Objectives and Science Practices

In the AP Physics 1 course and exam, every exam question of student proficiency will be aligned to a learning objective and a skill. The learning objectives represent the content domain, while the skill represents the science practice required to successfully complete the task. The three categories of science practices are described as discrete practices; they are in fact interrelated. For example, scientific questions and predictions are associated with underlying mathematical relationships, and those relationships are used to create diagrams and graphs. The ordering of the science practices is not meant to describe any hierarchy of importance or difficulty.

The three science practices, and their associated skills, will be applied to all learning objectives in the course framework. The task verb “describe,” which is used in nearly all learning objectives, encompasses the range of possible graphical, mathematical, or verbal skill applications. Within these multiple representations, students should be able to “describe” a physical concept graphically, mathematically, and verbally.

For example, for a given learning objective, teachers are encouraged to ask the following questions about a physical phenomenon:

- How would students create or interpret graphs or other visual representations?
- What quantitative problems could students solve?
- What experiment could a student design, or what data would students analyze?
- How could the concepts be described verbally?
- How could the course content be used as evidence to justify or support a claim about the behavior of a system, physical phenomena, or outcome of an experiment?

Required Equations

Not all equations in this course framework appear on the equation sheet provided to students while taking the AP Physics 1 Exam. Many of the equations in this document are provided for reference and guidance, or to demonstrate the final results of derivations expected of students on the exam. These equations are denoted as “Derived Equations.” Additionally, variables used within this course framework follow the definitions given on the equation sheet. For a complete list of the equations available to students on the AP Physics 1 Exam, please see the AP Physics 1 Table of Information: Equations in the Appendix.
Course at a Glance

Plan
The Course at a Glance provides a useful visual organization for the AP Physics 1 course components, including:

- Sequence of units, along with approximate weighting and suggested pacing. Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the science practices across units.

Teach

PRACTICES
Science Practices spiral throughout the course

1. Creating Representations
2. Mathematical Routines
3. Scientific Questioning and Argumentation

Required Course Content
Each topic contains required Learning Objectives and Essential Knowledge Statements that form the basis of the assessment on the AP Exam.

Assess
Assign the Progress Checks—either as homework or in class—for each unit. Each Progress Check contains formative multiple-choice and free-response questions. The feedback from these checks shows students the areas where they need to focus.

Progress Check 1
Multiple-choice: ~18 questions
Free-response: 4 questions
- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

Progress Check 2
Multiple-choice: ~30 questions
Free-response: 4 questions
- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
UNIT 3: Work, Energy, and Power

- **3.1** Translational Kinetic Energy
- **3.2** Work
- **3.3** Potential Energy
- **3.4** Conservation of Energy
- **3.5** Power

UNIT 4: Linear Momentum

- **4.1** Linear Momentum
- **4.2** Change in Momentum and Impulse
- **4.3** Conservation of Linear Momentum
- **4.4** Elastic and Inelastic Collisions

UNIT 5: Torque and Rotational Dynamics

- **5.1** Rotational Kinematics
- **5.2** Connecting Linear and Rotational Motion
- **5.3** Torque
- **5.4** Rotational Inertia
- **5.5** Rotational Equilibrium and Newton's First Law in Rotational Form
- **5.6** Newton's Second Law in Rotational Form

Progress Check 3
- **Multiple-choice:** ∼18 questions
- **Free-response:** 4 questions
 - Mathematical Routines
 - Translation Between Representations
 - Experimental Design and Analysis
 - Qualitative/Quantitative Translation

Progress Check 4
- **Multiple-choice:** ∼18 questions
- **Free-response:** 4 questions
 - Mathematical Routines
 - Translation Between Representations
 - Experimental Design and Analysis
 - Qualitative/Quantitative Translation

Progress Check 5
- **Multiple-choice:** ∼18 questions
- **Free-response:** 4 questions
 - Mathematical Routines
 - Translation Between Representations
 - Experimental Design and Analysis
 - Qualitative/Quantitative Translation
UNIT 6: Energy and Momentum of Rotating Systems

<table>
<thead>
<tr>
<th>Periods</th>
<th>Class Periods</th>
<th>AP Exam Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>~8–14</td>
<td>~5–8%</td>
<td></td>
</tr>
</tbody>
</table>

1. **6.1 Rotational Kinetic Energy**
2. **6.2 Torque and Work**
3. **6.3 Angular Momentum and Angular Impulse**
4. **6.4 Conservation of Angular Momentum**
5. **6.5 Rolling**
6. **6.6 Motion of Orbiting Satellites**

Progress Check 6

Multiple-choice: ~18 questions
Free-response: 4 questions
- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

UNIT 7: Oscillations

<table>
<thead>
<tr>
<th>Periods</th>
<th>Class Periods</th>
<th>AP Exam Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>~5–10</td>
<td>~5–8%</td>
<td></td>
</tr>
</tbody>
</table>

1. **7.1 Defining Simple Harmonic Motion (SHM)**
2. **7.2 Frequency and Period of SHM**
3. **7.3 Representing and Analyzing SHM**
4. **7.4 Energy of Simple Harmonic Oscillators**

Progress Check 7

Multiple-choice: ~18 questions
Free-response: 4 questions
- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation

UNIT 8: Fluids

<table>
<thead>
<tr>
<th>Periods</th>
<th>Class Periods</th>
<th>AP Exam Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>~12–17</td>
<td>~10–15%</td>
<td></td>
</tr>
</tbody>
</table>

1. **8.1 Internal Structure and Density**
2. **8.2 Pressure**
3. **8.3 Fluids and Newton’s Laws**
4. **8.4 Fluids and Conservation Laws**

Progress Check 8

Multiple-choice: ~18 questions
Free-response: 4 questions
- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
Introduction

Designed with input from the community of AP Physics 1 educators, the Unit Guides offer teachers helpful guidance in building students’ skills and content knowledge. The suggested sequence was identified through a thorough analysis of the syllabi of highly effective AP teachers and the organization of typical college textbooks.

This unit structure respects new AP teachers’ time by providing one possible sequence that they can adopt or modify rather than having to build from scratch. An additional benefit is that these units enable the AP Program to provide interested teachers with formative assessments—the Progress Checks—that they can assign their students at the end of each unit to gauge progress toward success on the AP Exam. However, experienced AP teachers who are satisfied with their current course organization and exam results should feel no pressure to adopt these units, which comprise an optional sequence for this course.
Using the Unit Guides

UNIT OPENDERS

Developing Understanding provides an overview that contextualizes and situates the key content of the unit within the scope of the course.

The **essential questions** are thought-provoking questions that motivate students and inspire inquiry.

Building the **Science Practices** describes specific skills within the practices that are appropriate to focus on in that unit. Certain practices have been noted to indicate areas of emphasis for that unit.

Preparing for the AP Exam provides helpful tips and common student misunderstandings identified from prior exam data.

The **Unit at a Glance** table shows the topics, and suggested skills.

The **suggested skills** for each topic show possible ways to link the content in that topic to specific AP Physics skills. The individual skills have been thoughtfully chosen in a way that scaffolds the skills throughout the course. The questions on the Progress Checks are based on this pairing. However, AP Exam questions can pair the content with any of the skills.
The **Sample Instructional Activities** page includes optional activities that can help teachers tie together the content and skill for a particular topic.

TOPIC PAGES

The suggested skill offers a possible skill to pair with the topic. Learning objectives define what a student needs to be able to do with content knowledge in order to progress through the course. Essential knowledge statements define the required content knowledge associated with each learning objective assessed on the AP Exam. Boundary statements provide guidance to teachers regarding the content boundaries of the AP Physics courses. Boundary statements appear at the end of essential knowledge statements where appropriate.
Remember to go to AP Classroom to assign students the online Progress Check for this unit.

Whether assigned as homework or completed in class, the Progress Check provides each student with immediate feedback related to this unit’s topics and science practices.

Progress Check 1

Multiple-choice: ~18 questions

Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
Developing Understanding

The world is made up of objects that are in a constant state of motion. To understand the relationships between objects, students must first understand movement. Unit 1 introduces students to the study of motion and serves as a foundation for all of AP Physics 1 by exploring the idea of acceleration and showing students how representations can be used to model and analyze scientific information as it relates to the motion of objects.

Building the Science Practices

Multiple representations are key in Unit 1. By studying kinematics, students will learn to represent motion—both constant velocity and constant acceleration—in words, in graphical (1.A and 1.C) and/or mathematical forms (2.A and 2.B), and from different frames of reference. These representations will help students analyze the specific motion of objects and systems while also dispelling some common misconceptions they may have about motion, such as exclusively using negative acceleration to describe an object slowing down. Additionally, students will have the opportunity to think beyond their traditional understanding of mathematics. Instead of merely evaluating equations (2.B), students will use mathematical representations to support their reasoning and gain proficiency in using mathematical models to describe physical phenomena.

Preparing for the AP Exam

Creating models and representations is a fundamental piece of the second question in the free-response section—Translation Between Representations (TBR) question—and the analysis of models and representations constitutes a large part of the multiple-choice section of the AP Physics 1 Exam. Physicists often use models and representations to show the behavior of objects and/or systems of objects and to illustrate physics concepts. Representations and models include, but are not limited to, sketches of the physical situation, graphs, mathematical equations, and verbal descriptions. As they encounter new scenarios through the unit, students should be encouraged to apply different representations based on the type of information given.
UNIT AT A GLANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
</table>
| **1.1 Scalars and Vectors in One Dimension** | 1.A Create diagrams, tables, charts, or schematics to represent physical situations.
2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| **1.2 Displacement, Velocity, and Acceleration** | 1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| **1.3 Representing Motion** | 1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2.B Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |
| **1.4 Reference Frames and Relative Motion** | 1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
UNIT AT A GLANCE (cont’d)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
</table>
| 1.5 Vectors and Motion in Two Dimensions | 1.B Create quantitative graphs with appropriate scales and units, including plotting data.
2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2.D Predict new values or factors of change of physical quantities using functional dependence between variables.
3.A Create experimental procedures that are appropriate for a given scientific question.
3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |

Go to **AP Classroom** to assign the **Progress Check** for Unit 1.
Review the results in class to identify and address any student misunderstandings.
SAMPLE INSTRUCTIONAL ACTIVITIES

The sample activities on this page are optional and are offered to provide possible ways to incorporate various instructional approaches in the classroom. Teachers do not need to use these activities or instructional approaches and are free to alter or edit them. The examples below were developed in partnership with teachers from the AP community to share ways that they approach teaching some of the topics in this unit. Please refer to the Instructional Approaches section beginning on p. 153 for more examples of activities and strategies.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Topic</th>
<th>Sample Activity</th>
</tr>
</thead>
</table>
| 1 | 1.2 | **Desktop Experiment Task**
Give each group a pull-back toy car. Ask students to lay out strips of paper 0.5 m apart and take a video of the car as it is released, speeds up, and slows down. Using a frame-by-frame review app to get the time each strip is passed to get x versus t data, have students make v versus t data tables out of this, and graph both position as a function of time and velocity as a function of time. |
| 2 | 1.3 | **Desktop Experiment Task**
Have students find the acceleration of a yo-yo as it falls and unwinds using only a meterstick and stopwatch. Then, have students draw (with correct shapes and scales) distance, speed, and acceleration versus time graphs. |
| 3 | 1.3 | **Changing Representations**
Show a curvy x versus t graph, a v versus t graph made of connected straight-line segments, or an a versus t graph made of horizontal steps. Have students sketch the other two graphs and either walk them out along a line or move a cart on a track to demonstrate the motion (Note: The track can be tilted slightly to provide constant acceleration in either direction). |
| 4 | 1.5 | **Changing Representations**
Have students throw/launch a ball from the second or third story of a building to the ground and measure the ball’s initial height, horizontal distance, and time in the air. From this, ask students to calculate initial velocity components and draw (with scales) horizontal/vertical position/velocity/acceleration versus time graphs. |
| 5 | 1.5 | **Create a Plan**
Give each group a spring-loaded ball launcher and a meterstick. Have students launch the ball horizontally from a known height and then predict where it will land on the floor when fired at a given angle from the floor. Then, ask students to write their own set of lab instructions for the procedure they just performed, articulating each subtask and calculations needed to obtain their prediction. |
TOPIC 1.1
Scalars and Vectors in One Dimension

Required Course Content

LEARNING OBJECTIVE

1.1.A
Describe a scalar or vector quantity using magnitude and direction, as appropriate.

ESSENTIAL KNOWLEDGE

1.1.A.1
Scalars are quantities described by magnitude only; vectors are quantities described by both magnitude and direction.

1.1.A.2
Vectors can be visually modeled as arrows with appropriate direction and lengths proportional to their magnitude.

1.1.A.3
Distance and speed are examples of scalar quantities, while position, displacement, velocity, and acceleration are examples of vector quantities.

1.1.A.3.i
Vectors are notated with an arrow above the symbol for that quantity.

Relevant equation:
\[\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t \]

1.1.A.3.ii
Vector notation is not required for vector components along an axis. In one dimension, the sign of the component completely describes the direction of that component.

Derived equation:
\[v_x = v_{x0} + a_x t \]

1.1.B
Describe a vector sum in one dimension.

1.1.B.1
When determining a vector sum in a given one-dimensional coordinate system, opposite directions are denoted by opposite signs.

SUGGESTED SKILLS

1.A
Create diagrams, tables, charts, or schematics to represent physical situations.

2.C
Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.

3.B
Apply an appropriate law, definition, theoretical relationship, or model to make a claim.

3.C
Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.
TOPIC 1.2
Displacement, Velocity, and Acceleration

Required Course Content

LEARNING OBJECTIVE

1.2.A
Describe a change in an object’s position.

ESSENTIAL KNOWLEDGE

1.2.A.1
When using the object model, the size, shape, and internal configuration are ignored. The object may be treated as a single point with extensive properties such as mass and charge.

1.2.A.2
Displacement is the change in an object’s position.

Relevant equation:
\[\Delta x = x - x_0 \]

1.2.B
Describe the average velocity and acceleration of an object.

1.2.B.1
Averages of velocity and acceleration are calculated considering the initial and final states of an object over an interval of time.

1.2.B.2
Average velocity is the displacement of an object divided by the interval of time in which that displacement occurs.

Relevant equation:
\[\bar{v}_{\text{avg}} = \frac{\Delta \bar{x}}{\Delta t} \]

1.2.B.3
Average acceleration is the change in velocity divided by the interval of time in which that change in velocity occurs.

Relevant equation:
\[\bar{a}_{\text{avg}} = \frac{\Delta \bar{v}}{\Delta t} \]

continued on next page
LEARNING OBJECTIVE

1.2.B
Describe the velocity and acceleration of an object.

ESSENTIAL KNOWLEDGE

1.2.B.4
An object is accelerating if the magnitude and/or direction of the object’s velocity are changing.

1.2.B.5
Calculating average velocity or average acceleration over a very small time interval yields a value that is very close to the instantaneous velocity or instantaneous acceleration.
TOPIC 1.3
Representing Motion

Required Course Content

LEARNING OBJECTIVE

1.3.A
Describe the position, velocity, and acceleration of an object using representations of that object's motion.

ESSENTIAL KNOWLEDGE

1.3.A.1
Motion can be represented by motion diagrams, figures, graphs, equations, and narrative descriptions.

1.3.A.2
For constant acceleration, three kinematic equations can be used to describe instantaneous linear motion in one dimension:

\[v_x = v_{x_0} + a_x t \]
\[x = x_0 + v_{x_0} t + \frac{1}{2} a_x t^2 \]
\[v_x^2 = v_{x_0}^2 + 2 a_x (x - x_0) \]

Note: The equations above are written to indicate motion in the \(x \)-direction, but these equations can be used in any single dimension as appropriate.

1.3.A.3
Near the surface of Earth, the vertical acceleration caused by the force of gravity is downward, constant, and has a measured value approximately equal to

\[a_g = g = 10 \text{ m/s}^2. \]

1.3.A.4
Graphs of position, velocity, and acceleration as functions of time can be used to find the relationships between those quantities.

continued on next page
LEARNING OBJECTIVE

1.3.A

Describe the position, velocity, and acceleration of an object using representations of that object’s motion.

ESSENTIAL KNOWLEDGE

1.3.A.4.i
An object’s instantaneous velocity is the rate of change of the object’s position, which is equal to the slope of a line tangent to a point on a graph of the object’s position as a function of time.

1.3.A.4.ii
An object’s instantaneous acceleration is the rate of change of the object’s velocity, which is equal to the slope of a line tangent to a point on a graph of the object’s velocity as a function of time.

1.3.A.4.iii
The displacement of an object during a time interval is equal to the area under the curve of a graph of the object’s velocity as a function of time (i.e., the area bounded by the function and the horizontal axis for the appropriate interval).

1.3.A.4.iv
The change in velocity of an object during a time interval is equal to the area under the curve of a graph of the acceleration of the object as a function of time.

BOUNDARY STATEMENT

AP Physics 1 does not expect students to quantitatively analyze nonuniform acceleration. However, students will be expected to be able to qualitatively analyze, sketch appropriate graphs of, and discuss situations in which acceleration is nonuniform.

BOUNDARY STATEMENT

*For all situations in which a numerical quantity is required for g, the value $g = 10 \text{ m/s}^2$ will be used. However, students will not be penalized for correctly using the more precise commonly accepted values of $g = 9.81 \text{ m/s}^2$ or $g = 9.8 \text{ m/s}^2$.***
TOPIC 1.4
Reference Frames and Relative Motion

Required Course Content

LEARNING OBJECTIVE

1.4.A
Describe the reference frame of a given observer.

1.4.B
Describe the motion of objects as measured by observers in different inertial reference frames.

ESSENTIAL KNOWLEDGE

1.4.A.1
The choice of reference frame will determine the direction and magnitude of quantities measured by an observer in that reference frame.

1.4.B.1
Measurements from a given reference frame may be converted to measurements from another reference frame.

1.4.B.2
The observed velocity of an object results from the combination of the object’s velocity and the velocity of the observer’s reference frame.

1.4.B.2.i
Combining the motion of an object and the motion of an observer in a given reference frame involves the addition or subtraction of vectors.

1.4.B.2.ii
The acceleration of any object is the same as measured from all inertial reference frames.

BOUNDARY STATEMENT

Unless otherwise stated, the frame of reference of any problem may be assumed to be inertial.

Adding or subtracting vectors to find relative velocities is restricted to motion along one dimension for AP Physics 1.
LEARNING OBJECTIVE

1.5.A
Describe the perpendicular components of a vector.

ESSENTIAL KNOWLEDGE

1.5.A.1
Vectors can be mathematically modeled as the resultant of two perpendicular components.

1.5.A.2
Vectors can be resolved into components using a chosen coordinate system.

1.5.A.3
Vectors can be resolved into perpendicular components using trigonometric functions and relationships.

Relevant equations:

\[\sin \theta = \frac{a}{c} \]

\[\cos \theta = \frac{b}{c} \]

\[\tan \theta = \frac{a}{b} \]

\[a^2 + b^2 = c^2 \]
LEARNING OBJECTIVE

1.5.B
Describe the motion of an object moving in two dimensions.

ESSENTIAL KNOWLEDGE

1.5.B.1
Motion in two dimensions can be analyzed using one-dimensional kinematic relationships if the motion is separated into components.

1.5.B.2
Projectile motion is a special case of two-dimensional motion that has zero acceleration in one dimension and constant, nonzero acceleration in the second dimension.
AP PHYSICS 1

UNIT 2

Force and Translational Dynamics

18–23% AP EXAM WEIGHTING

~22–27 CLASS PERIODS
Remember to go to AP Classroom to assign students the online Progress Check for this unit.

Whether assigned as homework or completed in class, the Progress Check provides each student with immediate feedback related to this unit’s topics and science practices.

Progress Check 2
Multiple-choice: ~30 questions
Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
In Unit 2, students are introduced to the concept of force, which is an interaction between two objects or systems of objects. Part of the larger study of dynamics, forces provide the context in which students analyze and come to understand a variety of physical phenomena. This understanding is accomplished by revisiting and building upon the models and representations presented in Unit 1—specifically through the introduction of the free-body diagram. Students will further analyze the effect of forces on systems when they encounter Newton’s second law in rotational form in Unit 5.

Building the Science Practices

Translation between models and representations is key in this unit. Students will continue to use models and representations that will help them further analyze systems, the interactions between systems, and how these interactions result in change. Alongside gaining proficiency in the use of specific force equations, Unit 2 also encourages students to derive new expressions from fundamental principles (2.A) to help them make predictions using functional dependence between variables (2.D). The skills of making claims (3.B) and supporting those claims using evidence (3.C) can be developed throughout the unit by providing students with opportunities such as having them make predictions about the acceleration of a system based on the forces exerted on that system, and then justifying those predictions with appropriate physics principles.

Preparing for the AP Exam

The AP Physics 1 Exam requires students to re-express key elements of physical phenomena across multiple representations in the domain. This skill appears in the fourth question of the free-response section, the Qualitative/Quantitative Translation (QQT) question. In this question, students demonstrate translation between words and mathematics by describing and analyzing a scenario. Using content from any unit, the QQT first requires students to make a claim and provide evidence and reasoning to support their claim without reference to equations. Students are then asked to derive an equation or set of equations to mathematically represent the scenario. Lastly, students are required to make a connection between the claim made in the first part of the question and the equation(s) derived in the second part. Students exposed primarily to numerical problem solving often struggle with the QQT because it requires them to express a conceptual understanding of course content and representations. Opportunities to translate between different representations, including equations, diagrams, graphs, and verbal descriptions, can help students prepare for the QQT question.
UNIT AT A GLANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Systems and Center of Mass</td>
<td>1.B Create quantitative graphs with appropriate scales and units, including plotting data. 2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway. 3.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario. 3.D Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
<tr>
<td>2.2 Forces and Free-Body Diagrams</td>
<td>1.A Create diagrams, tables, charts, or schematics to represent physical situations. 2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway. 2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario. 3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
<tr>
<td>2.3 Newton’s Third Law</td>
<td>1.A Create diagrams, tables, charts, or schematics to represent physical situations. 2.D Predict new values or factors of change of physical quantities using functional dependence between variables. 3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. 3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
<tr>
<td>2.4 Newton’s First Law</td>
<td>1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system. 2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway. 3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. 3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
</tbody>
</table>

continued on next page
UNIT AT A GLANCE (cont’d)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Newton’s Second Law</td>
<td>1.A Create diagrams, tables, charts, or schematics to represent physical situations.</td>
</tr>
<tr>
<td></td>
<td>2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2.D Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
</tr>
<tr>
<td></td>
<td>3.A Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
<tr>
<td>2.6 Gravitational Force</td>
<td>1.A Create diagrams, tables, charts, or schematics to represent physical situations.</td>
</tr>
<tr>
<td></td>
<td>2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2.D Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
</tr>
<tr>
<td></td>
<td>3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
<tr>
<td>2.7 Kinetic and Static Friction</td>
<td>1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.</td>
</tr>
<tr>
<td></td>
<td>2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.</td>
</tr>
<tr>
<td></td>
<td>2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
</tr>
<tr>
<td></td>
<td>3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
</tbody>
</table>

continued on next page
UNIT AT A GLANCE (cont’d)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 Spring Forces</td>
<td>1B Create quantitative graphs with appropriate scales and units, including plotting data.</td>
</tr>
<tr>
<td></td>
<td>2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
</tr>
<tr>
<td></td>
<td>3A Create experimental procedures that are appropriate for a given scientific question.</td>
</tr>
<tr>
<td></td>
<td>3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
<tr>
<td>2.9 Circular Motion</td>
<td>1B Create quantitative graphs with appropriate scales and units, including plotting data.</td>
</tr>
<tr>
<td></td>
<td>2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2D Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
</tr>
<tr>
<td></td>
<td>3A Create experimental procedures that are appropriate for a given scientific question.</td>
</tr>
<tr>
<td></td>
<td>3C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
</tbody>
</table>

Go to AP Classroom to assign the Progress Check for Unit 2. Review the results in class to identify and address any student misunderstandings.
SAMPLE INSTRUCTIONAL ACTIVITIES

The sample activities on this page are optional and are offered to provide possible ways to incorporate various instructional approaches in the classroom. Teachers do not need to use these activities or instructional approaches and are free to alter or edit them. The examples below were developed in partnership with teachers from the AP community to share ways that they approach teaching some of the topics in this unit. Please refer to the Instructional Approaches section beginning on p. 153 for more examples of activities and strategies.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Topic</th>
<th>Sample Activity</th>
</tr>
</thead>
</table>
| 1 | 2.2 | Changing Representations
Have students consider an accelerating two-object system from everyday life (e.g., person pushes a shopping cart, car pulls a trailer). Have them draw the forces on one object, then on the other, and then the external forces exerted on the two-object system. |
| 2 | 2.5 | Working Backward
Put students in pairs. Have student A write a Newton’s second law equation either with symbols or plugged-in numbers including units. Then, have student B describe a situation that the equation applies to, including the object’s velocity direction and how velocity is changing, a diagram, and a free-body diagram. |
| 3 | 2.5 | What, If Anything, Is Wrong?
Have students identify some force-related problem from their homework or textbook (that requires setting up Newton’s second law and maybe more). Ask students to write out a detailed solution that has exactly one mistake in it (not a calculation error). Post everyone’s problems/solutions, and then ask students to identify everyone else’s errors. The last student to have their error found wins. |
| 4 | 2.7 | Desktop Experiment Task
Have students measure the coefficient of static friction of their shoe on a wood plank or metal track. Level 1: Use a spring scale. Level 2: Use a pulley, a spring, a toy bucket, and an electronic balance. Level 3: Use a protractor. |
| 5 | 2.6/2.9 | Desktop Experiment Task
Have students use the “My Solar System” PhET applet to create circular orbits of varying radii around the central star and record radius, period, and planet mass for various trials. Next, have them calculate the speed using \(v = \frac{2\pi r}{T} \) and force using \(F = \frac{mv^2}{r} \). Using the data, have students show that gravitational force is directly proportional to the mass of each object and inversely proportional to the square of the radius. |
| 6 | 2.9 | Construct an Argument
Ask students to consider two identical objects moving in circles (or parts of circles) of different radii. Then, ask them to think of a situation where the object with the smaller radius has a greater net force and another situation where the object with the larger radius has a greater net force. |
| 7 | 2.9 | Changing Representations
Describe something a driver could be doing in a car (e.g., “turning the steering wheel to the right while pressing the brake”). Have students walk out the motion while holding out one arm representing the velocity vector and the other arm representing the acceleration vector. |
| 8 | 2.9 | Predict and Explain
Attach an object of known weight (say, 2 N) to a force sensor and cause the object to swing in a 180-degree arc. Ask students, “At the bottom, the object is neither speeding up nor slowing down, so what force is registered at the bottom?” Expect students to (incorrectly) answer, “2 N” and discuss, as a class, why this answer is incorrect. |
TOPIC 2.1
Systems and Center of Mass

Required Course Content

LEARNING OBJECTIVE
2.1.A
Describe the properties and interactions of a system.

ESSENTIAL KNOWLEDGE
2.1.A.1
System properties are determined by the interactions between objects within the system.

2.1.A.2
If the properties or interactions of the constituent objects within a system are not important in modeling the behavior of the macroscopic system, the system can itself be treated as a single object.

2.1.A.3
Systems may allow interactions between constituent parts of the system and the environment, which may result in the transfer of energy or mass.

2.1.A.4
Individual objects within a chosen system may behave differently from each other as well as from the system as a whole.

2.1.A.5
The internal structure of a system affects the analysis of that system.

2.1.A.6
As variables external to a system are changed, the system's substructure may change.

continued on next page
LEARNING OBJECTIVE

2.1.B
Describe the location of a system's center of mass with respect to the system's constituent parts.

ESSENTIAL KNOWLEDGE

2.1.B.1
For systems with symmetrical mass distributions, the center of mass is located on lines of symmetry.

2.1.B.2
The location of a system’s center of mass along a given axis can be calculated using the equation

\[
\bar{x}_{cm} = \frac{\sum m_i \bar{x}_i}{\sum m_i}
\]

2.1.B.3
A system can be modeled as a singular object that is located at the system’s center of mass.

BOUNDARY STATEMENT

AP Physics 1 only expects students to calculate the center of mass for systems of five or fewer particles arranged in a two-dimensional configuration or for systems that are highly symmetrical.
TOPIC 2.2

Forces and Free-Body Diagrams

Required Course Content

LEARNING OBJECTIVE

2.2A
Describe a force as an interaction between two objects or systems.

2.2B
Describe the forces exerted on an object or system using a free-body diagram.

ESSENTIAL KNOWLEDGE

2.2A.1
Forces are vector quantities that describe the interactions between objects or systems.

2.2A.1.i
A force exerted on an object or system is always due to the interaction of that object with another object or system.

2.2A.1.ii
An object or system cannot exert a net force on itself.

2.2A.2
Contact forces describe the interaction of an object or system touching another object or system and are macroscopic effects of interatomic electric forces.

2.2B.1
Free-body diagrams are useful tools for visualizing forces being exerted on a single object or system and for determining the equations that represent a physical situation.

2.2B.2
The free-body diagram of an object or system shows each of the forces exerted on the object by the environment.

2.2B.3
Forces exerted on an object or system are represented as vectors originating from the representation of the center of mass, such as a dot. A system is treated as though all of its mass is located at the center of mass.
LEARNING OBJECTIVE

2.2.B
Describe the forces exerted on an object using a free-body diagram.

ESSENTIAL KNOWLEDGE

2.2.B.4
A coordinate system with one axis parallel to the direction of acceleration of the object or system simplifies the translation from free-body diagram to algebraic representation. For example, in a free-body diagram of an object on an inclined plane, it is useful to set one axis parallel to the surface of the incline.

BOUNDARY STATEMENT

AP Physics 1 only expects students to depict the forces exerted on objects, not the force components on free-body diagrams. On the AP Physics exams, individual forces represented on a free-body diagram must be drawn as individual straight arrows, originating on the dot and pointing in the direction of the force. Individual forces that are in the same direction must be drawn side by side, not overlapping.
TOPIC 2.3
Newton’s Third Law

Required Course Content

LEARNING OBJECTIVE
2.3.A
Describe the interaction of two objects using Newton’s third law and a representation of paired forces exerted on each object.

ESSENTIAL KNOWLEDGE
2.3.A.1
Newton’s third law describes the interaction of two objects in terms of the paired forces that each exerts on the other.
\[\vec{F}_A \text{ on } B = -\vec{F}_B \text{ on } A \]

2.3.A.2
Interactions between objects within a system (internal forces) do not influence the motion of a system’s center of mass.

2.3.A.3
Tension is the macroscopic net result of forces that segments of a string, cable, chain, or similar system exert on each other in response to an external force.

2.3.A.3.i
An ideal string has negligible mass and does not stretch when under tension.

2.3.A.3.ii
The tension in an ideal string is the same at all points within the string.

2.3.A.3.iii
In a string with nonnegligible mass, tension may not be the same at all points within the string.

2.3.A.3.iv
An ideal pulley is a pulley that has negligible mass and rotates about an axle through its center of mass with negligible friction.

continued on next page
LEARNING OBJECTIVE
2.3.A
Describe the interaction of two objects using Newton's third law and a representation of paired forces exerted on each object.

ESSENTIAL KNOWLEDGE

BOUNDARY STATEMENT
AP Physics 1 only expects students to describe tension qualitatively in a string, cable, chain, or similar system with mass. For example, students might note that the tension in a hanging chain is greater toward the top of the chain.

BOUNDARY STATEMENT
The interaction between objects or systems at a distance is limited to gravitational forces in AP Physics 1. In AP Physics 2, gravitational, electric, and magnetic forces may be considered.
TOPIC 2.4
Newton’s First Law

Required Course Content

LEARNING OBJECTIVE
2.4.A
Describe the conditions under which a system’s velocity remains constant.

ESSENTIAL KNOWLEDGE
2.4.A.1
The net force on a system is the vector sum of all forces exerted on the system.

2.4.A.2
Translational equilibrium is a configuration of forces such that the net force exerted on a system is zero.
Derived equation:
\[\sum F_i = 0 \]

2.4.A.3
Newton's first law states that if the net force exerted on a system is zero, the velocity of that system will remain constant.

2.4.A.4
Forces may be balanced in one dimension but unbalanced in another. The system’s velocity will change only in the direction of the unbalanced force.

2.4.A.5
An inertial reference frame is one from which an observer would verify Newton's first law of motion.
TOPIC 2.5
Newton’s Second Law

Required Course Content

LEARNING OBJECTIVE

2.5.A
Describe the conditions under which a system’s velocity changes.

ESSENTIAL KNOWLEDGE

2.5.A.1
Unbalanced forces are a configuration of forces such that the net force exerted on a system is not equal to zero.

2.5.A.2
Newton’s second law of motion states that the acceleration of a system’s center of mass has a magnitude proportional to the magnitude of the net force exerted on the system and is in the same direction as that net force.

Relevant equation:

\[\ddot{a}_{sys} = \frac{\sum F}{m_{sys}} = \frac{F_{net}}{m_{sys}} \]

2.5.A.3
The velocity of a system’s center of mass will only change if a nonzero net external force is exerted on that system.

SUGGESTED SKILLS

1.A
Create diagrams, tables, charts, or schematics to represent physical situations.

2.A
Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.

2.D
Predict new values or factors of change of physical quantities using functional dependence between variables.

3.B
Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
TOPIC 2.6

Gravitational Force

Required Course Content

<table>
<thead>
<tr>
<th>LEARNING OBJECTIVE</th>
<th>ESSENTIAL KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.A</td>
<td>2.6.A.1</td>
</tr>
</tbody>
</table>
| Describe the gravitational interaction between two objects or systems with mass. | Newton’s law of universal gravitation describes the gravitational force between two objects or systems as directly proportional to each of their masses and inversely proportional to the square of the distance between the systems’ centers of mass. Relevant equation:

$$F_g = \frac{Gm_1m_2}{r^2}$$ |
2.6.A.1.i	The gravitational force is attractive.
2.6.A.1.ii	The gravitational force is always exerted along the line connecting the centers of mass of the two interacting systems.
2.6.A.1.iii	The gravitational force on a system can be considered to be exerted on the system’s center of mass.
2.6.A.2	A field models the effects of a noncontact force exerted on an object at various positions in space.
2.6.A.2.i	The magnitude of the gravitational field created by a system of mass M at a point in space is equal to the ratio of the gravitational force exerted by the system on a test object of mass m to the mass of the test object.

continued on next page
LEARNING OBJECTIVE

2.6.A
Describe the gravitational interaction between two objects with mass.

ESSENTIAL KNOWLEDGE

Derived equation:

$$|\mathbf{F}_g| = \frac{F_g}{m} = G \frac{M}{r^2}$$

2.6.A.2.ii
If the gravitational force is the only force exerted on an object, the observed acceleration of the object (in m/s²) is numerically equal to the magnitude of the gravitational field strength (in N/kg) at that location.

2.6.A.3
The gravitational force exerted by an astronomical body on a relatively small nearby object is called weight.

Derived Equation:

Weight = $F_g = mg$

2.6.B
Describe situations in which the gravitational force can be considered constant.

2.6.B.1
If the gravitational force between two systems' centers of mass has a negligible change as the relative position of the two systems changes, the gravitational force can be considered constant at all points between the initial and final positions of the systems.

2.6.B.2
Near the surface of Earth, the strength of the gravitational field is $g \approx 10$ N/kg

2.6.C
Describe the conditions under which the magnitude of a system's apparent weight is different from the magnitude of the gravitational force exerted on that system.

2.6.C.1
The magnitude of the apparent weight of a system is the magnitude of the normal force exerted on the system.

2.6.C.2
If the system is accelerating, the apparent weight of the system is not equal to the magnitude of the gravitational force exerted on the system.

2.6.C.3
A system appears weightless when there are no forces exerted on the system or when the force of gravity is the only force exerted on the system.

2.6.C.4
The equivalence principle states that an observer in a noninertial reference frame is unable to distinguish between an object’s apparent weight and the gravitational force exerted on the object by a gravitational field.
LEARNING OBJECTIVE

2.6.D
Describe inertial and gravitational mass.

ESSENTIAL KNOWLEDGE

2.6.D.1
Objects have inertial mass, or inertia, a property that determines how much an object’s motion resists changes when interacting with another object.

2.6.D.2
Gravitational mass is related to the force of attraction between two systems with mass.

2.6.D.3
Inertial mass and gravitational mass have been experimentally verified to be equivalent.
TOPIC 2.7
Kinetic and Static Friction

Required Course Content

<table>
<thead>
<tr>
<th>LEARNING OBJECTIVE</th>
<th>ESSENTIAL KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.A</td>
<td>Describe kinetic friction between two surfaces</td>
</tr>
<tr>
<td>2.7.A.1</td>
<td>Kinetic friction occurs when two surfaces in contact move relative to each other.</td>
</tr>
<tr>
<td>2.7.A.1.i</td>
<td>The kinetic friction force is exerted in a direction opposite to the motion of each surface relative to the other surface.</td>
</tr>
<tr>
<td>2.7.A.1.ii</td>
<td>The force of friction between two surfaces does not depend on the size of the surface area of contact.</td>
</tr>
<tr>
<td>2.7.A.2</td>
<td>The magnitude of the kinetic friction force exerted on an object is the product of the normal force the surface exerts on the object and the coefficient of kinetic friction.</td>
</tr>
</tbody>
</table>

Relevant equation:

\[F_{f,k} = \mu_k F_n \]

| **2.7.A.2.i** | The coefficient of kinetic friction depends on the material properties of the surfaces that are in contact. |
| **2.7.A.2.ii** | Normal force is the perpendicular component of the force exerted on an object by the surface with which it is in contact; it is directed away from the surface. |

continued on next page
2.7.B
Describe static friction between two surfaces.

ESSENTIAL KNOWLEDGE

2.7.B.1
Static friction may occur between the contacting surfaces of two objects that are not moving relative to each other.

2.7.B.2
Static friction adopts the value and direction required to prevent an object from slipping or sliding on a surface.

Relevant equation:
\[|F_{f,s}| \leq \mu_s F_n \]

2.7.B.2.i
Slipping and sliding refer to situations in which two surfaces are moving relative to each other.

2.7.B.2.ii
There exists a maximum value for which static friction will prevent an object from slipping on a given surface.

Derived equation:
\[F_{f,s,\text{max}} = \mu_s F_n \]

2.7.B.3
The coefficient of static friction is typically greater than the coefficient of kinetic friction for a given pair of surfaces.
TOPIC 2.8
Spring Forces

Required Course Content

LEARNING OBJECTIVE

2.8.A
Describe the force exerted on an object by an ideal spring

ESSENTIAL KNOWLEDGE

2.8.A.1
An ideal spring has negligible mass and exerts a force that is proportional to the change in its length as measured from its relaxed length.

2.8.A.2
The magnitude of the force exerted by an ideal spring on an object is given by Hooke’s law:

\[F_s = -k \Delta x \]

2.8.A.3
The force exerted on an object by a spring is always directed toward the equilibrium position of the object–spring system.
Topic 2.9
Circular Motion

Required Course Content

<table>
<thead>
<tr>
<th>LEARNING OBJECTIVE</th>
<th>ESSENTIAL KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9.A</td>
<td>2.9.A.1</td>
</tr>
<tr>
<td>Describe the motion of an object traveling in a circular path.</td>
<td>Centripetal acceleration is the component of an object’s acceleration directed toward the center of the object’s circular path.</td>
</tr>
<tr>
<td></td>
<td>2.9.A.1.i</td>
</tr>
<tr>
<td></td>
<td>The magnitude of centripetal acceleration for an object moving in a circular path is the ratio of the object’s tangential speed squared to the radius of the circular path.</td>
</tr>
<tr>
<td></td>
<td>2.9.A.1.ii</td>
</tr>
<tr>
<td></td>
<td>Centripetal acceleration is directed toward the center of an object’s circular path.</td>
</tr>
<tr>
<td>2.9.A.2</td>
<td>2.9.A.2</td>
</tr>
<tr>
<td>Centripetal acceleration can result from a single force, more than one force, or components of forces exerted on an object in circular motion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9.A.2.i</td>
</tr>
<tr>
<td></td>
<td>At the top of a vertical, circular loop, an object requires a minimum speed to maintain circular motion. At this point, and with this minimum speed, the gravitational force is the only force that causes the centripetal acceleration.</td>
</tr>
<tr>
<td></td>
<td>Derived equation:</td>
</tr>
<tr>
<td></td>
<td>(v = \sqrt{\frac{g r}{}})</td>
</tr>
</tbody>
</table>
LEARNING OBJECTIVE

2.9.A
Describe the motion of an object traveling in a circular path.

ESSENTIAL KNOWLEDGE

2.9.A.2.ii
Components of the static friction force and the normal force can contribute to the net force producing centripetal acceleration of an object traveling in a circle on a banked surface.

2.9.A.2.iii
A component of tension contributes to the net force producing centripetal acceleration experienced by a conical pendulum.

2.9.A.3
Tangential acceleration is the rate at which an object’s speed changes and is directed tangent to the object’s circular path.

2.9.A.4
The net acceleration of an object moving in a circle is the vector sum of the centripetal acceleration and tangential acceleration.

2.9.A.5
The revolution of an object traveling in a circular path at a constant speed (uniform circular motion) can be described using period and frequency.

2.9.A.5.i
The time to complete one full circular path, one full rotation, or a full cycle of oscillatory motion is defined as period, T.

2.9.A.5.ii
The rate at which an object is completing revolutions is defined as frequency, f.

Relevant equation:

\[T = \frac{1}{f} \]

2.9.A.5.iii
For an object traveling at a constant speed in a circular path, the period is given by the derived equation

\[T = \frac{2\pi r}{v}. \]

continued on next page
LEARNING OBJECTIVE

2.9.B
Describe circular orbits using Kepler’s third law.

ESSENTIAL KNOWLEDGE

2.9.B.1
For a satellite in circular orbit around a central body, the satellite’s centripetal acceleration is caused only by gravitational attraction. The period and radius of the circular orbit are related to the mass of the central body.

Derived equation:

\[T^2 = \frac{4\pi^2}{GM} R^3 \]

BOUNDARY STATEMENT

AP Physics 1 only expects students to quantitatively analyze banked curves in which no friction is required to maintain uniform circular motion. Analysis of situations in which friction is required on a banked curve is limited to qualitative descriptions.

AP Physics 1 does not expect students to know Kepler’s first or second laws of planetary motion.
UNIT 3

Work, Energy, and Power

18–23% AP EXAM WEIGHTING

~22–27 CLASS PERIODS
Remember to go to AP Classroom to assign students the online Progress Check for this unit.

Whether assigned as homework or completed in class, the Progress Check provides each student with immediate feedback related to this unit’s topics and science practices.

Progress Check 3

Multiple-choice: ~18 questions

Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
Work, Energy, and Power

Developing Understanding

In Unit 3, students are introduced to the idea of conservation as a foundational principle of physics, along with the concept of work as the primary agent of change for energy. As in earlier units, students will once again utilize both familiar and new models and representations to analyze physical situations, now with force or energy as major components. Students will be encouraged to call upon their knowledge of content and skills in Units 1 and 2 to determine the most appropriate technique for approaching a problem and will be challenged to understand the limiting factors of each technique.

Building the Science Practices

Describing, creating, and using representations (1.A, and 1.C) will help students grapple with common misconceptions that they may have about energy, such as whether a force does work on an object, even though the object doesn’t move, or whether a single object can “have” potential energy. A thorough understanding of energy will support students’ ability to justify claims with evidence (3.C) about physical situations. This understanding is crucial, as the mathematical models and representations (2.A) used in Unit 3 will spiral throughout the course and appear in subsequent units. As students’ comprehension of energy evolves, students will begin to connect and relate knowledge across scales, concepts, and representations, as well as across disciplines—particularly, physics, chemistry, and biology.

Preparing for the AP Exam

The first free-response question on the AP Physics 1 Exam—the Mathematical Routines (MR) question—focuses on assessing students’ ability to create and use mathematical models. Students will be required to calculate or derive an expression for a physical quantity. They will also be required to create and/or use a representation and make and justify claims. The final part of the MR question requires students to demonstrate their ability to communicate their understanding of a physical situation in a reasoned, expository analysis. A student’s analysis of the situation should be coherent, organized, and sequential. It should draw from evidence, cite physical principles, and clearly present the student’s thinking. While Unit 3 offers content perfect for practicing the MR question, the MR question on the AP Physics 1 Exam can pull content from any of the eight units of the course.
UNIT AT A GLANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
</table>
| 3.1 Translational Kinetic Energy | 1C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2A Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
3C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| 3.2 Work | 1B Create quantitative graphs with appropriate scales and units, including plotting data.
2A Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
2D Predict new values or factors of change of physical quantities using functional dependence between variables.
3A Create experimental procedures that are appropriate for a given scientific question.
3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |
| 3.3 Potential Energy | 1C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
2D Predict new values or factors of change of physical quantities using functional dependence between variables.
3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |
| 3.4 Conservation of Energy | 1A Create diagrams, tables, charts, or schematics to represent physical situations.
2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |

continued on next page
UNIT AT A GLANCE (cont’d)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 Power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.B Create quantitative graphs with appropriate scales and units, including plotting data.</td>
</tr>
<tr>
<td></td>
<td>2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
</tr>
<tr>
<td></td>
<td>3.A Create experimental procedures that are appropriate for a given scientific question.</td>
</tr>
<tr>
<td></td>
<td>3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
</tbody>
</table>

Go to AP Classroom to assign the Progress Check for Unit 3. Review the results in class to identify and address any student misunderstandings.
SAMPLE INSTRUCTIONAL ACTIVITIES

The sample activities on this page are optional and are offered to provide possible ways to incorporate various instructional approaches in the classroom. Teachers do not need to use these activities or instructional approaches and are free to alter or edit them. The examples below were developed in partnership with teachers from the AP community to share ways that they approach teaching some of the topics in this unit. Please refer to the Instructional Approaches section beginning on p. 153 for more examples of activities and strategies.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Topic</th>
<th>Sample Activity</th>
</tr>
</thead>
</table>
| 1 | 3.1 | **Concept-Oriented Demonstration**
Release a low friction cart (mass \(m \)) from the top of a ramp, and have students time how long it takes to reach the bottom, as well as measure the release height \(h \) and track length \(L \).
Have students calculate the cart’s velocity using \(v = \frac{L}{t} \), and then calculate \(mgh \) and \(\frac{1}{2}mv^2 \). The two speeds are different; discuss with students what incorrect assumptions lead to the difference in speeds. |
| 2 | 3.4 | **Desktop Experiment Task**
Divide students into groups and give each group a spring-loaded ball launcher, scale, and meterstick. Ask students to determine the spring constant of the spring in the launcher. |
| 3 | 3.2/3.4 | **Four-Square Problem Solving**
Have students create representations of scenarios related to work and conservation of energy. First square: Provide a description, in words, of an everyday situation (e.g., “a car goes downhill, speeding up even as the brakes are pressed”) along with a diagram. Second square: Draw a free-body diagram with an arrow off to the side representing the object’s displacement. Third square: Create energy bar charts (initial and final). Fourth square: For each force on the free-body diagram, state whether that force performs positive or negative work and what energy transformation that force is responsible for. |
| 4 | 3.4 | **Construct an Argument**
Ask students to consider a cart that rolls from rest down a ramp and then around a vertical loop. Have students explain why it is the case, using energy and circular motion principles, that for the cart to complete the loop without falling out, the cart must be released at a height higher than the top of the loop. |
| 5 | 3.4 | **Working Backward**
Put students in pairs. Have student A write a conservation of energy equation (either symbolically or with numbers and units plugged in). Then, have student B describe a situation that the equation could apply to, draw a diagram, and draw energy bar charts. |
TOPIC 3.1

Translational Kinetic Energy

Required Course Content

<table>
<thead>
<tr>
<th>LEARNING OBJECTIVE</th>
<th>ESSENTIAL KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.A</td>
<td>3.1.A.1</td>
</tr>
<tr>
<td>Describe the translational kinetic energy of an object in terms of the object's mass and velocity.</td>
<td>An object’s translational kinetic energy is given by the equation $K = \frac{1}{2}mv^2$.</td>
</tr>
<tr>
<td></td>
<td>3.1.A.2</td>
</tr>
<tr>
<td></td>
<td>Translational kinetic energy is a scalar quantity.</td>
</tr>
<tr>
<td></td>
<td>3.1.A.3</td>
</tr>
<tr>
<td></td>
<td>Different observers may measure different values of the translational kinetic energy of an object, depending on the observer’s frame of reference.</td>
</tr>
</tbody>
</table>

SUGGESTED SKILLS

- **1.C**
 Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
- **2.B**
 Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
- **3.B**
 Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
- **3.C**
 Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.
TOPIC 3.2
Work

Required Course Content

LEARNING OBJECTIVE

Describe the work done on an object or system by a given force or collection of forces.

ESSENTIAL KNOWLEDGE

3.2.A.1
Work is the amount of energy transferred into or out of a system by a force exerted on that system over a distance.

3.2.A.1.i
The work done by a conservative force exerted on a system is path-independent and only depends on the initial and final configurations of that system.

3.2.A.1.ii
The work done by a conservative force on a system—or the change in the potential energy of the system—will be zero if the system returns to its initial configuration.

3.2.A.1.iii
Potential energies are associated only with conservative forces.

3.2.A.1.iv
The work done by a nonconservative force is path-dependent.

3.2.A.1.v
Examples of nonconservative forces are friction and air resistance.

3.2.A.2
Work is a scalar quantity that may be positive, negative, or zero.

3.2.A.3
The amount of work done on a system by a constant force is related to the components of that force and the displacement of the point at which that force is exerted.
LEARNING OBJECTIVE

3.2.A
Describe the work done on an object or system by a given force or collection of forces.

ESSENTIAL KNOWLEDGE

3.2.A.3.i
Only the component of the force exerted on a system that is parallel to the displacement of the point of application of the force will change the system’s total energy.

Relevant equation:

\[W = F \parallel d = Fd \cos \theta \]

3.2.A.3.ii
The component of the force exerted on a system perpendicular to the direction of the displacement of the system’s center of mass can change the direction of the system’s motion without changing the system’s kinetic energy.

3.2.A.4
The work-energy theorem states that the change in an object’s kinetic energy is equal to the sum of the work (net work) being done by all forces exerted on the object.

Relevant equation:

\[\Delta K = \sum W_i = \sum F_{\parallel i} d \]

3.2.A.4.i
An external force may change the configuration of a system. The component of the external force parallel to the displacement times the displacement of the point of application of the force gives the change in kinetic energy of the system.

3.2.A.4.ii
If the system’s center of mass and the point of application of the force move the same distance when a force is exerted on a system, then the system may be modeled as an object, and only the system’s kinetic energy can change.

3.2.A.4.iii
The energy dissipated by friction is typically equated to the force of friction times the length of the path over which the force is exerted

\[\Delta F_{\text{mech}} = F_f d \cos \theta \]

continued on next page
LEARNING OBJECTIVE
3.2.A
Describe the work done on an object or system by a given force or collection of forces.

ESSENTIAL KNOWLEDGE
3.2.A.5
Work is equal to the area under the curve of a graph of F as a function of displacement.

BOUNDARY STATEMENT
AP Physics 1 only expects students to analyze the transfer of mechanical energy (as defined in Unit 3, Topic 4: Conservation of Energy), although students should be aware that mechanical energy may be dissipated in the form of thermal energy or sound. In AP Physics 2, students will also study how thermal energy can be transferred between systems through heating or cooling.
TOPIC 3.3
Potential Energy

Required Course Content

LEARNING OBJECTIVE

- **3.3.A**
 - Describe the potential energy of a system.

ESSENTIAL KNOWLEDGE

- **3.3.A.1**
 - A system composed of two or more objects has potential energy if the objects within that system only interact with each other through conservative forces.

- **3.3.A.2**
 - Potential energy is a scalar quantity associated with the position of objects within a system.

- **3.3.A.3**
 - The definition of zero potential energy for a given system is a decision made by the observer considering the situation to simplify or otherwise assist in analysis.

- **3.3.A.4**
 - The potential energy of common physical systems can be described using the physical properties of that system.

- **3.3.A.4.i**
 - The elastic potential energy of an ideal spring is given by the following equation, where \(\Delta x \) is the distance the spring has been stretched or compressed from its equilibrium length.

 Relevant equation:

 \[
 U_s = \frac{1}{2} k(\Delta x)^2
 \]

 continued on next page
LEARNING OBJECTIVE

3.3.A
Describe the potential energy of a system.

ESSENTIAL KNOWLEDGE

3.3.A.4.ii
The general form for the gravitational potential energy of a system consisting of two approximately spherical distributions of mass (e.g., moons, planets or stars) is given by the equation

$$U_g = -G \frac{m_1 m_2}{r}$$

3.3.A.4.iii
Because the gravitational field near the surface of a planet is nearly constant, the change in gravitational potential energy in a system consisting of an object with mass m and a planet with gravitational field of magnitude g when the object is near the surface of the planet may be approximated by the equation

$$\Delta U_g = mg \Delta y.$$

3.3.A.5
The total potential energy of a system containing more than two objects is the sum of the potential energy of each pair of objects within the system.
TOPIC 3.4
Conservation of Energy

Required Course Content

<table>
<thead>
<tr>
<th>LEARNING OBJECTIVE</th>
<th>ESSENTIAL KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.A</td>
<td>3.4.A.1</td>
</tr>
<tr>
<td>Describe the energies present in a system.</td>
<td>A system composed of only a single object can only have kinetic energy.</td>
</tr>
<tr>
<td></td>
<td>3.4.A.2</td>
</tr>
<tr>
<td></td>
<td>A system that contains objects that interact via conservative forces or that can change its shape reversibly may have both kinetic and potential energies.</td>
</tr>
</tbody>
</table>

3.4.B	3.4.B.1
Describe the behavior of a system using conservation of mechanical energy principles.	Mechanical energy is the sum of a system’s kinetic and potential energies.
	3.4.B.2
	Any change to a type of energy within a system must be balanced by an equivalent change of other types of energies within the system or by a transfer of energy between the system and its surroundings.
	3.4.B.3
	A system may be selected so that the total energy of that system is constant.
	3.4.B.4
	If the total energy of a system changes, that change will be equivalent to the energy transferred into or out of the system.

continued on next page
LEARNING OBJECTIVE
3.4.C
Describe how the selection of a system determines whether the energy of that system changes.

ESSENTIAL KNOWLEDGE
3.4.C.1
Energy is conserved in all interactions.

3.4.C.2
If the work done on a selected system is zero and there are no nonconservative interactions within the system, the total mechanical energy of the system is constant.

3.4.C.3
If the work done on a selected system is nonzero, energy is transferred between the system and the environment.

BOUNDARY STATEMENT
AP Physics 1 expects students to know that mechanical energy can be dissipated as thermal energy or sound by nonconservative forces.
Required Course Content

<table>
<thead>
<tr>
<th>LEARNING OBJECTIVE</th>
<th>ESSENTIAL KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.A</td>
<td>3.5.A.1</td>
</tr>
<tr>
<td>Describe the transfer of energy into, out of, or within a system in terms of power.</td>
<td>Power is the rate at which energy changes with respect to time, either by transfer into or out of a system or by conversion from one type to another within a system.</td>
</tr>
<tr>
<td></td>
<td>3.5.A.2</td>
</tr>
<tr>
<td></td>
<td>Average power is the amount of energy being transferred or converted, divided by the time it took for that transfer or conversion to occur.</td>
</tr>
<tr>
<td></td>
<td>3.5.A.3</td>
</tr>
<tr>
<td></td>
<td>Relevant equation:</td>
</tr>
<tr>
<td></td>
<td>[P_{\text{avg}} = \frac{\Delta E}{\Delta t}]</td>
</tr>
<tr>
<td></td>
<td>3.5.A.4</td>
</tr>
<tr>
<td></td>
<td>Because work is the change in energy of an object or system due to a force, average power is the total work done, divided by the time during which that work was done.</td>
</tr>
<tr>
<td></td>
<td>3.5.A.4</td>
</tr>
<tr>
<td></td>
<td>Relevant equation:</td>
</tr>
<tr>
<td></td>
<td>[P_{\text{avg}} = \frac{W}{\Delta t}]</td>
</tr>
<tr>
<td></td>
<td>3.5.A.4</td>
</tr>
<tr>
<td></td>
<td>The instantaneous power delivered to an object by the component of a constant force parallel to the object’s velocity can be described with the derived equation.</td>
</tr>
<tr>
<td></td>
<td>[P_{\text{inst}} = F_{\parallel} v = F v \cos \theta.]</td>
</tr>
</tbody>
</table>
AP PHYSICS 1

UNIT 4

Linear Momentum

10–15%
AP EXAM WEIGHTING

~10–15
CLASS PERIODS
Remember to go to AP Classroom to assign students the online Progress Check for this unit. Whether assigned as homework or completed in class, the Progress Check provides each student with immediate feedback related to this unit’s topics and science practices.

Progress Check 4

Multiple-choice: ~18 questions
Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
Linear Momentum

Developing Understanding

Unit 4 introduces students to the relationships between force, time, impulse, and linear momentum via calculations, data analysis, designing experiments, and making predictions. Students will learn how to use new models and representations to illustrate the law of conservation of linear momentum of objects and systems while gaining proficiency using previously studied representations. Using the law of conservation of linear momentum to analyze physical situations provides students with a more complete picture of forces and opportunities to revisit misconceptions surrounding Newton’s third law. Students will also have the opportunity to make connections between momentum and kinetic energy of objects or systems and see under what conditions these quantities remain constant.

Building the Science Practices

Inquiry learning and critical thinking and problem-solving skills are best developed when scientific inquiry experiences are designed and implemented with increasing student involvement. In Unit 4, students can be asked to practice collecting data and determining appropriate experimental procedures to answer scientific questions (3.A). For example, students can be asked to analyze a familiar experiment by providing a written explanation of how they would make observations or collect data in the given scenario.

Once students have designed a procedure and have collected data, they can practice analyzing that data (1.B, 2.B, 2.D) by plotting linearized graphs and using the best fit line to the plotted data to make claims about the physical scenario.

Preparing for the AP Exam

The third free-response question on the AP Physics 1 Exam is the Experimental Design and Analysis (LAB) question. In this question, students will need to justify their selection of the kind of data needed and then design a plan to collect these data. Because students often struggle with knowing where to start when designing an experiment, they will benefit from scaffolded opportunities to determine the data needed to answer a scientific question. In the Experimental Design and Analysis question on the exam, students will also be asked to linearize and analyze data. Practicing designing experiments, performing data analysis, and discussing sources of error throughout the course can help students prepare for and be successful on the Experimental Design and Analysis (LAB) question.
UNIT AT A GLANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Linear Momentum</td>
<td>1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.</td>
</tr>
<tr>
<td></td>
<td>2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.</td>
</tr>
<tr>
<td></td>
<td>2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
</tr>
<tr>
<td></td>
<td>3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
<tr>
<td>4.2 Change in Momentum and Impulse</td>
<td>1.B Create quantitative graphs with appropriate scales and units, including plotting data.</td>
</tr>
<tr>
<td></td>
<td>2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2.D Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
</tr>
<tr>
<td></td>
<td>3.A Create experimental procedures that are appropriate for a given scientific question.</td>
</tr>
<tr>
<td></td>
<td>3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
<tr>
<td>4.3 Conservation of Linear Momentum</td>
<td>1.A Create diagrams, tables, charts, or schematics to represent physical situations.</td>
</tr>
<tr>
<td></td>
<td>2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2.D Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
</tr>
<tr>
<td></td>
<td>3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
<tr>
<td>4.4 Elastic and Inelastic Collisions</td>
<td>1.B Create quantitative graphs with appropriate scales and units, including plotting data.</td>
</tr>
<tr>
<td></td>
<td>2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
</tr>
<tr>
<td></td>
<td>3.A Create experimental procedures that are appropriate for a given scientific question.</td>
</tr>
<tr>
<td></td>
<td>3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
</tbody>
</table>

Go to [AP Classroom](#) to assign the **Progress Check** for Unit 4. Review the results in class to identify and address any student misunderstandings.
SAMPLE INSTRUCTIONAL ACTIVITIES

The sample activities on this page are optional and are offered to provide possible ways to incorporate various instructional approaches in the classroom. Teachers do not need to use these activities or instructional approaches and are free to alter or edit them. The examples below were developed in partnership with teachers from the AP community to share ways that they approach teaching some of the topics in this unit. Please refer to the Instructional Approaches section beginning on p. 153 for more examples of activities and strategies.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Topic</th>
<th>Sample Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.2</td>
<td>Conflicting Contentions
Ask students to imagine a pitcher throwing a baseball and a catcher catching it and have them debate who exerted more force on the ball (no way to know), who applied greater impulse (same for both), and who did a greater magnitude of net work on the ball (same). Repeat this process for a pitcher throwing the baseball and a batter hitting it back at the same speed.</td>
</tr>
<tr>
<td>2</td>
<td>4.2</td>
<td>Desktop Experiment Task
Connect a spring-loaded lanyard between a cart and a force sensor, with a motion sensor on the other side of the cart. Have students take force and motion versus time data as the lanyard contracts and pulls, accelerating the cart. Show students that impulse applied to the cart equals the cart’s change in momentum.</td>
</tr>
<tr>
<td>3</td>
<td>4.4</td>
<td>Construct an Argument
Have students use momentum bar charts to explain why a dart bouncing off a cart makes the cart move faster than the dart sticking to the cart, passing through the cart, or stopping and dropping after colliding with the cart.</td>
</tr>
<tr>
<td>4</td>
<td>4.4</td>
<td>Predict and Explain/Concept-Oriented Demonstration
Have a cart crash into a force sensor set to its highest setting in three different ways: cart sticks to sensor, cart bounces off the sensor on its hard side, and cart bounces off the sensor with its spring side. Have students predict in which case more force is registered and explain why.</td>
</tr>
<tr>
<td>5</td>
<td>4.4</td>
<td>Desktop Experiment Task
Have two carts with different masses collide in a nonstick collision. Record the carts with a phone camera from above, with a meterstick next to the track. Have students use a frame-by-frame review app to determine the cart’s initial and final speeds, whether momentum was conserved, and whether the collision was elastic.</td>
</tr>
</tbody>
</table>
TOPIC 4.1
Linear Momentum

 Required Course Content

LEARNING OBJECTIVE

4.1.A
Describe the linear momentum of an object or system.

ESSENTIAL KNOWLEDGE

4.1.A.1
Linear momentum is defined by the equation \(\vec{p} = m\vec{v} \).

4.1.A.2
Momentum is a vector quantity and has the same direction as the velocity.

4.1.A.3
Momentum can be used to analyze collisions and explosions.

4.1.A.3.i
A collision is a model for an interaction where the forces exerted between the involved objects in the system are much larger than the net external force exerted on those objects during the interaction.

4.1.A.3.ii
As only the initial and final states of a collision are analyzed, the object model may be used to analyze collisions.

4.1.A.3.iii
An explosion is a model for an interaction in which forces internal to the system move objects within that system apart.

BOUNDARY STATEMENT

Unless otherwise stated, the general term “momentum” will refer specifically to linear momentum.
LEARNING OBJECTIVE
4.2.A
Describe the impulse delivered to an object or system.

ESSENTIAL KNOWLEDGE
4.2.A.1
The rate of change of momentum is equal to the net external force exerted on an object or system.

Relevant equation:
\[\overrightarrow{F}_{\text{net}} = \frac{\Delta \vec{p}}{\Delta t} \]

4.2.A.2
Impulse is defined as the product of the average force exerted on a system and the time interval during which that force is exerted on the system.

Relevant equation:
\[\vec{j} = \overrightarrow{F}_{\text{avg}} \Delta t \]

4.2.A.3
Impulse is a vector quantity and has the same direction as the net force exerted on the system.

4.2.A.4
The impulse delivered to a system by a net external force is equal to the area under the curve of a graph of the net external force exerted on the system as a function of time.

4.2.A.5
The net external force exerted on a system is equal to the slope of a graph of the momentum of the system as a function of time.

continued on next page
LEARNING OBJECTIVE

4.2.B
Describe the relationship between the impulse exerted on an object or a system and the change in momentum of the object or system.

ESSENTIAL KNOWLEDGE

4.2.B.1
Change in momentum is the difference between a system’s final momentum and its initial momentum.

Relevant equation:
\[\Delta \vec{p} = \vec{p} - \vec{p}_0 \]

4.2.B.2
The impulse–momentum theorem relates the impulse exerted on a system and the system’s change in momentum.

Relevant equation:
\[j = F_{\text{avg}} \Delta t = \Delta \vec{p} \]

4.2.B.3
Newton’s second law of motion is a direct result of the impulse–momentum theorem applied to systems with constant mass.

Relevant equation
\[\vec{F}_{\text{net}} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a} \]

BOUNDARY STATEMENT

AP Physics 1 does not require students to quantitatively analyze systems in which the mass of the system changes with respect to time.
TOPIC 4.3
Conservation of Linear Momentum

Required Course Content

LEARNING OBJECTIVE
4.3.A
Describe the behavior of a system using conservation of linear momentum.

ESSENTIAL KNOWLEDGE
4.3.A.1
A collection of objects with individual momenta can be described as one system with one center-of-mass velocity.

4.3.A.1.i
For a collection of objects, the velocity of a system’s center of mass can be calculated using the equation

\[\vec{v}_{cm} = \frac{\sum m_i \vec{v}_i}{\sum m_i} \]

4.3.A.1.ii
The velocity of a system’s center of mass is constant in the absence of a net external force.

4.3.A.2
The total momentum of a system is the sum of the momenta of the system’s constituent parts.

4.3.A.3
In the absence of net external forces, any change to the momentum of an object within a system must be balanced by an equivalent and opposite change of momentum elsewhere within the system. Any change to the momentum of a system is due to a transfer of momentum between the system and its surroundings.

continued on next page
LEARNING OBJECTIVE

4.3.A
Describe the behavior of a system using conservation of linear momentum.

ESSENTIAL KNOWLEDGE

4.3.A.3.i
The impulse exerted by one object on a second object is equal and opposite to the impulse exerted by the second object on the first. This is a direct result of Newton’s third law.

4.3.A.3.ii
A system may be selected so that the total momentum of that system is constant.

4.3.A.3.iii
If the total momentum of a system changes, that change will be equivalent to the impulse exerted on the system.

Relevant equation:
\[\vec{J} = \Delta \vec{p} \]

4.3.A.4
Correct application of conservation of momentum can be used to determine the velocity of a system immediately before and immediately after collisions or explosions.

BOUNDARY STATEMENT

AP Physics 1 includes a quantitative and qualitative treatment of conservation of momentum in one dimension and a semiquantitative treatment of conservation of momentum in two dimensions. Exam questions involving solution of simultaneous equations are not included in AP Physics 1, but the AP Physics 1 Exam may include questions that assess whether students can set up the equations properly and reason about how changing a given mass, speed, or angle would affect other quantities. AP Physics 2 includes a full treatment of conservation of momentum in two dimensions for problems that include one unknown final velocity.

4.3.B
Describe how the selection of a system determines whether the momentum of that system changes.

4.3.B.1
Momentum is conserved in all interactions.

4.3.B.2
If the net external force on the selected system is zero, the total momentum of the system is constant.

4.3.B.3
If the net external force on the selected system is nonzero, momentum is transferred between the system and the environment.
Linear Momentum

UNIT 4

TOPIC 4.4

Elastic and Inelastic Collisions

Required Course Content

<table>
<thead>
<tr>
<th>LEARNING OBJECTIVE</th>
<th>ESSENTIAL KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.A</td>
<td>ESSENTIAL KNOWLEDGE</td>
</tr>
<tr>
<td>Describe whether an interaction between objects is elastic or inelastic.</td>
<td>ESSENTIAL KNOWLEDGE</td>
</tr>
<tr>
<td>4.4.A.1</td>
<td>An elastic collision between objects is one in which the initial kinetic energy of the system is equal to the final kinetic energy of the system.</td>
</tr>
<tr>
<td>4.4.A.2</td>
<td>In an elastic collision, the final kinetic energies of each of the objects within the system may be different from their initial kinetic energies.</td>
</tr>
<tr>
<td>4.4.A.3</td>
<td>An inelastic collision between objects is one in which the total kinetic energy of the system decreases.</td>
</tr>
<tr>
<td>4.4.A.4</td>
<td>In an inelastic collision, some of the initial kinetic energy is not restored to kinetic energy but is transformed by nonconservative forces into other forms of energy.</td>
</tr>
<tr>
<td>4.4.A.5</td>
<td>In a perfectly inelastic collision, the objects stick together and move with the same velocity after the collision.</td>
</tr>
</tbody>
</table>

SUGGESTED SKILLS

1.B
Create quantitative graphs with appropriate scales and units, including plotting data.

2.A
Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.

2.C
Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.

3.A
Create experimental procedures that are appropriate for a given scientific question.

3.B
Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
UNIT 5

Torque and Rotational Dynamics

10–15% AP EXAM WEIGHTING

~15–20 CLASS PERIODS
Remember to go to AP Classroom to assign students the online Progress Check for this unit.

Whether assigned as homework or completed in class, the Progress Check provides each student with immediate feedback related to this unit’s topics and science practices.

Progress Check 5
Multiple-choice: ~18 questions
Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
UNIT 5
10–15% AP EXAM WEIGHTING ~15–20 CLASS PERIODS

Torque and Rotational Dynamics

Developing Understanding
Unit 5 reinforces the Unit 2 ideas of force and linear motion by introducing students to their rotational analogs—torque and rotational motion. Although these topics present more complex scenarios, the tools of analysis remain the same. The content and models explored in the first four units of the course set the foundation for Units 5 and 6. During their study of torque and rotational motion, students will be introduced to different ways of modeling forces. Throughout Units 5 and 6, students will compare and connect their understanding of linear and rotational motion, dynamics, energy, and momentum to develop holistic models to evaluate physical phenomena.

Preparing for the AP Exam
The analysis of functional relationships is assessed on the fourth free-response question—the Qualitative/Quantitative Translation (QQT) question—as well as the multiple-choice section of the AP Physics 1 Exam. Therefore, students must be able to identify, work with, and predict new values from functional dependencies between variables. Students may also be asked to explain phenomena based on evidence obtained through application of functional relationships. Students who may struggle mathematically will benefit from scaffolded instruction to help them develop the mathematical understanding necessary to go from just calculating the value of a variable to determining how that value changes when the value of other variables in a related equation change.
UNIT AT A GLANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Rotational Kinematics</td>
<td>1A Create quantitative graphs with appropriate scales and units, including plotting data.</td>
</tr>
<tr>
<td></td>
<td>2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2D Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
</tr>
<tr>
<td></td>
<td>3A Create experimental procedures that are appropriate for a given scientific question.</td>
</tr>
<tr>
<td></td>
<td>3C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
</tr>
<tr>
<td>5.2 Connecting Linear and Rotational Motion</td>
<td>1C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.</td>
</tr>
<tr>
<td></td>
<td>2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
</tr>
<tr>
<td></td>
<td>3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
<tr>
<td>5.3 Torque</td>
<td>1A Create diagrams, tables, charts, or schematics to represent physical situations.</td>
</tr>
<tr>
<td></td>
<td>2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
</tr>
<tr>
<td></td>
<td>2D Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
</tr>
<tr>
<td></td>
<td>3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
<tr>
<td>5.4 Rotational Inertia</td>
<td>1A Create quantitative graphs with appropriate scales and units, including plotting data.</td>
</tr>
<tr>
<td></td>
<td>2B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.</td>
</tr>
<tr>
<td></td>
<td>2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
</tr>
<tr>
<td></td>
<td>3A Create experimental procedures that are appropriate for a given scientific question.</td>
</tr>
<tr>
<td></td>
<td>3C Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
</tr>
</tbody>
</table>

continued on next page
UNIT AT A GLANCE (cont’d)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
</table>
| 5.5 Rotational Equilibrium and Newton’s First Law in Rotational Form | 1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2.C Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |
| 5.6 Newton’s Second Law in Rotational Form | 1.A Create diagrams, tables, charts, or schematics to represent physical situations.
2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |

Go to [AP Classroom](https://apclassroom.collegeboard.org) to assign the Progress Check for Unit 5. Review the results in class to identify and address any student misunderstandings.
SAMPLE INSTRUCTIONAL ACTIVITIES

The sample activities on this page are optional and are offered to provide possible ways to incorporate various instructional approaches in the classroom. Teachers do not need to use these activities or instructional approaches and are free to alter or edit them. The examples below were developed in partnership with teachers from the AP community to share ways that they approach teaching some of the topics in this unit. Please refer to the Instructional Approaches section beginning on p. 153 for more examples of activities and strategies.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Topic</th>
<th>Sample Activity</th>
</tr>
</thead>
</table>
| 1 | 5.3 | **Predict and Explain**
Spin a bike wheel (preferably with the tire removed so that it will roll on its metal rims) and release it from rest on the floor or a long table. Have students predict what will happen to the wheel’s linear velocity (it will increase) and its angular velocity (it will decrease) as the wheel “peels out.” Then, explain why this happens using a force diagram. |
| 2 | 5.3 | **Create a Plan**
Have students design a walkway (of given mass) that is to be suspended from a ceiling. Have them determine the amount of force the two supports (one on each end) must be able to provide as a person (of given mass) walks across the walkway. |
| 3 | 5.3 | **Desktop Experiment Task**
Take a hard-boiled egg and a raw egg without identifying marks or labels. Give students the task to determine which one is which. To give them a starting point, have students place the eggs on a level surface and give each egg a spin. Once each egg is spinning lightly, have students touch each egg on the top to stop it. Students should conclude that the raw egg is noticeably more difficult to start or stop. |
| 4 | 5.4 | **Desktop Experiment Task**
Have students allow a yo-yo to fall and unroll. Then, have them use a meterstick and stopwatch to determine its downward acceleration. Next, have them measure its mass and the radius of its axle and use that information to determine the yo-yo’s rotational inertia using rotational dynamics. |
| 5 | 5.6 | **Create a Plan**
Have students complete the necessary research to determine the rotational inertia of a human body in different configurations (e.g., arms outstretched, arms pulled in). Then, obtain footage of an ice skater spinning and pulling in their arms. Have students analyze the footage to see if angular momentum is conserved. |
| 6 | 5.6 | **Desktop Experiment Task**
Set a meter stick on a pivot that is not set at the center of mass of the meterstick. Hang two objects off the meterstick so that the two object-meterstick system is in equilibrium. Have students observe and collect data to allow them to determine the mass of the meterstick. |
LEARNING OBJECTIVE

5.1.A Describe the rotation of a system with respect to time using angular displacement, angular velocity, and angular acceleration.

ESSENTIAL KNOWLEDGE

5.1.A.1 Angular displacement is the measurement of the angle, in radians, through which a point on a rigid system rotates about a specified axis.

Relevant equation:
\[\Delta \theta = \theta - \theta_0 \]

5.1.A.1.i A rigid system is one that holds its shape but in which different points on the system move in different directions during rotation. A rigid system cannot be modeled as an object.

5.1.A.1.ii One direction of angular displacement about an axis of rotation—clockwise or counterclockwise—is typically indicated as mathematically positive, with the other direction becoming mathematically negative.

5.1.A.1.iii If the rotation of a system about an axis may be well described using the motion of the system’s center of mass, the system may be treated as a single object. For example, the rotation of Earth about its axis may be considered negligible when considering the revolution of Earth about the center of mass of the Earth-Sun system.

continued on next page
LEARNING OBJECTIVE

5.1.A
Describe the rotation of a system with respect to time using angular displacement, angular velocity, and angular acceleration.

ESSENTIAL KNOWLEDGE

5.1.A.2
Average angular velocity is the average rate at which angular position changes with respect to time.

Relevant equation:
\[\omega_{avg} = \frac{\Delta \theta}{\Delta t} \]

5.1.A.3
Average angular acceleration is the average rate at which the angular velocity changes with respect to time.

Relevant equation:
\[\alpha_{avg} = \frac{\Delta \omega}{\Delta t} \]

5.1.A.4
Angular displacement, angular velocity, and angular acceleration around one axis are analogous to linear displacement, velocity, and acceleration in one dimension and demonstrate the same mathematical relationships.

5.1.A.4.i
For constant angular acceleration, the mathematical relationships between angular displacement, angular velocity, and angular acceleration can be described with the following equations:
\[\omega = \omega_0 + \alpha t \]
\[\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \]
\[\omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0) \]

5.1.A.4.ii
Graphs of angular displacement, angular velocity, and angular acceleration as functions of time can be used to find the relationships between those quantities.

BOUNDARY STATEMENT

Descriptions of the directions of rotation for a point or object are limited to clockwise and counterclockwise with respect to a given axis of rotation.
TOPIC 5.2
Connecting Linear and Rotational Motion

Required Course Content

LEARNING OBJECTIVE
5.2.A.1
Describe the linear motion of a point on a rotating rigid system that corresponds to the rotational motion of that point, and vice versa.

ESSENTIAL KNOWLEDGE
5.2.A.1
For a point at a distance \(r \) from a fixed axis of rotation, the linear distance \(s \) traveled by the point as the system rotates through an angle \(\Delta \theta \) is given by the equation \(\Delta s = r \Delta \theta \).

5.2.A.2
Derived relationships of linear velocity and of the tangential component of acceleration to their respective angular quantities are given by the following equations:

\[
\begin{align*}
 & s = r \theta \\
 & v = r \omega \\
 & a_t = r \alpha
\end{align*}
\]

5.2.A.3
For a rigid system, all points within that system have the same angular velocity and angular acceleration.

BOUNDARY STATEMENT
Descriptions of the directions of rotation for a point or object are limited to clockwise and counterclockwise with respect to a given axis of rotation.

SUGGESTED SKILLS
1.C
Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.

2.A
Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.

2.C
Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.

3.B
Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
Torque and Rotational Dynamics

LEARNING OBJECTIVE

5.3.A

Identify the torques exerted on a rigid system.

ESSENTIAL KNOWLEDGE

5.3.A.1

Torque results only from the force component perpendicular to the position vector from the axis of rotation to the point of application of the force.

5.3.A.2

The lever arm is the perpendicular distance from the axis of rotation to the line of action of the exerted force.

5.3.B

Describe the torques exerted on a rigid system.

5.3.B.1

Torques can be described using force diagrams.

5.3.B.1.i

Force diagrams are similar to free-body diagrams and are used to analyze the torques exerted on a rigid system.

5.3.B.1.ii

Similar to free-body diagrams, force diagrams represent the relative magnitude and direction of the forces exerted on a rigid system. Force diagrams also depict the location at which those forces are exerted relative to the axis of rotation.

5.3.B.2

The magnitude of the torque exerted on a rigid system by a force is described by the following equation, where θ is the angle between the force vector and the position vector from the axis of rotation to the point of application of the force.

$$\tau = rF_\perp = rF \sin \theta$$

BOUNDARY STATEMENT

While AP Physics 1 expects students to mathematically manipulate the magnitude of torque using vector conventions, the direction of torque is beyond the scope of the course.
TOPIC 5.4
Rotational Inertia

Required Course Content

LEARNING OBJECTIVE

5.4.A
Describe the rotational inertia of a rigid system relative to a given axis of rotation.

ESSENTIAL KNOWLEDGE

5.4.A.1
Rotational inertia measures a rigid system’s resistance to changes in rotation and is related to the mass of the system and the distribution of that mass relative to the axis of rotation.

5.4.A.2
The rotational inertia of an object rotating a perpendicular distance \(r \) from an axis is described by the equation

\[I = mr^2. \]

5.4.A.3
The total rotational inertia of a collection of objects about an axis is the sum of the rotational inertias of each object about that axis:

\[I_{\text{tot}} = \sum I_i = \sum m_i r_i^2. \]

5.4.B
Describe the rotational inertia of a rigid system rotating about an axis that does not pass through the system’s center of mass.

5.4.B.1
A rigid system’s rotational inertia in a given plane is at a minimum when the rotational axis passes through the system’s center of mass.

continued on next page
LEARNING OBJECTIVE

5.4.B
Describe the rotational inertia of a rigid system rotating about an axis that does not pass through the system’s center of mass.

ESSENTIAL KNOWLEDGE

5.4.B.2
The parallel axis theorem uses the following equation to relate the rotational inertia of a rigid system about any axis that is parallel to an axis through its center of mass:

\[I' = I_{cm} + Md^2 \]

BOUNDARY STATEMENT

AP Physics 1 only expects students to calculate the rotational inertia for systems of five or fewer objects arranged in a two-dimensional configuration. Students do not need to know the rotational inertia of extended rigid systems, as these will be provided within the exam. Students should have a qualitative understanding of the factors that affect rotational inertia; for example, how rotational inertia is greater when mass is farther from the axis of rotation, which is why a hoop has more rotational inertia than a solid disk of the same mass and radius.
TOPIC 5.5
Rotational Equilibrium and Newton’s First Law in Rotational Form

Required Course Content

LEARNING OBJECTIVE
5.5.A
Describe the conditions under which a system’s angular velocity remains constant.

ESSENTIAL KNOWLEDGE
5.5.A.1
A system may exhibit rotational equilibrium (constant angular velocity) without being in translational equilibrium, and vice versa.

5.5.A.1.i
Free-body and force diagrams describe the nature of the forces and torques exerted on an object or rigid system.

5.5.A.1.ii
Rotational equilibrium is a configuration of torques such that the net torque exerted on the system is zero.

Relevant equation:

\[\sum \tau = 0 \]

5.5.A.1.iii
The rotational analog of Newton’s first law is that a system will have a constant angular velocity only if the net torque exerted on the system is zero.

5.5.A.2
A rotational corollary to Newton’s second law states that if the torques exerted on a rigid system are not balanced, the system’s angular velocity must be changing.

BOUNDARY STATEMENT

AP Physics 1 does not expect students to simultaneously analyze rotation in multiple planes.
TOPIC 5.6
Newton’s Second Law in Rotational Form

Required Course Content

<table>
<thead>
<tr>
<th>LEARNING OBJECTIVE</th>
<th>ESSENTIAL KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.A</td>
<td>5.6.A.1</td>
</tr>
<tr>
<td>Describe the conditions under which a system’s angular velocity changes.</td>
<td>Angular velocity changes when the net torque exerted on the object or system is not equal to zero.</td>
</tr>
<tr>
<td>5.6.A.2</td>
<td></td>
</tr>
<tr>
<td>The rate at which the angular velocity of a rigid system changes is directly proportional to the net torque exerted on the rigid system and is in the same direction. The angular acceleration of the rigid system is inversely proportional to the rotational inertia of the rigid system.</td>
<td></td>
</tr>
<tr>
<td>5.6.A.3</td>
<td></td>
</tr>
<tr>
<td>To fully describe a rotating rigid system, linear and rotational analyses may need to be performed independently.</td>
<td></td>
</tr>
</tbody>
</table>
AP PHYSICS 1

UNIT 6

Energy and Momentum of Rotating Systems

AP EXAM WEIGHTING

5–8%

CLASS PERIODS

~8–14
Remember to go to AP Classroom to assign students the online Progress Check for this unit.

Whether assigned as homework or completed in class, the Progress Check provides each student with immediate feedback related to this unit’s topics and science practices.

Progress Check 6
Multiple-choice: ~18 questions
Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
Energy and Momentum of Rotating Systems

Developing Understanding

In Unit 6, students will apply their knowledge of energy and momentum to rotating systems. Similar to the approach used for translational energy and momentum concepts in Units 3 and 4, it is important that students have conceptual understanding of how angular momentum and rotational energy change due to external torque(s) on a system. Additionally, articulating the conditions under which the rotational energy and/or angular momentum of a system remains constant is foundational to working through more complex scenarios. Students will use the content and skills presented in both Units 5 and 6 to further study the motion of orbiting satellites and rolling without slipping in this unit.

Building the Science Practices

Unit 6 provides opportunities for students to compare physical quantities between scenarios or at different times in a single scenario (2.C), as well as determine new values of quantities using functional dependencies between variables (2.D). From there, students can also make and justify claims based on these physical principles and functional relationships (3.B, 3.C). For example, students could describe conceptually what happens to the rotational inertia of a system when the pivot point is moved, and then justify what impact that change will have on the angular acceleration of the system. By the end of the unit, it is important for students to be comfortable with making claims about the reasonableness of their claims and justifications made with functional dependence (2.D, 3.C), starting with first principles of physics.

Preparing for the AP Exam

On both the multiple-choice and free-response sections of the AP Physics 1 Exam, students need to be able to describe the relationships between physical quantities in order to articulate the effects of changing the value of a specific physical quantity in a scenario. Therefore, students will benefit from opportunities to investigate changes in systems, including practicing using fundamental principles of physics to decide whether a quantity will increase, decrease, or remain the same when another quantity is changed. Additionally, when writing justifications for claims, simply referencing an equation, law, or physical principle is not sufficient. For example, stating that one disk is rolling faster than another because of “conservation of energy” is not a complete enough answer to earn credit on the free-response section of the exam. Students must clearly and concisely explain the steps in their reasoning that lead from the equation, law, or physical principle to the justification of their claim in FRQ #1, the MR question.
UNIT AT A GLANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
</table>
| **6.1 Rotational Kinetic Energy** | 1A Create diagrams, tables, charts, or schematics to represent physical situations.
2B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |
| **6.2 Torque and Work** | 1B Create quantitative graphs with appropriate scales and units, including plotting data.
2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
2D Predict new values or factors of change of physical quantities using functional dependence between variables.
3A Create experimental procedures that are appropriate for a given scientific question. |
| **6.3 Angular Momentum and Angular Impulse** | 1B Create quantitative graphs with appropriate scales and units, including plotting data.
2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2D Predict new values or factors of change of physical quantities using functional dependence between variables.
3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |
| **6.4 Conservation of Angular Momentum** | 1B Create quantitative graphs with appropriate scales and units, including plotting data.
2D Predict new values or factors of change of physical quantities using functional dependence between variables.
3A Create experimental procedures that are appropriate for a given scientific question.
3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
3C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |

continued on next page
UNIT AT A GLANCE (cont’d)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
</table>
| **6.5 Rolling** | 1.A Create diagrams, tables, charts, or schematics to represent physical situations.
 | 2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
 | 2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
 | 3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| **6.6 Motion of Orbiting Satellites** | 1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
 | 2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
 | 2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
 | 3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |

Go to [AP Classroom](https://apclassroom.collegeboard.org) to assign the Progress Check for Unit 6. Review the results in class to identify and address any student misunderstandings.
The sample activities on this page are optional and are offered to provide possible ways to incorporate various instructional approaches in the classroom. Teachers do not need to use these activities or instructional approaches and are free to alter or edit them. The examples below were developed in partnership with teachers from the AP community to share ways that they approach teaching some of the topics in this unit. Please refer to the Instructional Approaches section beginning on p. 153 for more examples of activities and strategies.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Topic</th>
<th>Sample Activity</th>
</tr>
</thead>
</table>
| 1 | 6.1 | Desktop Experiment Task
Have students release a yo-yo from rest, calculate its acceleration from distance and time measurements, and then determine the yo-yo’s rotational inertia (which requires the yo-yo’s mass and the radius at which the string connects to the yo-yo). Next, have them roll the yo-yo down a ramp and use distance and time data to construct a conservation of energy equation that can be solved for the yo-yo’s rotational inertia. |
| 2 | 6.3 | Predict and Explain
Allow students to play with a set of fidget spinners. Ask them to explain why it is difficult to change the plane of rotation of a spinner while it is rotating. |
| 3 | 6.5 | Concept-Oriented Demonstration
Obtain a ring and a disk of equal mass and radius and load up a low-friction cart with weights to make it the same mass. “Race” the three objects from rest down identical inclines to show students the cart wins, then the disk, and then the ring. Have students explain why the objects win in this order, with forces and then with energy. |
| 4 | 6.5 | Ranking Tasks
Present students with the following scenario and its accompanying three cases: A wheel rolls down an incline from rest and across a flat surface. Case 1: Tracks are rough enough that there is no slipping. Case 2: Tracks have some friction, but there is slipping. Case 3: Tracks have negligible friction. Have students rank translational kinetic energies at the end, rotational kinetic energies at the end, and total mechanical energies of the wheel at the end as three separate tasks.
\[K_{T1} > K_{T2} > K_{T3}, \quad (K_{R1} > K_{R2} > K_{R3}), \quad \text{and} \quad (E_1 = E_3 > E_2). \] |
| 5 | 6.5 | Construct an Argument
Have students roll a hoop and a disk (of equal mass and radius) down identical ramps. Then have them explain why the disk reached the bottom in less time using energy bar charts and to-scale free-body diagrams. |
TOPIC 6.1
Rotational Kinetic Energy

Required Course Content

LEARNING OBJECTIVE

6.1.A
Describe the rotational kinetic energy of a rigid system in terms of the rotational inertia and angular velocity of that rigid system.

ESSENTIAL KNOWLEDGE

6.1.A.1
The rotational kinetic energy of an object or rigid system is related to the rotational inertia and angular velocity of the rigid system and is given by the equation

\[K = \frac{1}{2} I \omega^2. \]

6.1.A.1.i
The rotational inertia of an object about a fixed axis can be used to show that the rotational kinetic energy of that object is equivalent to its translational kinetic energy, which is its total kinetic energy.

6.1.A.1.ii
The total kinetic energy of a rigid system is the sum of its rotational kinetic energy due to its rotation about its center of mass and the translational kinetic energy due to the linear motion of its center of mass.

6.1.A.2
A rigid system can have rotational kinetic energy while its center of mass is at rest due to the individual points within the rigid system having linear speed and, therefore, kinetic energy.

6.1.A.3
Rotational kinetic energy is a scalar quantity.

SUGGESTED SKILLS

1.A
Create diagrams, tables, charts, or schematics to represent physical situations.

2.B
Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.

2.C
Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.

3.C
Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.
TOPIC 6.2

Torque and Work

Required Course Content

LEARNING OBJECTIVE

6.2.A

Describe the work done on a rigid system by a given torque or collection of torques.

ESSENTIAL KNOWLEDGE

6.2.A.1

A torque can transfer energy into or out of an object or rigid system if the torque is exerted over an angular displacement.

6.2.A.2

The amount of work done on a rigid system by a torque is related to the magnitude of that torque and the angular displacement through which the rigid system rotates during the interval in which that torque is exerted.

Relevant equation:

\[W = \tau \Delta \theta \]

6.2.A.3

Work done on a rigid system by a given torque can be found from the area under the curve of a graph of torque as a function of angular position.
Required Course Content

LEARNING OBJECTIVE

6.3.A
Describe the angular momentum of an object or rigid system.

ESSENTIAL KNOWLEDGE

6.3.A.1
The magnitude of the angular momentum of a rigid system about a specific axis can be described with the equation $L = I \omega$.

6.3.A.2
The magnitude of the angular momentum of an object about a given point is $L = mv \sin \theta$.

6.3.A.2.i
The selection of the axis about which an object is considered to rotate influences the determination of the angular momentum of that object.

6.3.A.2.ii
The measured angular momentum of an object traveling in a straight line depends on the distance between the reference point and the object, the mass of the object, the speed of the object, and the angle between the radial distance and the velocity of the object.

continued on next page
LEARNING OBJECTIVE

6.3.B
Describe the angular impulse delivered to an object or rigid system by a torque.

ESSENTIAL KNOWLEDGE

6.3.B.1
Angular impulse is defined as the product of the torque exerted on an object or rigid system and the time interval during which the torque is exerted.

Relevant equation:
\[
\text{angular impulse} = \tau \Delta t
\]

6.3.B.2
Angular impulse has the same direction as the torque exerted on the object or system.

6.3.B.3
The angular impulse delivered to an object or rigid system by a torque can be found from the area under the curve of a graph of the torque as a function of time.

6.3.C
Relate the change in angular momentum of an object or rigid system to the angular impulse given to that object or rigid system.

6.3.C.1
The magnitude of the change in angular momentum can be described by comparing the magnitudes of the final and initial angular momenta of the object or rigid system:
\[
\Delta L = L_f - L_i
\]

6.3.C.2
A rotational form of the impulse–momentum theorem relates the angular impulse delivered to an object or rigid system and the change in angular momentum of that object or rigid system.

6.3.C.2.i
The angular impulse exerted on an object or rigid system is equal to the change in angular momentum of that object or rigid system.

Relevant equation:
\[
\Delta L = \tau \Delta t
\]

6.3.C.2.ii
The rotational form of the impulse–momentum theorem is a direct result of the rotational form of Newton's second law of motion for cases in which rotational inertia is constant:
\[
\tau_{\text{net}} = \frac{\Delta L}{\Delta t} = \int \frac{\Delta \omega}{\Delta t} = I \alpha
\]
LEARNING OBJECTIVE

6.3.C
Relate an object's or rigid system's change in angular momentum to the angular impulse given to that object or rigid system.

ESSENTIAL KNOWLEDGE

6.3.C.3
The net torque exerted on an object is equal to the slope of the graph of the angular momentum of an object as a function of time.

6.3.C.4
The angular impulse delivered to an object is equal to the area under the curve of a graph of the net external torque exerted on an object as a function of time.

BOUNDARY STATEMENT

While AP Physics 1 expects that students can mathematically manipulate the magnitude of angular momentum using one-dimensional vector conventions, the direction of angular momentum and angular impulse is beyond the scope of the course.
TOPIC 6.4
Conservation of Angular Momentum

Required Course Content

LEARNING OBJECTIVE
6.4.A
Describe the behavior of a system using conservation of angular momentum.

ESSENTIAL KNOWLEDGE
6.4.A.1
The total angular momentum of a system about a rotational axis is the sum of the angular momenta of the system’s constituent parts about that axis.

6.4.A.2
Any change to a system’s angular momentum must be due to an interaction between the system and its surroundings.

6.4.A.2.i
The angular impulse exerted by one object or system on a second object or system is equal and opposite to the angular impulse exerted by the second object or system on the first. This is a direct result of Newton’s third law.

6.4.A.2.ii
A system may be selected so that the total angular momentum of that system is constant.

6.4.A.2.iii
The angular speed of a nonrigid system may change without the angular momentum of the system changing if the system changes shape by moving mass closer to or further from the rotational axis.

6.4.A.2.iv
If the total angular momentum of a system changes, that change will be equivalent to the angular impulse exerted on the system.

continued on next page
LEARNING OBJECTIVE

6.4.B
Describe how the selection of a system determines whether the angular momentum of that system changes.

ESSENTIAL KNOWLEDGE

6.4.B.1
Angular momentum is conserved in all interactions.

6.4.B.2
If the net external torque exerted on a selected object or rigid system is zero, the total angular momentum of that system is constant.

6.4.B.3
If the net external torque exerted on a selected object or rigid system is nonzero, angular momentum is transferred between the system and the environment.
TOPIC 6.5

Rolling

Required Course Content

LEARNING OBJECTIVE

6.5.A

Describe the kinetic energy of a system that has translational and rotational motion.

ESSENTIAL KNOWLEDGE

6.5.A.1

The total kinetic energy of a system is the sum of the system’s translational and rotational kinetic energies.

Relevant equation:

\[K_{\text{tot}} = K_{\text{trans}} + K_{\text{rot}} \]

6.5.B

Describe the motion of a system that is rolling without slipping.

6.5.B.1

While rolling without slipping, the translational motion of a system’s center of mass is related to the rotational motion of the system itself with the equations:

\[\Delta x_{\text{cm}} = r \Delta \theta \]

\[v_{\text{cm}} = r \omega \]

\[a_{\text{cm}} = r \alpha \]

6.5.B.2

For ideal cases, rolling without slipping implies that the frictional force does not dissipate any energy from the rolling system.

continued on next page
LEARNING OBJECTIVE

6.5.C
Describe the motion of a system that is rolling while slipping.

ESSENTIAL KNOWLEDGE

6.5.C.1
When slipping, the motion of a system's center of mass and the system's rotational motion cannot be directly related.

6.5.C.2
When a rotating system is slipping relative to another surface, the point of application of the force of kinetic friction exerted on the system moves with respect to the surface, so the force of kinetic friction will dissipate energy from the system.

BOUNDARY STATEMENT

Rolling friction is beyond the scope of AP Physics 1.

BOUNDARY STATEMENT

The precise mathematical relationships between linear and angular quantities while a rigid body is rolling while slipping are beyond the scope of AP Physics 1 and 2, and students will not be expected to model those relationships quantitatively. However, students are expected to qualitatively explain the changes to linear and angular quantities while a rigid body is rolling while slipping.
TOPIC 6.6
Motion of Orbiting Satellites

Required Course Content

LEARNING OBJECTIVE

6.6.A
Describe the motions of a system consisting of two objects interacting only via gravitational forces.

ESSENTIAL KNOWLEDGE

6.6.A.1
In a system consisting only of a massive central object and an orbiting satellite with mass that is negligible in comparison to the central object’s mass, the motion of the central object itself is negligible.

6.6.A.2
The motion of satellites in orbits is constrained by conservation laws.

6.6.A.2.i
In circular orbits, the system’s total mechanical energy, the system’s gravitational potential energy, and the satellite’s angular momentum and kinetic energy are constant.

6.6.A.2.ii
In elliptical orbits, the system’s total mechanical energy and the satellite’s angular momentum are constant, but the system’s gravitational potential energy and the satellite’s kinetic energy can each change.

6.6.A.2.iii
The gravitational potential energy of a system consisting of a satellite and a massive central object is defined to be zero when the satellite is an infinite distance from the central object.

Relevant equation:

\[
U_g = -G \frac{m_1 m_2}{r}
\]

continued on next page
ESSENTIAL KNOWLEDGE

6.6.A.3

The escape velocity of a satellite is the satellite’s velocity such that the mechanical energy of the satellite–central-object system is equal to zero.

6.6.A.3.i

When the only force exerted on a satellite is gravity from a central object, a satellite that reaches escape velocity will move away from the central body until its speed reaches zero at an infinite distance from the central body.

6.6.A.3.ii

The escape velocity of a satellite from a central body of mass M can be derived using conservation of energy laws.

Derived equation:

$$v_{esc} = \sqrt{\frac{2GM}{r}}$$
UNIT 7

Oscillations

5–8% AP EXAM WEIGHTING

~5–10 CLASS PERIODS
Remember to go to AP Classroom to assign students the online Progress Check for this unit. Whether assigned as homework or completed in class, the Progress Check provides each student with immediate feedback related to this unit’s topics and science practices.

Progress Check 7

Multiple-choice: ~18 questions

Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
Developing Understanding

In Unit 7, students will apply previously-encountered models and methods of analysis to simple harmonic motion. They will also be reminded that, even in new situations, the fundamental laws of physics remain the same. Because this unit is the first in which students possess all the tools of force, energy, and momentum conservation—such as energy bar charts, free-body diagrams, and momentum diagrams—scaffolding lessons will enhance student understanding of fundamental physics principles and their limitations, as they relate to oscillating systems. Students will also use the skills and knowledge they have gained to make and justify claims, as well as connect new concepts with those learned in previous topics.

Building the Science Practices

Throughout this unit, there are many opportunities for students to create graphs (1.C) that may include force, energy, or momentum as either a function of position or time for a single scenario and to make connections between physics concepts based on these graphs. In Unit 7, as in other units in AP Physics 1, practice creating and using models to represent physical scenarios (1.A) and then translating the information presented in these models into other representations—such as symbolic expressions (2.A)—can help students justify or support claims about oscillating systems (3.C).

Preparing for the AP Exam

The second free-response question on the AP Physics 1 Exam—the Translation Between Representations question (TBR)—requires students to create graphical and verbal models of scenarios, as well as compare these models to mathematical representations of the same situation. Similar in nature to the Qualitative/Quantitative Translation question (QQT), the TBR involves creating multiple representations and describing the relationships between those representations; however, the types of representations being compared in the TBR differ from those in the QQT. In the TBR, a student might be asked to sketch free-body diagrams of a block oscillating on a spring at the maximum displacement and at equilibrium. The student might then be asked to create energy bar charts for the block-spring system at maximum displacement and at equilibrium. Lastly, the student might be asked to make connections between the two representations, explaining how the representations are consistent with each other. While Unit 7 content provides especially good practice for the TBR, content from any unit may be included in this free-response question on the AP Exam.
UNIT AT A GLANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
</table>
| **7.1 Defining Simple Harmonic Motion (SHM)** | 1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2.A Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.
3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| **7.2 Frequency and Period of SHM** | 1.B Create quantitative graphs with appropriate scales and units, including plotting data.
2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2.D Predict new values or factors of change of physical quantities using functional dependence between variables.
3.A Create experimental procedures that are appropriate for a given scientific question.
3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| **7.3 Representing and Analyzing SHM** | 1.C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2.A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2.D Predict new values or factors of change of physical quantities using functional dependence between variables.
3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| **7.4 Energy of Simple Harmonic Oscillators** | 1.A Create diagrams, tables, charts, or schematics to represent physical situations.
2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |

Go to AP Classroom to assign the Progress Check for Unit 7. Review the results in class to identify and address any student misunderstandings.
SAMPLE INSTRUCTIONAL ACTIVITIES

The sample activities on this page are optional and are offered to provide possible ways to incorporate various instructional approaches in the classroom. Teachers do not need to use these activities or instructional approaches and are free to alter or edit them. The examples below were developed in partnership with teachers from the AP community to share ways that they approach teaching some of the topics in this unit. Please refer to the Instructional Approaches section beginning on p. 153 for more examples of activities and strategies.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Topic</th>
<th>Sample Activity</th>
</tr>
</thead>
</table>
| 1 | 7.2 | **Desktop Experiment Task**
Have students determine the spring constant of a spring using (1) known masses and a meterstick only and then (2) known masses and a stopwatch only. |
| 2 | 7.2 | **Desktop Experiment Task**
Have students use a pendulum to determine the acceleration due to gravity. Ask them to refine the experiment from a single-trial calculation, to taking an average, to making a graph of linearized data. |
| 3 | 7.2 | **Predict and Explain**
Have students make a pendulum bob oscillate with the other end of the string “clamped” between your fingers. While the bob oscillates, pull the string through your fingers so that the string length is shortened. Before doing this, ask students what will happen to the period of the oscillation and amplitude (measured in degrees), and then explain why the period decreases and the amplitude angle increases. |
| 4 | 7.2 | **Create a Plan**
Have students choose a song and find its tempo (in beats per minute). Then, have them build a pendulum so that it swings back and forth on each beat. Next, give students a spring. Have them first find the spring’s constant and then find the amount of mass necessary to make the spring-mass oscillate on each beat. |
| 5 | 7.4 | **Construct an Argument**
A cart wiggles on a horizontal spring. A blob of clay is dropped on the cart and sticks (could be when the cart is at the center or at one end). Ask students to explain what happened to the period, total energy, amplitude of motion, and maximum speed. |
TOPIC 7.1
Defining Simple Harmonic Motion (SHM)

Required Course Content

LEARNING OBJECTIVE

7.1.A
Describe simple harmonic motion.

ESSENTIAL KNOWLEDGE

7.1.A.1
Simple harmonic motion is a special case of periodic motion.

7.1.A.2
SHM results when the magnitude of the restoring force exerted on an object is proportional to that object’s displacement from its equilibrium position.

Derived equation:
\(ma_x = -k\Delta x \)

7.1.A.2.i
A restoring force is a force that is exerted in a direction opposite to the object’s displacement from an equilibrium position.

7.1.A.2.ii
An equilibrium position is a location at which the net force exerted on an object or system is zero.

7.1.A.2.iii
The motion of a pendulum with a small angular displacement can be modeled as simple harmonic motion because the restoring torque is proportional to the angular displacement.
TOPIC 7.2
Frequency and Period of SHM

Required Course Content

LEARNING OBJECTIVE

7.2.A
Describe the frequency and period of an object exhibiting SHM.

ESSENTIAL KNOWLEDGE

7.2.A.1
The period of SHM is related to the frequency f of the object’s motion by the following equation:

$$T = \frac{1}{f}$$

7.2.A.1.i
The period of an object–ideal-spring oscillator is given by the equation

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

7.2.A.1.ii
The period of a simple pendulum displaced by a small angle is given by the equation

$$T_p = 2\pi \sqrt{\frac{f}{g}}$$

SUGGESTED SKILLS

1.B
Create quantitative graphs with appropriate scales and units, including plotting data.

2.A
Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.

2.D
Predict new values or factors of change of physical quantities using functional dependence between variables.

3.A
Create experimental procedures that are appropriate for a given scientific question.

3.C
Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.
Required Course Content

LEARNING OBJECTIVE

7.3.A Describe the displacement, velocity, and acceleration of an object exhibiting SHM.

ESSENTIAL KNOWLEDGE

7.3.A.1
For an object exhibiting SHM, the displacement of that object measured from its equilibrium position can be represented by the equations $x = A \cos(2\pi ft)$ or $x = A \sin(2\pi ft)$.

- **7.3.A.1.i** Minima, maxima, and zeros of displacement, velocity, and acceleration are features of harmonic motion.
- **7.3.A.1.ii** Recognizing the positions or times at which the displacement, velocity, and acceleration for SHM have extrema or zeros can help in qualitatively describing the behavior of the motion.

7.3.A.2 Changing the amplitude of a system exhibiting SHM will not change the period of that system.

7.3.A.3 Properties of SHM can be determined and analyzed using graphical representations.
TOPIC 7.4
Energy of Simple Harmonic Oscillators

Required Course Content

LEARNING OBJECTIVE

7.4.A
Describe the mechanical energy of a system exhibiting SHM.

ESSENTIAL KNOWLEDGE

7.4.A.1
The total energy of a system exhibiting SHM is the sum of the system’s kinetic and potential energies.

Relevant equation:

\[E_{\text{total}} = U + K \]

7.4.A.2
Conservation of energy indicates that the total energy of a system exhibiting SHM is constant.

7.4.A.3
The kinetic energy of a system exhibiting SHM is at a maximum when the system’s potential energy is at a minimum.

7.4.A.4
The potential energy of a system exhibiting SHM is at a maximum when the system’s kinetic energy is at a minimum.

7.4.A.4.i
The minimum kinetic energy of a system exhibiting SHM is zero.

7.4.A.4.ii
Changing the amplitude of a system exhibiting SHM will change the maximum potential energy of the system and, therefore, the total energy of the system.

Relevant equation for a spring–object system:

\[E_{\text{total}} = \frac{1}{2} kA^2 \]
UNIT 8
Fluids

10–15% AP EXAM WEIGHTING

~12–17 CLASS PERIODS
Remember to go to AP Classroom to assign students the online Progress Check for this unit.

Whether assigned as homework or completed in class, the Progress Check provides each student with immediate feedback related to this unit’s topics and science practices.

Progress Check 8

Multiple-choice: ~18 questions

Free-response: 4 questions

- Mathematical Routines
- Translation Between Representations
- Experimental Design and Analysis
- Qualitative/Quantitative Translation
Developing Understanding

In Unit 8, students consider how the forces and conservation laws studied in Units 1 through 4 can be applied to the study of ideal fluids. Unit 8 ties together the thematic threads that have been woven throughout the course, including the interactions between systems and the conservation of fundamental quantities.

Building the Science Practices

Unit 8, the culminating unit of the course, incorporates all the physics principles and course skills students have encountered in previous units, with an emphasis on representations and models (1.A and 1.C) and connecting related knowledge between fundamental ideas. In this unit, students will use familiar force and energy representations (e.g., free-body diagrams and energy bar charts) to describe static and dynamic fluids. Students will also once again be encouraged to sharpen their understanding of mathematics and the laws of physics by being asked to reason with equations to describe a phenomenon (2.A, 2.B, 2.C, and 2.D). Additionally, as in the other seven units of the course, being able to identify and describe the relationships between physical quantities—and use these relationships as evidence to make and justify claims (3.B and 3.C)—is a critical skill when answering scientific questions. Inquiry experiences with fluid statics and dynamics can play an integral role in helping students overcome misconceptions. Providing them with opportunities to develop their own scientific experiments (3.A), and collect and plot data (1.B), will further prepare students for the AP Physics 1 Exam by deepening their understanding of the behaviors of fluids.

Preparing for the AP Exam

Throughout their study of physics, students may need to reflect upon common misconceptions. For example, students may believe that objects float in water because the objects are “lighter” than water, or that objects sink in water because they are “heavier” than water. Misconceptions can be challenged by encouraging students to identify the fundamental physical principle needed to answer a question, which will help them eliminate irrelevant or extraneous information. On the AP Physics 1 Exam, it is also important that students use correct vocabulary and terminology when defending claims with evidence. Students can inadvertently miscommunicate their answer by using words incorrectly or not fully understanding their nuances. For example, students should know the difference between the meanings of “mass,” “volume,” “weight,” “size,” and “density.” Providing scaffolded instruction in correct vocabulary use and clear, concise explanations will help students be more successful on the free-response section of the AP Exam, where written expression and justification represent many of the available points.
UNIT AT A GLANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Skills</th>
</tr>
</thead>
</table>
| **8.1 Internal Structure and Density** | 1B Create quantitative graphs with appropriate scales and units, including plotting data.
2B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3A Create experimental procedures that are appropriate for a given scientific question.
3C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| **8.2 Pressure** | 1C Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.
2B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.
2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws. |
| **8.3 Fluids and Newton’s Laws** | 1A Create diagrams, tables, charts, or schematics to represent physical situations.
2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2D Predict new values or factors of change of physical quantities using functional dependence between variables.
3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |
| **8.4 Fluids and Conservation Laws** | 1B Create quantitative graphs with appropriate scales and units, including plotting data.
2A Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.
2C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.
3A Create experimental procedures that are appropriate for a given scientific question.
3B Apply an appropriate law, definition, theoretical relationship, or model to make a claim. |

Go to AP Classroom to assign the Progress Check for Unit 8.
Review the results in class to identify and address any student misunderstandings.
SAMPLE INSTRUCTIONAL ACTIVITIES

The sample activities on this page are optional and are offered to provide possible ways to incorporate various instructional approaches in the classroom. Teachers do not need to use these activities or instructional approaches and are free to alter or edit them. The examples below were developed in partnership with teachers from the AP community to share ways that they approach teaching some of the topics in this unit. Please refer to the Instructional Approaches section beginning on p. 153 for more examples of activities and strategies.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Topic</th>
<th>Sample Activity</th>
</tr>
</thead>
</table>
| 1 | 8.2 | Construct an Argument
Search “pressure versus height graph” online and download a graph of air pressure as a function of elevation. Have students explain why the slope decreases with elevation (air gets less dense) and use the slope of the graph at one point to estimate the density of air at that elevation. |
| 2 | 8.3 | Desktop Experiment Task
Divide students into groups. Give each group an irregularly shaped metal object (e.g., a small, inexpensive statue). Provide each group a spring scale and access to a deep sink. Have students use buoyancy principles to calculate the volume and density of the object. |
| 3 | 8.3 | Graph and Switch
Have a student use a rope to raise an object 2 m from the bottom of a 3 m deep pool. Graph (with numerical scales) tension versus height of the bottom of the object above the floor of the pool for 0–4 m. Have another student determine the mass, volume, and density of the object. The shape of the graph from 1 to 3 m also determines whether the shape is a cube, sphere, or a cone pointing up or down. Ask students to switch graphs and discuss. |
| 4 | 8.4 | Construct an Argument
Have students draw Bernoulli bar charts for two or more points in a flowing fluid situation. (Bars are for pressure, \(\rho g \), and \(\frac{1}{2} \rho v^2 \).) Examples: water leaking out of a hole in a container, water shooting out of a hose, and drinking from a straw. Have students make and defend a claim about the pressure in two different places in the container, hose, or straw, using the bar chart as evidence. |
| 5 | 8.4 | Desktop Experiment Task
Divide students into groups. Obtain a syringe (no needle) or water squirter for each group. Have each group fill it with water and squirt the water horizontally. Then, have each group determine how much pressure (for the water squirter) or force (for the syringe) was exerted to make the water come out. |
SUGGESTED SKILLS

1.B
Create quantitative graphs with appropriate scales and units, including plotting data.

2.B
Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.

2.C
Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.

3.A
Create experimental procedures that are appropriate for a given scientific question.

3.C
Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws

TOPIC 8.1
Internal Structure and Density

Required Course Content

LEARNING OBJECTIVE

8.1.A
Describe the properties of a fluid.

ESSENTIAL KNOWLEDGE

8.1.A.1
Distinguishing properties of solids, liquids, and gases stem from the varying interactions between atoms and molecules.

8.1.A.2
A fluid is a substance that has no fixed shape.

8.1.A.3
Fluids can be characterized by their density. Density is defined as a ratio of mass to volume.

Relevant equation:

\[\rho = \frac{m}{V} \]

8.1.A.4
An ideal fluid is incompressible and has no viscosity.
TOPIC 8.2
Pressure

Required Course Content

LEARNING OBJECTIVE

8.2.A
Describe the pressure exerted on a surface by a given force.

ESSENTIAL KNOWLEDGE

8.2.A.1
Pressure is defined as the magnitude of the perpendicular force component exerted per unit area over a given surface area, as described by the equation

\[P = \frac{F}{A} \]

8.2.A.2
Pressure is a scalar quantity.

8.2.A.3
The volume and density of a given amount of an incompressible fluid is constant regardless of the pressure exerted on that fluid.

8.2.B
Describe the pressure exerted by a fluid.

8.2.B.1
The pressure exerted by a fluid is the result of the entirety of the interactions between the fluid’s constituent particles and the surface with which those particles interact.

8.2.B.2
The absolute pressure of a fluid at a given point is equal to the sum of a reference pressure \(P_0 \), such as the atmospheric pressure \(P_{\text{atm}} \), and the gauge pressure \(P_{\text{gauge}} \).

Relevant equation:

\[P = P_0 + \rho gh \]

8.2.B.3
The gauge pressure of a vertical column of fluid is described by the equation

\[P_{\text{gauge}} = \rho gh. \]
TOPIC 8.3
Fluids and Newton’s Laws

Required Course Content

LEARNING OBJECTIVE

8.3.A
Describe the conditions under which a fluid’s velocity changes.

8.3.B
Describe the buoyant force exerted on an object interacting with a fluid.

ESSENTIAL KNOWLEDGE

8.3.A.1
Newton’s laws can be used to describe the motion of particles within a fluid.

8.3.A.2
The macroscopic behavior of a fluid is a result of the internal interactions between the fluid’s constituent particles and external forces exerted on the fluid.

8.3.B.1
The buoyant force is a net upward force exerted on an object by a fluid.

8.3.B.2
The buoyant force exerted on an object by a fluid is a result of the collective forces exerted on the object by the particles making up the fluid.

8.3.B.3
The magnitude of the buoyant force exerted on an object by a fluid is equivalent to the weight of the fluid displaced by the object.

Relevant equation:

\[F_b = \rho V g \]
TOPIC 8.4
Fluids and Conservation Laws

Required Course Content

LEARNING OBJECTIVE

8.4.A
Describe the flow of an incompressible fluid through a cross-sectional area by using mass conservation.

ESSENTIAL KNOWLEDGE

8.4.A.1
A difference in pressure between two locations causes a fluid to flow.

8.4.A.1.i
The rate at which matter enters a fluid-filled tube open at both ends must equal the rate at which matter exits the tube.

8.4.A.1.ii
The rate at which matter flows into a location is proportional to the cross-sectional area of the flow and the speed at which the fluid flows.

Derived equation:

\[\frac{V}{t} = Av \]

8.4.A.2
The continuity equation for fluid flow describes conservation of mass flow rate in incompressible fluids.

Relevant equation:

\[A_1v_1 = A_2v_2 \]
LEARNING OBJECTIVE

8.4.B
Describe the flow of a fluid as a result of a difference in energy between two locations within the fluid–Earth system.

ESSENTIAL KNOWLEDGE

8.4.B.1
A difference in gravitational potential energies between two locations in a fluid will result in a difference in kinetic energy and pressure between those two locations that is described by conservation laws.

8.4.B.2
Bernoulli’s equation describes the conservation of mechanical energy in fluid flow.

Relevant equation:

\[P_1 + \rho gy_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho gy_2 + \frac{1}{2} \rho v_2^2 \]

8.4.B.3
Torricelli’s theorem relates the speed of a fluid exiting an opening to the difference in height between the opening and the top surface of the fluid and can be derived from conservation of energy principles.

Derived equation:

\[v = \sqrt{2g\Delta y} \]

BOUNDARY STATEMENT

All fluids will be assumed to be ideal, and all pipes are assumed to be completely filled by the fluid, unless otherwise stated.
Lab Experiments

Although laboratory work has often been separated from classroom work, experience and experiment are often more instructionally effective when paired together. Familiarity with concrete evidence leads to a deeper understanding of course concepts and gives students a sense of ownership of the knowledge they have constructed. AP Physics courses require students to engage with data in a variety of ways. The analysis, interpretation, and application of quantitative information are vital skills for students. Scientific inquiry experiences in AP Physics 1 should be designed and implemented with increasing student involvement to help enhance inquiry learning and develop critical thinking and problem-solving skills. Typically, the level of investigations in an AP Physics 1 classroom should focus primarily on the continuum between guided and open inquiry. However, depending on students' familiarity with the topic, a given laboratory experience might incorporate a sequence involving all four levels of inquiry (confirmation, structured inquiry, guided inquiry, and open inquiry).

Lab Manuals and Lab Notebooks
The AP Program provides an AP Physics 1 and 2 Inquiry-Based Lab Investigations: A Teacher’s Manual on AP Classroom to support the guided inquiry lab requirement for the course. It includes labs that teachers can choose from to satisfy the guided inquiry lab component for the course. Many publishers and science classroom material distributors offer affordable lab manuals with outlined experiments and activities, as well as lab notebooks for recording lab data and observations. Students can use any type of notebook to fulfill the lab notebook requirement, even an online document. Consider the needs of the classroom when deciding what type of lab notebook to use.

Lab Materials
A wide range of equipment may be used in the physics laboratory, from generic lab items, such as metersticks, rubber balls, springs, string, metal spheres, calibrated mass sets, beakers, electronic balances, stopwatches, clamps, and ring stands, to items more specific to physics, such as tracks and carts. Successful guided inquiry student work can be accomplished with both simple, inexpensive materials and with more sophisticated physics equipment, such as air tracks and force sensors. Remember that the AP Physics 1 lab should provide experience for students equivalent to that of a college laboratory, so teachers are encouraged to make every effort to provide a range of experiences—from experiments students contrive from string and duct tape to experiments in which students gather and analyze data using calculators or computer-interfaced equipment. There are avenues that teachers can explore as a means of getting access to more expensive equipment, such as computers and probes. Probes can often be rented for short periods of time from instrument suppliers. Alternatively, local colleges or universities may allow high school students to complete a lab as a field trip on their campus, or they may allow teachers to borrow their equipment. They may even donate their old equipment. Some schools have partnerships with local businesses that can help with laboratory equipment and materials. Teachers can also utilize online donation sites such as Donors Choose and Adopt-A-Classroom.

Lab Time
For AP Physics 1 to be comparable to a college physics course, it is critical that teachers make laboratory work an important part of their curriculum. An analysis of data from AP Physics 1 examinees, regarding the length of time they spent per week in the laboratory, shows that increased laboratory time correlates with higher AP scores. Flexible or modular scheduling could be implemented to meet the time requirements identified in the curriculum framework. Furthermore, it is important that the AP Physics 1 laboratory program be adapted to local conditions and funding as it aims to offer the students a well-rounded experience with experimental physics. Adequate laboratory facilities should be provided so that each student has a work space where equipment and materials can be left overnight if necessary. Sufficient laboratory equipment for the anticipated enrollment and appropriate instruments should be provided. Students in AP Physics 1 should have access to computers with software appropriate for processing laboratory data and writing reports.
How to Set Up a Lab Program

Physics is a way of approaching scientific discovery that requires personal observation and physical experimentation. Being successful in this endeavor requires students to synthesize and use a broad spectrum of knowledge and skills, including mathematical, computational, experimental, and practical skills, and to develop habits of mind that might be characterized as thinking like a physicist. Student-directed, inquiry-based lab experience supports the AP Physics 1 course and AP Course Audit curricular requirements. It provides opportunities for students to design experiments, collect data, apply mathematical routines and methods, and refine testable explanations and predictions. The AP Physics 1 course should include a hands-on laboratory component comparable to a semester-long introductory college-level physics laboratory. Students must spend a minimum of 25% of instructional time engaged in hands-on laboratory work.

The AP Physics 1 Exam directly assesses the learning objectives of the course framework, which means that the inclusion of appropriate experiments aligned with those learning objectives is important for student success. Teachers should select experiments that provide students with the broadest laboratory experience possible.

Getting Students Started

There are no prescriptive “steps” to the iterative process of inquiry-based investigations. However, there are some common characteristics of inquiry that will support students in designing their investigations. Often, this simply begins with using the learning objectives to craft a question for students to investigate. Teachers may choose to give students a list of materials they are allowed to use in their design or require that students request the equipment they feel they need to investigate the question. Working with learning objectives to craft questions may include:

- Selecting learning objectives from the course framework that relate to the subject under study and that set forth specific tasks, in the form of “Design an experiment to …”
- Rephrasing or refining the learning objectives that align to the unit of study to create an inquiry-based investigation for students.

Students should be given latitude to make design modifications or ask for additional equipment appropriate for their design. It is also helpful for individual groups to report to the class their basic design to elicit feedback on feasibility. Guided student groups can proceed through the experiment with the teacher allowing them the freedom to make mistakes—as long as those mistakes don’t endanger students or equipment, or lead the groups too far off task. Students should have many opportunities for post-lab reporting so that groups can understand the successes and challenges of individual lab designs.
Communication, Group Collaboration, and the Laboratory Record

Laboratory work is an excellent means through which students can develop and practice communication skills. Success in subsequent work in physics depends heavily on an ability to communicate observations, ideas, and conclusions to others. By working together in a truly collaborative manner to plan and carry out experiments, students learn oral communication skills and teamwork. Students must be encouraged to take full individual responsibility for the success, or failure, of the collaboration.

After students are given a question for investigation, they may present their findings in either a written or an oral report to the teacher and class for feedback and critique on their final design and results. Students should be encouraged to critique and challenge one another’s claims based on the evidence collected during the investigation.

Laboratory Safety

Giving students the responsibility for design of their own laboratory experience involves special responsibilities for teachers. To ensure a safe working environment, teachers should first provide the limitations and safety precautions necessary for potential procedures and equipment students may use during their investigation. Teachers should also provide specific guidelines prior to students’ discussion on investigation designs for each experiment so that those precautions can be incorporated into final student-selected lab designs and included in the background or design plan in a laboratory record. It may also be helpful to print the precautions that apply to that specific lab as safety notes to place on the desk or wall near student workstations. Additionally, a general set of safety guidelines should be set forth for students at the beginning of the course. The following is a list of general guidelines teachers may post:

- Before every lab, make sure you know and record the potential hazards involved in the investigation, as well as the precautions you will take to stay safe.
- Before using equipment, make sure you know the proper method of use to acquire good data and avoid damage to equipment.
- Know where safety equipment is located in the lab, such as the fire extinguisher, safety goggles, and the first aid kit.
- Follow the teacher’s special safety guidelines as set forth prior to each experiment. (Students should record these as part of their design plan for a lab.)
- When in doubt about the safety or advisability of a procedure, check with the teacher before proceeding.

Teachers should interact constantly with students as they work to observe safety practices and anticipate and discuss with them any problems that may arise. Walking among student groups and asking questions, allows teachers to keep the pulse of what students are doing and maintain a watchful eye for potential safety issues.
Introduction
Laboratory investigations, experiments, and activities (also called “labs”) are the cornerstone of many successful physics classrooms. Labs give students the opportunity to investigate behaviors of objects and systems, make observations, and develop their own explanations and understandings of the physical world. Within labs, students explore patterns and systems to make conclusions that can be used to predict future outcomes. This cycle of observation, measurement, recording, analyzing, and concluding is the backbone of all science. Justifying conclusions by applying the knowledge, concepts, and principles that are discussed in lecture or classwork sessions to tangible material connects physical actions to conceptual understanding. Labs provide students with additional ways to encode information, which increases the methods by which they are able to retrieve and apply that information. An analysis of data from AP Physics examinees regarding the length of time they spent per week in the laboratory shows that increased lab time correlates with higher AP Exam scores.

Descriptions of Labs
AP Physics courses require that 25% of instruction time is spent in hands-on laboratory work. In practice, this translates to approximately one classroom period of 45 minutes per week (for a course that meets 5 days a week for 45 minutes for the entire school year) that is devoted to lab-related activities. This average can be implemented in a variety of ways. Some teachers do labs on the same day every week, using a weekly cycle of content, practice, application, and low-stakes formative assessment. Others prefer to do one “big” or more complex lab every two weeks. Some teachers prefer to thread quick 20-minute “mini labs” throughout their daily classroom routines. Some teachers plan a few investigative labs at the start of a unit; then spend significant class time on practice, discussion, and application of concepts; and then end the unit with one or two more complex labs that incorporate content from the entire unit. And even further still, some teachers do a combination of all of the above. Any approach is acceptable as long as the 25% requirement is met.

Defining “Labs” and “Lab Time”
Perhaps the most common questions asked by teachers who are planning their lessons are variations of:

- “What counts as a lab?”
- “What counts as time spent on labs?”
- “Do labs need to take the entire class period?”
- “Do students need to be in the ‘lab’ part of the classroom to count as lab time?”
- “Do digital or online lab simulations count for lab time?”
- “Do labs need to have formal write-ups?”

Labs
For AP Physics, a lab is performed any time data is collected and/or analyzed. A follow-up question might then be: “What is the threshold for collecting data?” For AP Physics, data is collected any time a student writes down an observation or measurement. Data can be qualitative, such as “The hockey puck looks like it slows down,” or quantitative “The acceleration of the hockey puck was -1.23 m/s^2.” Data can be recorded in many ways, such as tables, lists, or paragraphs. The analysis itself can also be qualitative or quantitative, as appropriate for the objective of the lab.

Lab Time
For AP Physics, lab time is any time spent in the classroom that supports the act of doing a lab, as defined above. This includes, but is not limited to:

- Time spent discussing the goal and objectives of a lab.
- Setup of equipment and lab stations.
- “Pre-lab” questions and activities, such as identifying what to measure, developing and writing experimental procedures, sketching lab set-ups, and creating data tables to complete.
- Performing experimental procedures.
- Collecting, plotting, and analyzing data as needed.

- “Post-lab” activities, such as interpreting, comparing, and discussing the results of the lab, connecting these results to course content, or exploring extension questions.
- Cleanup of equipment and lab stations.

Note that all of the above can be done individually, in small lab groups, or as an entire class, as deemed appropriate for any given teacher’s students and class within the context of a specific lab. There are times when it is appropriate to simply let students explore on their own, and other times when more specific instructions and directions are required (either because of complexity or safety, or both). Sometimes a long summary and review session is not needed; other labs benefit from having the entire class share their data and make conclusions using this larger pool of data. All this time spent supporting the lab may be counted as lab time.

Types of Labs

Most labs can be broadly categorized into three types: Investigations, Verifications, and Applications. **Investigation labs** are activities where students are asked to induce an outcome and discover mathematical relationships or qualitative properties without having been taught the answer in the classroom. For example, a lab may pose the question: “What is the relationship between the impulse given to an object and that object’s change in momentum?” Prior to this lab, teachers will have given definitions of impulse and momentum but may not have discussed the Impulse-Momentum Theorem. Students will determine what data to record, how to obtain that data, take measurements, and then make a conclusion about the relationship between the impulse given to an object and that object’s change in momentum.

The purpose of investigation labs is to have students create their own understanding of the behavior of a physical system. When created on its own, this understanding may provide a much more solid foundation on which the student can build further knowledge than when that same student is simply told about a physics concept. A real, tangible, physical experience is often much easier to relate to and remember. The phrase “Remember when you did …” can be much more accessible than “Imagine you will …”.

Note that if students already know the relationship between impulse and the change in momentum, an investigation lab is easily turned into a verification lab.

Verification labs confirm information students have already been provided. Depending on the approach of the teacher, these labs can also be beneficial and useful in the classroom. However, the power of self-discovery should be harnessed as often as possible, as it frequently helps students make their learning more permanent than when they simply confirm the answer found by others.

An **application lab** is when students are asked to apply a known physical principle or idea to a lab setup in order to find a specific answer or quantity. For example, a lab may ask students to “Determine the mass of a cart by measuring the impulse given to the cart and the cart’s change in momentum.” For this lab, students already know that \(\vec{j} = \Delta \vec{p} \) and apply that relationship to accomplish the objective of the lab. The results in application labs are typically easy to assess as “right” or “wrong.” If students experimentally determine that the mass of the cart is 350g, place the cart on a scale, and measure the mass of the cart to be 347g; that provides instant feedback on how well the students applied physics, laboratory skills, and the quality of their measurements. A lab group that obtains 682g for the same cart has similar instant feedback.

In an application lab, an unexpected result that significantly departs from the expected result should lead to double-checking measurements and procedures, recalibration of equipment, or finding other errors in methods or data. The ability for students to use instant feedback to check the accuracy of their work can be an invaluable tool used to develop student confidence as well as refine skills and understanding. Even when students do not obtain the “right” answer the first time, a student can earn a tremendous feeling of pride and accomplishment after self-correcting. Not only does this student learn how to overcome their mistakes, but the learning may also then be associated with positive outcomes.

Lab Skills

Labs should be selected to implement a wide variety of appropriate scientific skills. Within the context of AP Physics, all three skills within Science Practice 3: Scientific Questioning and Argumentation are appropriate to emphasize. However, in performing an experiment, students may also demonstrate any of the other skills within the AP Physics Science Practices. As such, teachers should intentionally choose which skills to emphasize and when. For instance, some labs may require meticulous measurement and data collection, while others only need qualitative observations. Teachers are encouraged to choose labs that represent all the skills students will need to become well-rounded scientists and physicists. No single type of lab or instructional approach can provide a one-size-fits-all solution for students in the classroom. Students
benefit from a variety of strategies and approaches to gain a deep, comprehensive understanding of physics concepts.

Suggested lab variations to address a variety of course skills include:

- Labs that have small details that require careful attention as well as labs that are basic and straightforward.
- Labs that require students to repeat the same measurement many times to find an average as well as labs where students must change a single quantity in order to find a relationship between two variables.
- Labs that require graphical linearization and complex mathematical derivation to determine an experimental value as well as labs that have simple conclusions based on qualitative observations.

Lab Formats

Labs may appear in a variety of formats. For a quick 15-minute demonstration where students make observations and conclusions, students may simply write their observations on the front of an index card and their conclusions on the back side of that same card. There is no one right way to do labs in the classroom; there are many different methods that can be employed. Some suggested lab formats include:

- Printing out pages for students to complete
- Requiring students to keep detailed laboratory notebooks
- A combination approach, including both printed workbook style pages and full laboratory notebooks
- Traditional lab manual and full lab report style

Teachers are encouraged to use routine to their advantage in the lab. If structures and routines are introduced at the start of the academic year, the complexity of labs that can be performed throughout the course can be increased. At the start of the year, teachers can reinforce and emphasize the lab skills themselves (i.e., developing procedures, recording data effectively, analysis methods, etc.) in the context of more accessible content. For example, if the goal of a lab is to analyze the speed of a bowling ball as it rolls down a hallway, students can typically develop and refine a scientific method of doing so without having to use complex experimental equipment and setups or nuanced physics. Later in their studies, a lab could have students investigate the relationship between the density of a fluid and the acceleration of an object through that fluid. While this lab would require specific equipment as well as more complex data collection and analysis, students would be able to focus on these complexities because they have practiced the foundational lab skills and techniques throughout the course.

Lab Equipment

There is no required lab equipment in AP Physics. It is possible to develop a robust series of labs that only require the most basic materials. However, there is a wide range of equipment, sensors, and tools that are available to teachers to use to augment their current compilation of materials. A list of the most commonly used lab equipment is provided below. While students do not need to have personal experience with each of these tools, they need to be made aware of this equipment, as well as the uses for each piece, so that they will be aware of what equipment they might be asked about on the AP Exam.

Generic Lab Equipment

- Stands, 90-degree cross supports, and clamps, of varying sizes and design
- Metersticks
- Scale (digital, triple-beam balance, etc.)
- String
 - Often heavy-duty fishing line is the best “physics” string. Fishing line is inexpensive, thin, easily available, and strong. Cotton twine is often too thick or breaks too easily, and nylon string can be difficult to tie in a reliable knot.
- Tape (including masking tape, painter’s tape, duct tape, clear tape, etc.)
- Scissors
- Glue and/or glue sticks
- Assorted spheres, balls, and masses

Physics-Specific Optional Lab Equipment

- Low-friction track
- Low-friction carts
 - Newer models of these carts can be loaded with short-cut features, such as built-in sensors that can measure the position, velocity, and acceleration of the cart, as well as a built-in force sensor, and can connect to a cell phone or computer using cables and/or Bluetooth.
- Ultrasonic motion sensor
 - An ultrasonic motion sensor is a device that emits a high frequency “ping” and measures the amount of time to hear an echo of that ping. The sensor then makes some assumptions about the speed of sound to calculate the
distance between the sensor and the object off which that ping is reflected. This can be repeated hundreds of times per second, and then those measurements can be used to calculate the velocity and acceleration of the object.

- Note that while the data ultrasonic motion sensors measure can be used to calculate speed, the quantity that these motion sensors directly measure is time.
- Ultrasonic motion sensors can be used to determine the position, velocity, and acceleration of an object.

- Photogates
 - A photogate is a device that uses an infrared light beam and a sensor to detect if a light is blocked (or not). In conjunction with data provided about the size of the object that passes through the photogate, and the amount of time for which the light is blocked, a computer can calculate the average speed of the object as it passes through the gate. Multiple photogates can be set up to precisely measure the time an object takes to pass from one gate to the next. Due to how photogates work, a single photogate cannot measure the direction of an object’s motion.
 - Note that while the data photogates measure can be used to calculate speed, the quantity that photogates are directly measuring is time.
 - Photogates can be said to determine speed, but depending on the configuration of the photogates, the speed being measured may be considered to be equal to the object’s instantaneous speed at that single location, or the average speed between two different photogates. In some applications, this distinction is crucial to obtaining the appropriate value.

- Spring Scales/Force Sensors
 - Spring scales use the calibrated compression or extension of a spring to determine the force exerted on the spring.
 - Electronic force sensors typically use a metal gauge that is deformed by a force exerted on the gauge. Electronic force sensors tend to have much more precision and accuracy than spring scales.
 - Note that spring scales are a direct application of Hooke’s law in the lab, and that while the discussion of how electronic force sensors may be fascinating to some students, knowing the specifics of exactly how and why they work is not required for the exam.

- Low-friction/low-inertia pulleys
 - These are pulleys that have very low-friction axles and low rotational inertia, which allows the pulleys to be used without needing to account for friction or the rotation of the pulley in the experimental set-up. Excessive friction within the axle of a pulley or massive pulleys can significantly impact the results of the experiment.
 - Some manufacturers make pulleys that can be used in conjunction with photogates to precisely calculate the angular displacement, velocity, and acceleration of the pulley.

- Cell phones
 - Modern cell phones are packed with sensors, cameras, and apps that can be easily and appropriately implemented in the classroom. Cell phones have stopwatches, video cameras (and most with slow-motion or even time-lapse capabilities), accelerometers that can be used to measure angles and acceleration, magnetometers, microphones, GPS, and so on. Additionally, there are many free apps that students can download that take advantage of these sensors within a physics lab setting. Cell phones can be used if available but are not required. For most laboratory investigations where data collection with phones is desired, one phone per group will suffice.

- Video analysis/computer software
 - There are multiple options for computer software and video analysis of varying cost and functionality. Electronic sensors should come with the software needed to operate those sensors. More robust software can use collected data to measure the area under a curve, or perform curve-fitting analyses or linear regressions, and more.
Instructional Approaches
Selecting and Using Course Materials

Teachers will benefit from a wide array of materials to help students become proficient with the science practices necessary to develop a conceptual understanding of the relationships, laws, and phenomena studied in AP Physics 1. In addition to using a college-level textbook that will provide required course content, teachers should provide students with regular opportunities to create and use data, representations, and models through supplemental material such as the AP Physics 1 Student Workbook, or TIPERs (Tasks Inspired by Physics Education Research). Rich, experimental investigation is the cornerstone of AP Physics 1, and diverse source material allows teachers more flexibility in designing the types of learning activities that will help develop the habits of thinking like a physicist.

Textbooks

While nearly all college-level physics textbooks address the 8 units of AP Physics 1, it’s important for teachers to identify other types of secondary sources (such as lab manuals, the AP Physics 1 Student Workbook, TIPERS etc.) to supplement the chosen textbook, accordingly, ensuring that each of the 8 topic areas, as well as the science practices, receives adequate attention. AP Central provides an example textbook list to help determine whether a text is considered appropriate in meeting the AP Physics 1 Course Audit resource requirement. Teachers can also select textbooks locally.

AP Physics 1 Student Workbook

The AP Physics 1 Student Workbook is a resource made available on AP Classroom by the AP Program to help students further their fluency with the science practices and content needed to be successful on the AP Physics 1 Exam. The workbook is scaffolded within each unit and across all course units to help students access the material in a progressive manner. Students will be challenged to analyze scenarios that increase in difficulty throughout the workbook. The workbook also contains resources for both new and experienced AP teachers on how to prepare for, teach, and assess each page. Common student misconceptions are outlined in the beginning of each unit to help teachers identify course content that students struggle with most.

The AP Physics 1 Student Workbook can be used in a variety of ways to support classroom learning. Teachers may assign a scenario as a warm-up activity, with an instructional strategy such as “Friends Without Pens,” or in place of a traditional back-of-the-chapter homework set. It is important to note that while the use of the workbook is not limited to the classroom, the answer key should be treated as secure material.
Guided Inquiry in AP Physics 1

The more active students are in their science education, the more scientifically literate they will become. Inquiry into authentic questions generated from student experiences should be one of the central strategies when teaching AP Physics 1. By posing questions, planning investigations to answer those questions, and reviewing what is already known in light of experimental evidence, students mirror how scientists analyze the natural world. Inquiry requires identifying assumptions, using critical and logical thinking, and considering alternative explanations. Having students probe for answers to scientific questions will lead to a deeper understanding of scientific concepts.

How to Scaffold Inquiry in the AP Classroom

<table>
<thead>
<tr>
<th>Skill</th>
<th>How to Scaffold Inquiry in the AP Classroom</th>
</tr>
</thead>
</table>
| **1.A** Create diagrams, tables, charts, or schematics to represent physical situations. | More: The student works with a representation provided by the teacher.
 Less: The student creates their own representation. |
| **1.B** Create quantitative graphs with appropriate scales and units, including plotting data. | More: The student works with a graph provided by the teacher.
 Less: The student creates appropriate graphs with scales and units, including plotting data, on their own. |
| **1.C** Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system. | More: The student works with sketches of graphs that are provided by the teacher.
 Less: The student creates sketches of graphs that represent features of a model or the behavior of a system, on their own. |
| **2.A** Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway. | More: The student works with a derivation provided by the teacher.
 Less: The student derives an expression using physics concepts and principles on their own. |
<table>
<thead>
<tr>
<th>Skill</th>
<th>MORE</th>
<th>AMOUNT OF DIRECTION FROM TEACHER</th>
<th>LESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.B Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.</td>
<td>The student works with a calculation provided by the teacher.</td>
<td>The student selects from a set of given calculations provided by the teacher.</td>
<td>The student is given possible starting points for a calculation by the teacher.</td>
</tr>
<tr>
<td>2.C Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
<td>The student is given the relationship or pattern between quantities from the teacher.</td>
<td>The student is given possible relationships or patterns to choose from to compare quantities from the teacher.</td>
<td>The student can examine relationships and form links to explanations on their own.</td>
</tr>
<tr>
<td>2.D Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
<td>The student is given a scenario and an equation by the teacher and is instructed how to analyze the scenario using the given equation.</td>
<td>The student is given possible equations or relationships between variables for a given scenario by the teacher and is asked to choose the equation or relationship that could be helpful in analyzing the scenario.</td>
<td>The student can derive relationships and make claims about the functional dependence between variables in a given scenario on their own.</td>
</tr>
<tr>
<td>3.A Create experimental procedures that are appropriate for a given scientific question.</td>
<td>The student works with a procedure provided by the teacher.</td>
<td>The student selects from a set of given procedures provided by the teacher.</td>
<td>The student determines a procedure on their own.</td>
</tr>
<tr>
<td>3.B Apply an appropriate law, definition, theoretical relationship, or model to make a claim.</td>
<td>The student is given procedures, relationships, or data by the teacher to make claims and predictions.</td>
<td>The student is given broad guidelines from the teacher to sharpen claims and predictions.</td>
<td>The student devises a claim or prediction on their own after summarizing the evidence.</td>
</tr>
<tr>
<td>3.C Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.</td>
<td>The student is provided with evidence to support an explanation.</td>
<td>The student is given possible ways to use evidence to create explanations by the teacher.</td>
<td>The student can form reasonable and logical arguments to communicate explanations based on scientific theories and models on their own.</td>
</tr>
</tbody>
</table>
Understanding the different types of inquiry can help teachers scaffold the types of labs and activities to better meet the needs of their students.

Below are four suggestions to make labs and activities more student-centered and inquiry-based:

- **Start small:** Take out the “data” or “results” section from traditional labs. If the procedure is thorough and simple enough, students can read and design the data and results sections on their own.

- **Tackle the procedure:** Eventually, teachers will want students to design their own experiments, but students may need some practice first. Remove the step numbers and shuffle the steps in a given procedure. Have the students work in pairs to put the steps into the correct order. Next, try having them write a procedure as a pre-lab homework assignment, and then work together as a class to develop it further, making sure that the question, variables, and safety are addressed.

- **Try a goal-oriented task:** Completely remove the procedure, and prompt students with a question that asks them to achieve something they want to do. At this point, it’s best to choose a lab that incorporates topics students already understand conceptually and that uses simple, familiar equipment.

- **Let students do the thinking:** Create opportunities for students to choose what they will investigate. Facilitate their thought process without telling them what to do. A pre-lab brainstorming session in small groups is helpful when having students develop a question to investigate. It is important to provide students with some guidelines at this step. For example, students need to think about a question, a hypothesis, and materials before beginning an open-ended lab. Seeing and approving this in lab groups can help boost students’ confidence.

The AP Physics 1 Student Workbook has at least one scenario per unit that requires students to analyze data or create their own procedure. Providing practice to students through these scenarios can help them prepare for the lab questions on the AP Physics 1 Exam.
The AP Physics 1 course framework outlines the concepts and science practices students must master in order to be successful on the AP Exam. To address those concepts and science practices effectively, teachers should incorporate a variety of instructional approaches and best practices into their daily lessons and activities. Teachers can help students develop the science practices by engaging them in learning activities that allow them to apply their understanding of course concepts. Teachers may consider the following strategies as they plan instruction. Please note they are listed alphabetically and not by order of importance or instruction.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ask the Expert</td>
<td>Students are assigned as "experts" on concepts they understand well; groups rotate through the expert stations to learn about concepts they need to work on, providing students with opportunities to share knowledge and learn from one another.</td>
<td>Assign student "experts" on conservation of linear momentum questions. Have students rotate through stations in groups, working with the station expert to justify a set of claims pertaining to each question with corresponding physical laws. "Experts" can be swapped at any point during the rotation so that all students have the opportunity to lead work and engage with multiple problems.</td>
</tr>
<tr>
<td>Changing Representations</td>
<td>Students translate from one representation (e.g., motion map) to another (e.g., a free-body diagram). This may involve creating pictures, tables, graphs, lists, equations, models, and/or verbal expressions to interpret text or data.</td>
<td>For a given situation involving energy conservation, have students create a sketch of the identified system; a set of conservation of energy equations; sets of energy bar charts and graphs of potential energy, kinetic energy, total energy; or combinations of the above representations.</td>
</tr>
<tr>
<td>Concept-Oriented Demonstration</td>
<td>Students create a description, prediction, and/or explanation for a demonstration done by the teacher.</td>
<td>While demonstrating why different soup cans with identical diameters reach the bottom of an incline at different times because of the different contents of the cans, have students explain the outcome of the “race” in terms of physical laws and theories.</td>
</tr>
<tr>
<td>Strategy</td>
<td>Description</td>
<td>Example</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **Conflicting Contentions** | Students are presented with two or three statements that disagree in some way. They then have to decide which contention they agree with and explain why. | Present students with the following scenario: A small child and a large adult, both wearing roller skates, stand at rest facing each other. The child and adult push off each other, and when they are no longer touching, the child is moving faster than the adult. Then, ask students to evaluate the following claims:

Claim 1: “The adult pushed harder on the child because they are bigger.”

Claim 2: “Both the child and the adult pushed equally hard, but the child moved farther while they were pushing, so the child ended up going faster.”

Claim 3: “The child must have pushed harder to get the adult moving since the adult is bigger, and that caused the child to accelerate more.” |
<p>| Construct an Argument | Students use mathematical reasoning to present assumptions about mathematical situations, evaluate mathematical information, support conjectures with mathematically relevant and accurate data, and provide a logical progression of ideas leading to a reasonable conclusion. This strategy can be used with scenarios presented verbally that do not lend themselves to immediate application of a formula or mathematical process. | Provide students with distance versus time and velocity versus time graphs that represent a motorist’s behavior through several towns on a map and ask them to construct a mathematical argument either in defense of or against a charge of speeding, given a known speed limit. |
| Create a Plan | Students analyze the tasks in a problem and create a process for completing the tasks. They find the information needed, interpret data, choose how to solve the problem, communicate the results, and verify accuracy. | Have groups of three to four students analyze the tasks necessary to design an experiment to determine the relationship between the diameter of a wooden dowel and the force required to break the dowel by scaffolding the process. Have students identify the steps needed to determine the relationship, including collecting and analyzing data, as well as what to do with the collected data. |
| Debriefing | Students discuss the understanding of a concept to lead to a consensus on its meaning while clarifying misconceptions and deepening understanding of context. | Have students roll a ball down a simple ramp and measure the distance the ball travels over time every second for five seconds. Then, have them plot position versus time and sketch a curve of best fit to help them discuss how they might determine the average velocity of the ball over the 5 seconds and then the instantaneous velocity of the ball at several points. |</p>
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop Experiment Task</td>
<td>Students perform a demonstration at their desks (either in class or at home) using a predict-and-explain format but add the step of actually doing the experiment. This “doing it” step consists of using the apparatus provided to answer a given question and is followed by a reformulating step, where students reconsider their previous explanations while considering the results of the experiment.</td>
<td>Have students determine the coefficient of kinetic friction between their shoe and the surface of their desk by pulling the shoe across the surface with a spring scale at a constant speed. Students can compare the determined coefficients to the type of shoe (e.g., athletic, slipper, sandal, etc.) and discuss the relationship between type of shoe and coefficient.</td>
</tr>
<tr>
<td>Discussion Groups</td>
<td>Students work within groups to discuss related content, create problem solutions, and explain and justify a solution.</td>
<td>As a review for the AP Physics 1 Exam, assign students the problem of determining the speed of an object just before it reaches the ground after it has been released from rest at a height h above the ground. Challenge students to solve the problem using as many physics pathways as they can. Some examples may include: analyzing the forces and then using kinematics, using conservation of energy on the object-Earth system, using the impulse-momentum theorem, and using angular impulse and angular momentum.</td>
</tr>
<tr>
<td>Friends Without Pens</td>
<td>Students solve problems by engaging in two “rounds” of timed work—in groups and then independently. In the first round, called “friends without pens,” students are grouped together to discuss the problem but are not permitted to write anything. In the second round, called “pens without friends,” students return to their desk where they complete and finalize their responses to the problem individually, using any information they remember from their group discussion and their own knowledge of course concepts.</td>
<td>Ask students to evaluate two scenarios where blocks sit at rest on a tabletop where friction between the table and the block is negligible. In one scenario, the block is pulled by a string where the tension in the string is 50 N. In the second scenario, an identical string is attached to the block, travels over a pulley, and is attached to an object of mass 5 kg. Ask students to compare the accelerations of the blocks in the two scenarios by making a claim about the accelerations and providing evidence to support that claim.</td>
</tr>
<tr>
<td>Strategy</td>
<td>Description</td>
<td>Example</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| **Four-Square Problem Solving** | Students are given a scenario, perhaps one that came from a traditional, "plug-and-chug" calculation problem. They divide a sheet of paper into four quadrants. In each quadrant, students put some representation of what is going on in the problem—for example, motion maps or graphs, free-body diagrams, energy bar graphs, momentum bar graphs, mathematical models (i.e., equations with symbols), well-labeled diagrams, or written explanation (i.e., two to three strong, clear sentences). | Assign students the scenario of a disk rolling without slipping down an incline. For the four-squares, have students
A. sketch a force diagram of the disk,
B. sketch an energy bar chart of the translational kinetic, rotational kinetic, and gravitational potential energy of the disk–Earth system when the disk is at the top and bottom of the incline,
C. derive an equation for the translational speed of the disk at the bottom of the incline, and
D. make a claim about the final speed of a hoop (with the same mass and radius) if it were released from rest at the top of the same incline. |
<p>| Graph and Switch | Each student in a pair generates a graph (or sketch of a graph), on a graphing calculator or on paper, to model a certain function. Then, the students switch graphing calculators or papers to review each other’s solutions. | As students learn about momentum diagrams, have them graph momentum versus time and force versus time, as well as create a momentum diagram to model a single situation. Have students individually graph and explain how their representations support a claim they make about the situation. Then, have them share their steps with a partner and receive feedback on their graphs, claims, evidence, and reasoning. |
| Marking the Text | Students highlight, underline, and/or annotate a text to identify and focus on key information that helps them understand the concepts and interpretations of tasks required to solve the problem. | Have students read through an AP-level question on experimental design—or have them look at a write-up of another student’s experimental design—and underline the pronouns (especially "it"), equipment, and key information (e.g., the car begins at rest) to identify important details needed to answer the question or improve a given response. Leave time for students to ask clarifying questions about words or phrases they find unclear before asking them to provide a solution. |</p>
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meaningful, Meaningless Calculations</td>
<td>Students decide whether a calculation is meaningful (i.e., it gives a value that tells us something legitimate about the physical situation) or is meaningless (i.e., the expression is a totally inappropriate use of a relation). For example, a meaningless calculation might involve substituting a wrong numerical value into an expression.</td>
<td>Ask students to write an expression for the energy of a system. Have them decide which of the following expressions are meaningful, based on the units for the involved quantities: MgD, Mg/D, MD/g, and 1/MgD. Have students explain why the other expressions are meaningless, and address and discuss any misconceptions that arise. Ask students about a situation where a cart with a fan is released from rest and moves across a flat tabletop 1 m long with negligible friction. Have them find the final speed of the cart by measuring the time it took to travel 1 m and dividing the displacement of the cart (1 m) by this time. Then, ask students if and why this a meaningful calculation for this situation and why other calculations are inappropriate or meaningless.</td>
</tr>
<tr>
<td>Note-Taking</td>
<td>Students create a record of information while reading a text, listening to a speaker, or interacting with a problem.</td>
<td>Have students write down descriptions of the steps needed to solve a problem, in words, so that a record of the processes can be referred to at a later point in time.</td>
</tr>
<tr>
<td>Predict and Explain</td>
<td>Students predict what will happen in a situation—one they are familiar with or have sufficient background information about—and explain why they think that outcome will occur.</td>
<td>When a ballistic pendulum is set up, ask students what will happen to the maximum swing height when the mass of the dart is increased or decreased. Then, ask students the following questions: What would happen if the dart were to bounce off of instead of stick into the block? What if the dart passed through the block?</td>
</tr>
<tr>
<td>Qualitative Reasoning</td>
<td>Students are presented with an initial and a final version of the same physical situation and asked to apply a principle to qualitatively reason how some quantity, or aspect, will change.</td>
<td>Ask students what would happen to the angular momentum of an object in orbit around the Earth if the radius of orbit were increased, if the speed of orbit were decreased, or if the mass of the Earth were changed. To continue their thinking, you may ask students: What happens to the energy of the system as the physical properties above are changed?</td>
</tr>
</tbody>
</table>

continued on next page
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quickwrite</td>
<td>Students write for a short, specific amount of time about a designated topic.</td>
<td>To help synthesize concepts after having learned about the conservation of mechanical energy, have students list as many ways as possible to change the total mechanical energy of a system and how each change affects the total mechanical energy.</td>
</tr>
<tr>
<td>Ranking Tasks</td>
<td>Students are presented with a series of variations of a situation, based on a specific scenario. The variations differ in the values (numeric or symbolic) for the variables involved, but also frequently include variables that are not important to the task. Students rank the variations of a specified physical quantity and must also explain the reasoning for their ranking choices, as well as rate their confidence in their ranking.</td>
<td>Given six different arrows launched from the ground with different speeds at different angles, have students rank the arrows based on largest acceleration at the top, longest time in the air, and largest speed at the top.</td>
</tr>
</tbody>
</table>

continued on next page
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharing and Responding</td>
<td>Students communicate with each other in pairs or in groups, taking turns proposing a solution to a problem and responding to the solutions of others.</td>
<td>Have students individually answer the following question: An archer tests various arrowheads by shooting arrows at a pumpkin that is suspended from a tree branch by a rope, as shown in the figure. When struck head-on by the arrow, the pumpkin swings upward on the rope. The maximum angle (\theta) that the rope makes with the vertical is different for each arrowhead that the archer tests. Each arrow, including its arrowhead, has the same mass (m) and is shot with the same velocity (v_0) toward the right. The arrowheads are made of different materials, however, and each behaves differently when it strikes the pumpkin as described below.</td>
</tr>
</tbody>
</table>

Embedded arrow: Strikes the pumpkin and remains embedded, while the pumpkin swings to angle \(\theta_e \).

Pass arrow: Passes all the way through the pumpkin and continues traveling away from the archer, while the pumpkin swings to angle \(\theta_{pass} \).

Bounce arrow: Bounces off the pumpkin back toward the archer, while the pumpkin swings to angle \(\theta_{bounce} \).

Rank the three angles from greatest to least. If any two or all three angles are the same, use the same number for their ranking. Justify your ranking. Then have students review each other’s work for the same problem in pairs or small groups. Have those pairs or groups make any necessary corrections and build a single, complete argument together.
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplify the Problem</td>
<td>Students use “friendlier” numbers or functions to help solve a problem.</td>
<td>Have students use the analogy of one-dimensional motion when initially analyzing rotational kinematics. Ask them how they would go about solving the problem in the simpler context—what formulas they would use, what quantities they would substitute, and so on.</td>
</tr>
<tr>
<td>“What, If Anything, Is Wrong?”</td>
<td>Students analyze a statement or diagrammed situation to determine if it is correct. If everything is correct, students explain why the situation/statement works as described. If something is incorrect, students must identify the error and explain how to correct it.</td>
<td>Have students analyze a free-body diagram or a force diagram that may or may not have incorrect forces drawn. If all forces drawn are correctly, have students explain why they are correct. If one or more forces drawn are incorrectly, have students explain why they are incorrect and how they might correct the error.</td>
</tr>
<tr>
<td>Write and Switch</td>
<td>Students make observations, collect data, or make a claim about a situation and then switch papers with a partner. Each student in the pair gives feedback on the other’s work and then returns the paper.</td>
<td>As students learn about creating an argument, have them draft an initial argument themselves; share their claim, evidence, and reasoning with a partner; and receive feedback on their argument. Give students a scenario such as: “Two objects sit at rest on a horizontal surface where friction between the objects and the surface is negligible. A force is exerted on one of the objects for a time (t_1). Describe the motion of the center of mass of the two objects from before to after (t_1). Justify your answer.”</td>
</tr>
<tr>
<td>Working Backward</td>
<td>Students work with the reverse order of the steps for solving a problem. For example, the given information could be an equation with specific values for all, or all but one, of the variables. Students then construct a physical situation for which the given equation would apply.</td>
<td>Give students an equation, such as ((10 \text{ kg})(10 \text{ m/s}^2)(10 \text{ m}) = \frac{1}{2}(10 \text{ kg})(12.65 \text{ m/s})^2 + \frac{1}{2}(10 \text{ kg})(10 \text{ m/s}^2)(2 \text{ m})) and ask students to create another representation from this equation, such as a written scenario that this equation could represent, an energy bar chart, or a graph of total energy as a function of time. Start small by asking students for only one additional representation, and work toward having students create several representations for each scenario.</td>
</tr>
</tbody>
</table>
Developing the Science Practices

Throughout the course, students will develop science practices that are fundamental to the discipline of physics. Students will benefit from multiple opportunities to develop these practices in a scaffolded manner. The tables that follow look at each of the science practices and their associated skills and provide examples of questions with sample activities for incorporating instruction on that skill into the course.

Science Practice 1: Creating Representations

Create representations that depict physical phenomena.

When physicists describe and explain complex phenomena, they try to simplify real objects, systems, and processes to make the analysis manageable. These simplifications or models are used to predict how new phenomena will occur. A simple model may treat a system as an object, neglecting the system’s internal structure and behavior. More complex models are models of a system of objects, such as a firework display or planets orbiting the sun. A process can be simplified, too. Models can be both conceptual and mathematical. Bernoulli’s equation is an example of a mathematical model, while the model of a fluid flow as a steady flow of particles is a conceptual model.

To make a good model, students need to identify a set of the most important characteristics of a phenomenon or system that may simplify analysis. They then need to create a representation of those characteristics. Examples of representations used to model introductory physics concepts are pictures, motion maps, free-body diagrams, force diagrams, graphs, energy bar charts, and momentum charts.

Representations help in analyzing phenomena and making predictions and communicating ideas. AP Physics 1 requires students to use, analyze, and/or re-express models and representations of natural or human-made systems.

Students often think that to make a graph, they need to connect the data points, or that the best-fit function is always linear. Thus, it is important that they know how to construct a best-fit curve, even for data that do not fit a linear relationship.

The following table provides examples of questions and sample activities for strengthening the skill of creating representations:
Science Practice 1: Creating Representations

Skill Questions to Ask Students

<table>
<thead>
<tr>
<th>Skill</th>
<th>Questions to Ask Students</th>
<th>Sample Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A</td>
<td>Create diagrams, tables, charts, or schematics to represent physical situations.</td>
<td>What kind of model or representation would be appropriate for this physical scenario?</td>
</tr>
<tr>
<td>1.B</td>
<td>Create quantitative graphs with appropriate scales and units, including plotting data.</td>
<td>What data should be plotted? What scale and axis labels should be used? What does an appropriately scaled graph look like?</td>
</tr>
<tr>
<td>1.C</td>
<td>Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.</td>
<td>What are the main functional relationships needed to represent the phenomena? What is the relationship between the two physical quantities?</td>
</tr>
</tbody>
</table>
Science Practice 2: Mathematical Routines

Conduct analyses to derive, calculate, estimate, or predict physical phenomena.

Physicists commonly use mathematical representations to describe and explain phenomena, as well as to solve problems. When students work with these representations, they should understand the connections between the mathematical descriptions, the physical phenomena, and the concepts represented in them. When using equations, students need to be able to justify why using a particular equation to analyze a situation is useful and be aware of the conditions under which the equation can be used. When solving a problem, students need to be able to describe the given situation in multiple ways, including through pictorial representations and force diagrams, and then choose an appropriate mathematical representation—instead of first choosing a formula whose variables seem to match the “givens” in the problem.

Students should also be able to work with the algebraic form of an equation before substituting values, as well as be able to solve the equation and interpret the answer in terms of units and limiting case analysis. Students should be able to translate between functional relationships in equations (e.g., proportionalties and inverse proportionalties) and cause-and-effect relationships in the physical world, while also being able to evaluate a numerical result in terms appropriateness for the given context.

The following table provides examples of questions and instructional strategies for implementing mathematical routines into the course:

<table>
<thead>
<tr>
<th>Skill</th>
<th>Questions to Ask Students</th>
<th>Sample Activities</th>
</tr>
</thead>
</table>
| 2.A | Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway. | • What laws, definitions, or mathematical relationships relate to the given problem?
• What are the rules, assumptions, or limitations surrounding the use of the chosen law, definition, or relationship?
• Did the derivation begin with an equation or a fundamental physics relationship, law, or definition? If so, which one?
• Are the steps clearly written out and annotated? Are any steps skipped? If so, which ones? | Have students identify which main law, definition, or mathematical relationship should be used in a scenario based solely on question stems of multiple-choice questions, without looking at the question or the response choices. Have students practice thinking about what could be asked of them, and what analysis technique they might want to use just from looking at the prompt they are given to analyze.
When deriving the equation for determining the speed of water coming out the side of a large tank, have students choose a starting formula (e.g., Bernoulli’s equation) from the AP Physics 1 Table of Information: Equations sheet. |
| 2.B | Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway. | • Did the calculation begin with an equation or a fundamental physics relationship, law, or definition? If so, which one?
• What known quantities can be used to calculate the unknown quantity?
• What steps should you follow to use the known quantities to calculate the unknown quantity?
• How should you label the calculated quantity? What units should be used? | Have students work backward from a given mathematical representation to a physical situation. For example, students can be given an equation such as \(4 \text{ m} = (6 \text{ m/s})/(2 \text{ s}) - (2 \text{ m/s}^2)/(2\text{s})^2 \) and then be asked to create another representation from this equation, such as a written scenario that this equation could represent, a position versus time graph, a velocity versus time graph, an energy bar chart, and so on. |
Science Practice 2: Mathematical Routines

<table>
<thead>
<tr>
<th>Skill</th>
<th>Questions to Ask Students</th>
<th>Sample Activities</th>
</tr>
</thead>
</table>
| 2.C | - What relationship(s) link the needed and given quantities?
 | - Can the relationship between the quantities be rewritten so that the variable in question is alone on one side of the equation?
 | - What quantities in the relationship are constants versus variables that can change? | Have students analyze a scenario where a force is being exerted on an object and ask them to determine the relationship between net force and acceleration when the mass of the object increases. |
| 2.D | - What relationship(s) link the needed and given quantities?
 | - What are the rules, assumptions, or limitations surrounding the use of the chosen law, definition, or relationship?
 | - How are the quantities in the relationship related (e.g., directly and inversely)?
 | - What words would you use to describe the functional dependence of the variables on each other? | When analyzing the torque applied to a door, have students qualitatively and quantitatively estimate, and then determine, the changes in the applied torque depending on the length of the lever arm. |
Science Practice 3: Scientific Questioning and Argumentation

Describe experimental procedures, analyze data, and support claims

Physicists examine data and evidence to develop claims about physical phenomena. As they articulate their claims, physicists use reasoning processes that rely on their awareness of different types of relationships, connections, and patterns within the data and evidence. They then formulate a claim and develop an argument that explains how the claim is supported by the available evidence. As a result, students should learn how to create persuasive and meaningful arguments by using claims they develop and evidence they’ve identified to support those claims.

Scientific questions can range in scope as well as in specificity, from determining influencing factors to determining mechanisms. The question posed will determine the type of data to be collected and will influence the plan for collecting data. Designing and improving experimental designs and/or data-collection strategies is a learned skill. Class discussions can reveal issues of measurement uncertainty and assumptions in data collection.

Being able to devise testable explanations goes hand-in-hand with dealing with new phenomena. It is important that students understand that scientific instruments do not produce exact measurements and learn what steps they can take to decrease uncertainty. One step may be designing a second experiment to determine the same quantity and then checking for consistency across the two measurements. Finally, students should be able to revise their initial explanation or reasoning based on the new data.

The analysis, interpretation, and application of quantitative information are vital skills for students in AP Physics 1. Analysis skills can be taught using any type of data, but students will be more invested in their data analysis if it is data they have collected through their own investigations. Students should be encouraged to analyze their data, draw conclusions, and apply their knowledge to content across the course.

The following table provides examples of strategies for implementing opportunities to practice argumentation throughout the course:

<table>
<thead>
<tr>
<th>Skill</th>
<th>Questions to Ask Students</th>
<th>Sample Activities</th>
</tr>
</thead>
</table>
| **3.A Create experimental procedures that are appropriate for a given scientific question.** | - What information will be needed to answer the scientific question? What data should be collected?
- What equipment is needed to collect the necessary data?
- How will each piece of equipment be used to collect the necessary data?
- What possible errors need to be addressed before data collection?
- What steps can be taken to decrease the uncertainty in the measurements and data?
- What changes can be made to observations and measurements to refine the data?
- How will the data be analyzed to answer the scientific question?
- How can a second experiment be designed to answer the same scientific question and check for consistency? | Have students design an experiment and plot and analyze graphical data where the area under a curve is needed to determine the work done on or by the object or system.
Have students list the common sources of uncertainty and error in an experiment designed to find the rotational inertia of a bicycle wheel. Then, have them identify and/or describe the manner in which each source would affect the results of the experiment. |

continued on next page
Science Practice 3: Scientific Questioning and Argumentation

<table>
<thead>
<tr>
<th>Skill</th>
<th>Questions to Ask Students</th>
<th>Sample Activities</th>
</tr>
</thead>
</table>
| 3.B | **Apply an appropriate law, definition, theoretical relationship, or model to make a claim.** | - What law, definition, relationship, or model can be used to make a claim about the scenario?
- What is your purpose (e.g., to define, show causality, compare, or explain a process) for making a claim? | Ask students a question such as, “Which of the following has the most effect on the speed of a sphere released from rest at the top of an inclined plane?” Then, have students analyze possibilities and the evidence for and against each claim. |
| 3.C | **Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.** | - What reasoning (e.g., physical laws, theories) supports your claim? How does the reasoning support your claim?
- How does the evidence support your claim? | While rolling a hollow sphere and a solid sphere of the same mass and radius down a ramp, ask students which sphere will get to the bottom first, and which one will have the largest speed at the bottom. Have the students start with fundamental principles of physics to justify their claims. |
Practicing with Science Practices and Skills:

CASE STUDY—BLOCK ON A RAMP

The following multiple-choice questions all use the same stimulus and basic scenario. However, each multiple-choice question is written to assess a different course skill. This case study helps illustrate how the same content can be assessed in the context of different skills. The more opportunities that students have to practice content with different science practices, the better prepared they will be for the AP Physics 1 Exam. The content below is appropriate for AP Physics 1. (Science practice 1 is FRQ only, and so is not represented below.)

![Diagram of block on ramp](image)

A block is released from rest near the top of a rough ramp inclined at an angle θ above the horizontal. Point A is a distance L away from the point where the block is released, as shown in the figure. The coefficient of kinetic friction between the block and the ramp is μ_k. The block is moving with speed v_A when it reaches point A.

Skill 2.A—Derivations

Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.

QUESTION 2.A:

Which of the following is a correct an expression for the speed v_A of the block at point A?

(A) $v_A = \sqrt{2gL \sin \theta}$

(B) $v_A = \sqrt{2gL(\sin \theta - \mu_k \cos \theta)}$

(C) $v_A = \sqrt{2gL(\mu_k \cos \theta)}$

(D) $v_A = \sqrt{2gL(\sin \theta + \mu_k \cos \theta)}$

Skill 2.B—Calculations

Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.

QUESTION 2.B:

Given $L = 1.0 \, \text{m}$, $\mu_k = 0.1$, and $\theta = 30^\circ$, which of the following is most nearly the speed v_A of the block as it reaches point A?

(A) 2.9 m/s

(B) 3.1 m/s

(C) 8.3 m/s

(D) 9.9 m/s

Skill 2.C—Comparisons

Compare physical quantities between two or more scenarios or at different times and/or locations within a single scenario.

QUESTION 2.C:

The work done by the force of gravity on the block as the block slides from the point of release to point A is W_1. The angle of the ramp is increased, and the work done by the force of gravity on the block as the block slides from the point of release to point A is W_2. How does W_1 compare to W_2?

(A) $W_1 > W_2$

(B) $W_1 < W_2$

(C) $W_1 = W_2$

(D) W_1 and W_2 cannot be compared without knowing the mass of the block
Skill 2.D—Functional Dependence

Predict new values or factors of change of physical quantities using functional dependence between variables.

QUESTION 2.D:
The energy dissipated by the frictional force as the block travels from the point of release to point A is \(E_1 \). If the coefficient of friction between the block and the ramp is doubled, the energy dissipated by the frictional force as the block travels from the point of release to point A is \(E_2 \). What is the ratio \(\frac{E_1}{E_2} \)?

(A) \(\frac{1}{2} \)

(B) 1

(C) 2

(D) 4

Skill 3.B—Make a Claim

Apply an appropriate law, definition, theoretical relationship, or model to make a claim.

QUESTION 3.B:
Which of the following statements is correct about the total mechanical energy in the scenario above?

(A) The total mechanical energy of the system consisting of only the block decreases from the time of release until the time when the block reaches point A.

(B) The total mechanical energy of the system consisting of only the block remains constant from the time of release until the time when the block reaches point A.

(C) The total mechanical energy of the system consisting of the block and Earth decreases from the time of release until the time when the block reaches point A.

(D) The total mechanical energy of the system consisting of only the block and Earth remains constant from the time of release until the time when the block reaches point A.

Skill 3.C—Justify a Claim

Justify or support a claim using evidence from experimental data, physical representations, or physical principles or laws.

QUESTION 3.C:
Which of the following statements correctly explains why the total mechanical energy of the block–Earth system decreases as the block travels to point A?

(A) The height of the block above the surface of Earth decreases.

(B) The force of friction removes energy from the block–Earth system.

(C) The downward gravitational force exerted on the block by Earth does negative work on the block–Earth system.

(D) The normal force from the incline does negative work on the block–Earth system.
Exam Information
Exam Overview

The AP Physics 1 Exam assesses student application of the science practices and understanding of the learning objectives outlined in the course framework. The exam is 3 hours long and includes 40 multiple-choice questions and 4 free-response questions. A four-function scientific or graphing calculator is allowed on both sections of the exam. The details of the exam, including exam weighting and timing, can be found below:

<table>
<thead>
<tr>
<th>Section</th>
<th>Type of Questions</th>
<th>Number of Questions</th>
<th>Weighting</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Multiple-choice questions</td>
<td>40</td>
<td>50%</td>
<td>80 minutes</td>
</tr>
<tr>
<td>II</td>
<td>Free-response questions</td>
<td>4</td>
<td>50%</td>
<td>100 minutes</td>
</tr>
</tbody>
</table>

- Question 1: Mathematical Routines
- Question 2: Translation Between Representations
- Question 3: Experimental Design and Analysis
- Question 4: Qualitative/Quantitative Translation
The exam also assesses each of the eight units of instruction with the following exam weightings on the multiple-choice section of the AP exam:

Exam Weighting for the Multiple-Choice Section of the AP Exam

<table>
<thead>
<tr>
<th>Units of Instruction</th>
<th>Exam Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1: Kinematics</td>
<td>10–15%</td>
</tr>
<tr>
<td>Unit 2: Force and Translational Dynamics</td>
<td>18–23%</td>
</tr>
<tr>
<td>Unit 3: Work, Energy, and Power</td>
<td>18–23%</td>
</tr>
<tr>
<td>Unit 4: Linear Momentum</td>
<td>10–15%</td>
</tr>
<tr>
<td>Unit 5: Torque and Rotational Dynamics</td>
<td>10–15%</td>
</tr>
<tr>
<td>Unit 6: Energy and Momentum of Rotating Systems</td>
<td>5–8%</td>
</tr>
<tr>
<td>Unit 7: Oscillations</td>
<td>5–8%</td>
</tr>
<tr>
<td>Unit 8: Fluids</td>
<td>10–15%</td>
</tr>
</tbody>
</table>
How Student Learning Is Assessed on the AP Exam

Exam Weighting by Science Practice

Science Practices 2 and 3 are assessed in the multiple-choice section with the following weighting (Science Practice 1 will not be assessed in the multiple-choice section). Science Practices 1, 2 and 3 are all assessed in the free-response section with the following weighting.

Please note: Required course content (Learning Objectives and Essential Knowledge) can be assessed with any skill.

<table>
<thead>
<tr>
<th>Skill</th>
<th>Approximate MCQ Exam Weighting</th>
<th>Approximate FR Exam Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A</td>
<td>Create diagrams, tables, charts, or schematics to represent physical situations.</td>
<td>N/A</td>
</tr>
<tr>
<td>1.B</td>
<td>Create quantitative graphs with appropriate scales and units, including plotting data.</td>
<td>N/A</td>
</tr>
<tr>
<td>1.C</td>
<td>Create qualitative sketches of graphs that represent features of a model or the behavior of a physical system.</td>
<td>N/A</td>
</tr>
<tr>
<td>2.A</td>
<td>Derive a symbolic expression from known quantities by selecting and following a logical mathematical pathway.</td>
<td>15–20%</td>
</tr>
<tr>
<td>2.B</td>
<td>Calculate or estimate an unknown quantity with units from known quantities, by selecting and following a logical computational pathway.</td>
<td>20–25%</td>
</tr>
<tr>
<td>2.C</td>
<td>Compare physical quantities between two or more scenarios or at different times and locations in a single scenario.</td>
<td>10–15%</td>
</tr>
<tr>
<td>2.D</td>
<td>Predict new values or factors of change of physical quantities using functional dependence between variables.</td>
<td>10–15%</td>
</tr>
</tbody>
</table>

continued on next page
Free-Response Questions

The free-response section of the AP Physics 1 Exam consists of four question types listed below in the order they will appear on the exam.

Mathematical Routines (MR)

10 points; suggested time: 20-25 minutes

The Mathematical Routines (MR) question assesses students’ ability to use mathematics to analyze a scenario and make predictions about that scenario. Students will be expected to symbolically derive relationships between variables, as well as calculate numerical values. Students will be expected to create and use representations that describe the scenario, either to help guide the mathematical analysis (such as drawing a free-body diagram) or that are applicable to the scenario (such as sketching velocity as a function of time).

For AP Physics 1 and AP Physics 2, the MR question will ask students to make a claim or prediction about the scenario and use appropriate physics concepts and principles to support and justify that claim. The justification is expected to be a logical and sequential application of physics concepts that demonstrates a student’s ability to connect multiple concepts to each other.

Translation Between Representations (TBR)

12 points; suggested time: 25-30 minutes

The Translation Between Representations (TBR) question assesses students’ ability to connect different representations of a scenario. Students will be expected to create a visual representation that describes a given scenario. Students will derive equations that are mathematically relevant to the scenario. Students will draw graphs that relate quantities within the scenario. Finally, students will be asked to do any one of the following:

- Justify why their answers to any two of the previous parts do/don’t agree with each other.
- Use their representations, mathematical analysis, or graph to make a prediction about another situation and justify their prediction using that reasoning or analysis.
- Use their representations, mathematical analysis, or graph to make a prediction about how those representations would change if properties of the scenario were altered and justify that claim using consistent reasoning or analysis.
Experimental Design and Analysis (LAB)

Skills: B B D A B C

10 points; suggested time: 25-30 minutes

The Experimental Design and Analysis (LAB) question assesses students’ ability to create scientific procedures that can be used with appropriate data analysis techniques to determine the answer to given questions. The LAB question can roughly be divided into two sections: Design and Analysis. In the Design portion of the LAB question, students will be asked to develop a method by which a question about a given physical scenario could be answered. The experimental procedure is expected to be scientifically sound: vary a single parameter, and measure how that change affects a single characteristic. Methods must be able to be performed in a typical high school laboratory. Measurements must be made with realistically obtainable equipment or sensors. Students will be expected to describe a method by which the collected data could be analyzed in order to answer the posed question, by either graphical or comparative analyses.

Students will then be given experimental data collected in order to answer a similar, but not identical, question to what was asked in the Design portion of the question. Students will be asked to use the data provided to create and plot a graph that can be analyzed to determine the answer to the given question. For instance, the slope or intercepts of the line may be used to determine a physical quantity or perhaps the nature of the slope would answer the posed question.

Qualitative/Quantitative Translation (QQT)

Skills: A D B C

8 points; suggested time: 15-20 minutes

The Qualitative/Quantitative Translation (QQT) question assesses students’ ability to connect the nature of the scenario, the physical laws that govern the scenario, and mathematical representations of that scenario to each other. Students will be asked to make and justify a claim about a given scenario, as well as derive an equation related to that scenario. Finally, students will be asked to do any one of the following:

- Justify why their answers to any of the previous parts do/do not agree with each other.
- Use their representations or mathematical analysis to make a prediction about another situation and justify their prediction using that reasoning or analysis.
- Use their representations and mathematical analysis to make a prediction about how those representations would change if properties of the scenario were altered and justify that claim using consistent reasoning or analysis.

While students may not be directly assessed on their ability to create diagrams or other representations of the system to answer the QQT, those skills may still help students to answer the QQT. For instance, some students may find that drawing a free-body diagram is useful when determining the acceleration of a system. However, the student will earn points for the explanation and conclusions that diagram indicates (or perhaps the derivation that results from the diagram), rather than for creating the diagram itself.
The following task verbs are commonly used in the free-response questions.

Calculate: Perform mathematical steps to arrive at a final answer, including algebraic expressions, properly substituted numbers, and correct labeling of units and significant figures.

Compare: Provide a description or explanation of similarities and/or differences.

Derive: Starting with a fundamental law or relationship, perform a series of mathematical steps to arrive at a final answer.

Describe: Provide the relevant characteristics of a specified topic.

Determine: Make a decision or arrive at a conclusion after reasoning, observation, or applying mathematical routines (calculations).

Draw: Create a diagram or schematic that illustrates relationships, depicts physical objects, or demonstrates consistency between different types of representation. Labels may or may not be required.

Estimate: Roughly calculate numerical quantities, values (greater than, equal to, less than), or signs (negative, positive) of quantities based on experimental evidence or provided data. When making estimations, showing steps in calculations are not required.

Indicate: Provide information about a specified topic, without elaboration or explanation.

Justify: Provide qualitative reasoning beyond mathematical derivations or expressions to support, qualify, or defend a claim.

Label: Provide labels indicating unit, scale, and/or components in a diagram, graph, model, or representation.

Plot: Draw data points in a graph using a given scale or indicating the scale and units, demonstrating consistency between different types of representations.

Rank: Arrange quantities in relation to each other, typically by size or magnitude.

Sketch: Create a diagram, graph, representation, or model that illustrates or explains relationships or phenomena, demonstrating consistency between different types of representations. Labels may or may not be required.

Verify: Confirm that the conditions of a scientific definition, law, theorem, or test are met to explain why it applies in a given situation. Also, use empirical data, observations, tests, or experiments to prove, confirm, and/or justify a hypothesis.
Sample Exam Questions

The sample exam questions that follow illustrate the relationship between the course framework and the AP Physics 1 Exam and serve as examples of the types of questions that appear on the exam. These sample questions do not represent the full range and distribution of items on an official AP Physics 1 Exam. After the sample questions is a table which shows which skill, learning objective, and essential knowledge statement each question relates to. This table also provides the answers to the multiple-choice questions.

Section I: Multiple-Choice Questions

1. Blocks A and B, of masses \(m_A\) and \(m_B\), respectively, are at rest on a horizontal surface with negligible friction. Block A is attached to the table. Block C of mass \(m_C\) is suspended by a string that is tied to Block B and passes over a pulley as shown. The blocks all remain at rest. Which of the following gives the magnitude of the force exerted by Block A on Block B?
 (A) \(m_B g\)
 (B) \(m_C g\)
 (C) \(\frac{m_A m_C g}{m_A + m_B}\)
 (D) \(\frac{m_A m_C g}{m_A + m_B}\)
2. An object is subject to multiple forces that result in the object having horizontal and vertical velocity components v_x and v_y, respectively as a function of time, as shown. Which of the following diagrams could represent the forces exerted on the object?

(A) ![Diagram A]

(B) ![Diagram B]

(C) ![Diagram C]

(D) ![Diagram D]
3. A constant force F_0 is exerted continuously on a block that is initially at rest on a horizontal surface. The change in kinetic energy of the block while the block is moved from position $x = 0$ to $x = 50$ cm is ΔK_1, and the change in kinetic energy of the block as the block is moved from $x = 50$ cm to $x = 100$ cm is ΔK_2. How does ΔK_1 compare to ΔK_2, and why?

(A) $\Delta K_1 = \Delta K_2$ because the velocity increases by the same amount between 0 cm to 50 cm and between 50 cm to 100 cm.

(B) $\Delta K_2 = \Delta K_1$ because the applied force does the same work on the block between 0 cm to 50 cm and between 50 cm to 100 cm.

(C) $\Delta K_2 > \Delta K_1$ because the block is moving faster on average between 50 cm to 100 cm than it is between 0 cm to 50 cm.

(D) $\Delta K_2 > \Delta K_1$ because the rate of change of kinetic energy is greater between 50 cm to 100 cm than it is between 0 cm to 50 cm.

Questions 4 and 5 refer to the following.

At time $t = 0$, a car is moving in the positive direction along a straight road. The graph represents the car’s velocity v as a function of time t. The car’s position at $t = 0$ is $x = 0$.

4. The position of the car at times 1 s, 2 s, and 3 s are x_1, x_2, and x_3, respectively. Which of the following correctly ranks x_1, x_2, and x_3 from greatest to least?

(A) $x_1 > x_2 > x_3$

(B) $x_2 > x_1 > x_3$

(C) $x_1 > x_3 > x_1$

(D) $x_1 > x_3 > x_2$
5. Which of the following graphs could represent the acceleration \(a \) of the car as a function of time \(t \)?

(A) \[a \text{ (m/s}^2\text{)} \]

(B) \[a \text{ (m/s}^2\text{)} \]

(C) \[a \text{ (m/s}^2\text{)} \]

(D) \[a \text{ (m/s}^2\text{)} \]

6. A uniform rod of mass \(M_0 \) and length \(L \) is free to rotate about a pivot at its left end and is released from rest when the rod is \(30^\circ \) below the horizontal, as shown in the figure. With respect to the pivot, the rod has rotational inertia \(I_p = \frac{1}{3} M_0 L^2 \).

Which of the following expressions correctly represents the magnitude of the net torque exerted on the rod about the pivot at the moment the rod is released?

(A) \(M_0 g \left(\frac{L}{2} \right) \sin(30^\circ) \)

(B) \(M_0 g \left(\frac{L}{2} \right) \sin(60^\circ) \)

(C) \(M_0 g L \sin(30^\circ) \)

(D) \(M_0 g L \sin(60^\circ) \)
7. In Trial 1 of an experiment, Block 1 of mass M is oscillating at the end of a spring. The other end of the spring is attached to a wall. Friction between the block and the floor is negligible. Block 1 oscillates with amplitude d_0.

In Trial 2 of the experiment, a second identical block is attached to Block 1, and the two-block system oscillates with amplitude d_0.

How do the maximum speeds and maximum kinetic energies in the two trials compare?

<table>
<thead>
<tr>
<th>Maximum Speed</th>
<th>Maximum Kinetic Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Greater in Trial 1</td>
<td>Greater in Trial 1</td>
</tr>
<tr>
<td>(B) Greater in Trial 1</td>
<td>Equal in both trials</td>
</tr>
<tr>
<td>(C) Equal in both trials</td>
<td>Equal in both trials</td>
</tr>
<tr>
<td>(D) Equal in both trials</td>
<td>Greater in Trial 2</td>
</tr>
</tbody>
</table>

(A) A
(B) B
(C) C
(D) D
8. A small rock sits at the bottom of a cup filled with water. The upward force exerted by the water on the rock is \(F_0 \). The water is then poured out and replaced by an oil that is \(\frac{3}{4} \) as dense as water, and the rock again sits at the bottom of the cup, completely under the oil. Which of the following expressions correctly represents the magnitude of the upward force exerted by the oil on the rock?

(A) \(\frac{3}{4} F_0 \)

(B) \(F_0 \)

(C) \(\frac{4}{3} F_0 \)

(D) The answer cannot be determined without knowing the rock's volume.

9. Two blocks move on a straight, level track, where friction between the blocks and the track is negligible. Block B of mass 4.0 kg is initially at rest. Block A of mass 2.0 kg slides to the right and collides with Block B at time \(t = 3 \) s. The figure shows the position \(x \) of Block A as a function of time \(t \). Which of the following is most nearly the momentum of Block B after the collision?

(A) 2.0 kg\cdot m/s

(B) 3.0 kg\cdot m/s

(C) 4.0 kg\cdot m/s

(D) 6.0 kg\cdot m/s
10. Block A is initially held at rest on a horizontal table and is connected to a horizontal spring that is fixed to a wall. The spring is initially at its relaxed length. Block A is connected to Block B by a string passing over a pulley, as shown. There is friction between Block A and the table. When Block A is released, Block B moves downward, and Block A moves to the right along the surface of the table until the system returns to rest. How do the mechanical energies of the two-block – spring system and the two-block – spring – Earth system change from when Block A is held at rest to when the blocks return to rest?

<table>
<thead>
<tr>
<th>Two-Block-Spring System</th>
<th>Two-Block-Spring-Earth System</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Increases</td>
<td>Decreases</td>
</tr>
<tr>
<td>(B) Decreases</td>
<td>Increases</td>
</tr>
<tr>
<td>(C) Remains Constant</td>
<td>Decreases</td>
</tr>
<tr>
<td>(D) Remains Constant</td>
<td>Remains Constant</td>
</tr>
</tbody>
</table>

(A) A
(B) B
(C) C
(D) D
11. Block 1 slides across a horizontal surface where friction between Block 1 and the surface is negligible. Block 2 is then carefully dropped from a small height above Block 1, as shown in the figure. Block 2 sticks to Block 1 and the two-block system continues to slide horizontally together. Which of the following correctly describes the change in speed of Block 1 immediately after Block 2 sticks to Block 1?

(A) The speed of Block 1 is less because of conservation of mechanical energy.
(B) The speed of Block 1 is less because of conservation of linear momentum.
(C) The speed of Block 1 is greater because of the conservation of mechanical energy.
(D) The speed of Block 1 is greater because of the conservation of linear momentum.

12. Two systems, a simple pendulum and a mass hanging on an ideal spring, both have a period of 1 s when set into small oscillatory motion on Earth. They are then set into small oscillatory motion on Planet X, which has the same diameter as Earth but twice the mass. Which of the following statements is true about the periods of the two objects on Planet X compared to their periods on Earth?

(A) Both periods of oscillation are shorter.
(B) Both periods of oscillation are the same.
(C) The period of the mass on the spring is shorter; the period of the pendulum is the same.
(D) The period of the pendulum is shorter; the period of the mass on the spring is the same.
13. An object of mass \(m = 3.0 \text{ kg} \) is attached to one end of a string with negligible mass and length \(L = 0.80 \text{ m} \). The object is released from rest at time \(t = 0 \), when the string is horizontal. At time \(t = t_1 \) the object is at the location shown in the figure, where the string is vertical. Which of the following is most nearly the magnitude of the tension in the string at time \(t = t_1 \)?

(A) 4 N
(B) 30 N
(C) 60 N
(D) 90 N
14. Two disks, A and B, each experience a net external torque that varies over an interval of 5 seconds. Disk B has a rotational inertia that is twice that of Disk A. The graph shown represents the angular momentum of the two disks as functions of time between time \(t = 0 \) s and \(t = 5 \) s. The average magnitudes of the net torques exerted on disks A and B from \(t = 0 \) to \(t = 5 \) s are \(\tau_A \) and \(\tau_B \), respectively. Which of the following expressions correctly relates the magnitudes of the average torques?

(A) \(\tau_B = 4\tau_A \)
(B) \(\tau_B = 2\tau_A \)
(C) \(\tau_B = \frac{1}{2}\tau_A \)
(D) \(\tau_B = \frac{1}{4}\tau_A \)

15. An fluid flows through the two sections of cylindrical pipe shown in the figure. The narrow section of the pipe has radius \(R \) and the wide section has radius \(2R \). What is the ratio of the fluid’s speed in the wide section of pipe to its speed in the narrow section of pipe, \(\frac{v_{\text{wide}}}{v_{\text{narrow}}} \)?

(A) \(\frac{1}{4} \)
(B) \(\frac{1}{2} \)
(C) 2
(D) 4
Section II: Free–Response Questions

FREE–RESPONSE QUESTION: MATHEMATICAL ROUTINES

1. In Experiment 1, students release a disk of mass M and radius R from rest at the top of a ramp that makes an angle θ with the horizontal. The disk rolls without slipping, as shown in Figure 1. The rotational inertia of the disk is $I_{\text{disk}} = \frac{1}{2}MR^2$. The frictional force exerted on the disk is F_f.

(a) i. On the diagram in Figure 2, draw and label arrows that represent the forces (not components) that are exerted on the disk as it rolls down the ramp, which is indicated by the dashed line. Each force in your diagram must be represented by a distinct arrow starting on, and pointing away from, the point at which the force is exerted on the disk.

ii. Derive an expression for the net torque exerted on the disk in terms of θ, F_f, m, R and physical constants as appropriate. Begin your derivation by writing a fundamental physics principle or an equation from the reference booklet.

iii. Determine an expression for the net force exerted on the disk in terms of θ, F_f, m, R and physical constants as appropriate. Begin your derivation by writing a fundamental physics principle or an equation from the reference booklet.

iv. Derive an expression for the translational acceleration of the center of mass of the disk. Express your answer in terms of M, θ, R and physical constants as appropriate. Begin your derivation by writing a fundamental physics principle or an equation from the reference booklet.
In Experiment 1, the disk reaches the bottom of the ramp in time t_{disk}.

In Experiment 2, the students release a block of ice from rest from the same height on a ramp inclined at the same angle θ, as shown in Figure 3. Friction between the block and the ramp is negligible. The block reaches the bottom of the ramp in time t_{block}.

Indicate whether t_{disk} is greater than, less than, or equal to t_{block}?

- $t_{\text{disk}} > t_{\text{block}}$
- $t_{\text{disk}} = t_{\text{block}}$
- $t_{\text{disk}} < t_{\text{block}}$

Justify your reasoning.

FREE-RESPONSE QUESTION: TRANSLATION BETWEEN REPRESENTATIONS

2. A block of mass m is attached to an ideal spring, whose other end is fixed to a wall. The block is displaced a distance x_0 to the left of the spring's equilibrium position, as shown in Figure 1. The block is then released from rest and oscillates with negligible friction along the horizontal surface. While the block is oscillating, it has a maximum speed v_{max}.

(a) The energy bar charts in Figure 2 represent the spring potential energy U_s of the block-spring system, and the kinetic energy K of the block, as the block passes through positions $x = -x_0$, $x = 0$, and $x = +x_0$ while the block oscillates. The bar chart at $x = -x_0$ is complete. Draw shaded rectangles to complete the energy bar charts in Figure 2 for positions $x = 0$ and $x = +x_0$.

- Positive energy values are above the zero-energy line ("0"), and negative energy values are below the zero-energy line.
- Shaded regions should start at the dashed line representing zero energy.
- Represent any energy that is equal to zero with a distinct line on the zero-energy line.
- The relative height of each shaded region should reflect the magnitude of the respective energy consistent with the scale shown.
Figure 2

Figure 3 shows the position of the block as a function of time. Figure 4 shows the force exerted by the spring on the block as a function of time.

(b) i. Using figures 3 and 4, determine an expression for the spring constant of the spring.

ii. Starting with the equation for the period of a mass on a spring, derive an expression for the mass of the block. Express your answer in terms of t_0, x_0, F_{max}, and physical constants, as appropriate. Begin your derivation by writing a fundamental physics principle or an equation from the reference book.

(c) On the axes provided in Figure 5 sketch a graph of the velocity of the block as a function of time.
(d) A student sketches the free-body diagram in Figure 6, and makes the following claim:

“The free-body diagram shows the forces exerted on the block at time $t = 1.5t_0$.”

Justify why the student's sketch (Figure 6) and claim are or are not consistent with the graph of velocity as a function of time you sketched in part (c).

FREE–RESPONSE QUESTION: EXPERIMENTAL DESIGN AND ANALYSIS

3. A group of students are given a cylindrical container half filled with a liquid of unknown density ρ. The students have access to an additional container with more of the same liquid, meter sticks, and a pressure sensor. They do not have access to a scale.

(a) The students are asked to take measurements to create a graph that could be used to determine the density of the liquid. Describe an experimental procedure the students could use to collect the data needed to determine the density of the liquid. Include any steps necessary to reduce experimental uncertainty. If needed, you may include a simple diagram of the setup with your procedure.

(b) Describe how the data collected in part (a) could be plotted to create a linear graph and how that graph would be analyzed to determine the density ρ of the liquid.
The students perform another experiment with another cylinder which is filled with water, as shown in Figure 2. The students make a small hole in the side of the cylinder and measure the speed v at which water exits the hole. The students plug the first hole, make another one at a different height, and repeat this procedure. The following table shows height h of each hole relative to the top of the water, the students made and the corresponding water speed v.

<table>
<thead>
<tr>
<th>Height h (m)</th>
<th>Speed v (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>2.2</td>
</tr>
<tr>
<td>0.20</td>
<td>2.0</td>
</tr>
<tr>
<td>0.15</td>
<td>1.8</td>
</tr>
<tr>
<td>0.10</td>
<td>1.4</td>
</tr>
<tr>
<td>0.05</td>
<td>1.1</td>
</tr>
</tbody>
</table>

(c) The students correctly determine that the relationship between h and v is given by $v^2 = 2gh$. The students create a graph with v^2 plotted on the vertical axis.

i. **Indicate** which measured or calculated quantity could be plotted on the horizontal axis to yield a linear graph whose slope can be used to calculate an experimental value for the acceleration due to gravity. Use the blank columns in the table to list any calculated quantities you will graph other than the data provided.

\[v^2 \quad \text{Vertical Axis} \quad \text{Horizontal Axis} \]

ii. On the grid in Figure 3, **plot** the appropriate quantities to determine the acceleration due to gravity. Clearly **scale** and **label** all axes, including units, as appropriate.
iii. **Draw** a best fit line to the data graphed in part (c) ii.

(d) **Calculate** an experimental value for the acceleration due to gravity using the best-fit line that you drew in Figure 3 in part (c)iii.

FREE–RESPONSE QUESTION: QUALITATIVE/QUANTITATIVE TRANSLATION

![Figure 1](image)

4. Block 1 of mass M_1 slides to the right along a horizontal surface with speed v_0 toward Block 2 of mass M_2, which is initially at rest, as shown in Figure 1. When Block 1 collides with Block 2, the blocks stick together. Friction between the blocks and the surface is negligible.

(a) If Block 2 is much less massive than Block 1 ($M_2 \ll M_1$), **estimate** the approximate speed of the two-block system after the collision in terms of v_0. **Justify** your estimate using qualitative reasoning beyond referencing equations.

(b) Starting with conservation of momentum, **derive** an equation for v_f, the speed of the two-block system after the collision, in terms of M_1, M_2, and v_0. Begin your derivation by writing a fundamental physics principle or an equation from the reference book.

(c) If Block 2 is much less massive than Block 1, does the equation you derived in part (b) agree with your qualitative reasoning from part (a)? **Justify** why or why not.
Answer Key and Question Alignment to Course Framework

<table>
<thead>
<tr>
<th>Multiple Choice Question</th>
<th>Answer</th>
<th>Skill</th>
<th>Learning Objective</th>
<th>Essential Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>2.A</td>
<td>2.4.A</td>
<td>2.4.A.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>3.B</td>
<td>2.5.A</td>
<td>2.5.A.3</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>3.C</td>
<td>3.2.A</td>
<td>3.2.A.4</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>2.C</td>
<td>1.3.A</td>
<td>1.3.A.4</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>2.A</td>
<td>5.3.B</td>
<td>5.3.B.2</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>2.D</td>
<td>8.3.B</td>
<td>8.3.B.3</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>2.B</td>
<td>4.3.A</td>
<td>4.3.A.3</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>2.C</td>
<td>3.4.C</td>
<td>3.4.C.3</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>3.B</td>
<td>7.2.A</td>
<td>7.2.A.1</td>
</tr>
<tr>
<td>Free-Response Question</td>
<td>Skill</td>
<td>Learning Objective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoring Guidelines for Question 1: Mathematical Routines

<table>
<thead>
<tr>
<th>Learning Objectives:</th>
<th>1.3.A</th>
<th>2.5.A</th>
<th>2.6.A</th>
<th>2.7.A</th>
<th>5.2.A</th>
<th>5.3.B</th>
<th>5.6.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For a force of gravity drawn straight down from the center of the circle</td>
<td>1 point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scoring Note: Acceptable labels for forces include: \(F_g\), \(F_{\text{gravity}}\), \(mg\), \(F_{\text{earth, disk}}\), \(W\).
\(G\) and \(g\) are not acceptable labels for the force of gravity.

For one of the following:
- \(F_N\) points perpendicular to the ramp starting from the point on the circle that touches the ramp.
- \(F_f\) points up the ramp starting at the point on the circle that touches the ramp.

Example Response:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_N)</td>
<td>(F_f)</td>
</tr>
<tr>
<td>(F_N)</td>
<td>(F_f)</td>
</tr>
<tr>
<td>(F_N)</td>
<td>(F_f)</td>
</tr>
</tbody>
</table>

(a) ii

For a multi-step derivation that uses the definition of torque \(\tau = rF \sin \theta\)
For indicating one of the following
- That the torque exerted on the disk around the center of the disk is from the frictional force.
- That the torque exerted on the disk around the edge is from the gravitational force.

(a) iii

For an expression for net force that includes a component of the gravitational force and frictional force in opposite directions. \(mg \sin \theta - F_f\)

(a) iv

For using the relationship between the angular acceleration of the disk and the translational acceleration of the center of mass of the disk. \(\alpha = \frac{a}{R}\)

For a correct expression for the translational acceleration of the center of mass of the disk in terms of given variables \(a = \frac{2}{3} g \sin \theta\)

Total for part (a) 7 points
Example Response:

$$\sum \tau = I \alpha$$

$$F_f R \sin(90^\circ) = \left(\frac{1}{2} MR^2 \right) \alpha$$

$$F_f R \sin(90^\circ) = \left(\frac{1}{2} MR^2 \right) \left(\frac{\alpha}{R} \right)$$

$$F_f = \frac{1}{2} Ma$$

$$\sum F = Ma$$

$$Mg \sin \theta - F_f = Ma$$

$$Mg \sin \theta - \frac{1}{2} Ma = Ma$$

$$Mg \sin \theta = \frac{3}{2} Ma$$

$$a = \frac{2}{3} g \sin \theta$$

(b) For a claim that $$t_{\text{disk}} > t_{\text{block}}$$ with an attempt at a justification using forces or conservation of energy.

1 point

For indicating that the acceleration or the net force exerted on the disk is smaller than the acceleration or the net force exerted on the block.

1 point

OR

For indicating that the disk will have both rotational and translational kinetic energy at the bottom of the ramp.

1 point

For a justification that includes that the larger acceleration for the block over the same distance leads to a smaller time for the block to reach the bottom of the incline.

1 point

OR

For a justification that includes that the larger translational kinetic energy for the block over the same distance leads to a higher velocity and thus a shorter time over the same distance.

Example Response

The net force exerted on the block is larger since there is no frictional force from the surface. The net force is related to the acceleration, so since the block has a larger net force it will have a larger acceleration. Both the block and the disk start from rest and have to travel the same distance, and since the block has a larger acceleration, it will be able to travel the distance in a smaller time. Therefore, the block will reach the bottom in less time.

Total for part (b) 3 points

Total for question 1 10 points
Scoring Guidelines for Question 2: Translation Between Representations 12 points

(a) For a single bar representing the kinetic energy of the block at \(x = 0 \). 1 point
For a single bar representing the potential energy of the block-spring system at \(x = +x_0 \). 1 point
For an equal total energy of the block-spring system at all three locations. 1 point

Example Response

For a single bar representing the kinetic energy of the block at \(x = 0 \).

For a single bar representing the potential energy of the block-spring system at \(x = +x_0 \).

For an equal total energy of the block-spring system at all three locations.

(b) i For the correct spring constant in terms of \(F_{\text{max}} \) and \(x_0 \). 1 point
\[
k = \frac{F_{\text{max}}}{x_0}
\]

(b) ii For a multi-step derivation that begins with the equation for period of a mass on a spring. 1 point
\[
T = 2\pi\sqrt{\frac{m}{k}}
\]
For ONE of the following:
- Substitution of the spring constant into the equation for the period of a block-spring system.
- Substitution of \(2t_0 \) for the period into the equation for the period of a block-spring system.

For a correct expression of the mass of the block in terms of given variables. 1 point
\[
m = \left(\frac{t_0}{\pi} \right)^2 \frac{F_{\text{max}}}{x_0}
\]
Example Response:

\[k = \frac{F_{\text{max}}}{x_0} \]
\[T = 2\pi \sqrt{\frac{m}{k}} \]
\[2t_0 = 2\pi \sqrt{\frac{m}{k}} \]
\[2t_0 = 2\pi \sqrt{\frac{m}{F_{\text{max}}}} \]
\[t_0 = \pi \sqrt{\frac{x_0 m}{F_{\text{max}}}} \]
\[\left(\frac{t_0}{\pi} \right)^2 = \frac{x_0 m}{F_{\text{max}}} \]
\[m = \left(\frac{t_0}{\pi} \right)^2 \frac{F_{\text{max}}}{x_0} \]

Total for part (b) 4 points

(c) For a sketch that has the same period as the graph given in part (b) of 2t_0.

For a sketch that has the same magnitude above and below the zero.
1 point

For a sketch that resembles a positive sine function.
1 point

Example Response

Velocity (m/s)

Figure 4

Total for part (c) 3 points

(d) For a claim that the sketch and claim are or are not consistent with the graph of velocity as a function of time, consistent with part (c) with an attempt at a justification using functional dependence.

For a justification that includes that at \(t = 1.5t_0 \), the net force should be zero with justification using a relevant feature of the graph (i.e., the slope of the graph of velocity as a function of time is zero at \(t = 1.5t_0 \)).
1 point
Example Response:

The claim and free-body diagram are not consistent with my graph of velocity as a function of time. At time \(t = 1.5t_0 \), my velocity graph is at a maximum, and the slope of the velocity graph at that time is zero. This means that at \(t = 1.5t_0 \), the acceleration is zero, and because acceleration is directly related to force, the force from the spring should be zero at \(t = 1.5t_0 \).

Scoring Note: The two points for Part (d) can be earned independently of the rest of the points on the question, as long as the student correctly interprets the consistency between their answer for part (c) and the given sketch. For example, a student who earns zero points in part (c) can still earn full credit in (d) if they reason why their incorrect diagram is or is not consistent with the sketch.

<table>
<thead>
<tr>
<th>Total for part (d)</th>
<th>2 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total for question 2</td>
<td>12 points</td>
</tr>
</tbody>
</table>
Scoring Guidelines for Question 3: Experimental Design and Analysis

Learning Objectives: 1.5.B 8.2.B 8.4.B

<table>
<thead>
<tr>
<th>(a)</th>
<th>For indicating all the required quantities to determine the density of the fluid – Pressure and height of the fluid.</th>
<th>1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For a reasonable method of reducing experimental uncertainty either by taking several pressure measurements at the same depth/height, or at least one pressure measurement at several depths/heights.</td>
<td>1 point</td>
</tr>
</tbody>
</table>

Example Response

Place the pressure sensor at the bottom of the container of liquid. Measure the height of the liquid with a meterstick and record the reading on the pressure sensor. Repeat measurements to reduce experimental error. Put more liquid in the container and measure the new height of the liquid and the pressure from the sensor. Repeat for multiple heights of the liquid to reduce experimental uncertainty.

<table>
<thead>
<tr>
<th>Total for part (a)</th>
<th>2 points</th>
</tr>
</thead>
</table>

| (b) | For describing a graph that would have a slope that is either directly or inversely proportional to the density of the fluid. Accept **ONE** of the following: |
|-----|---|---------|
| | • P as a function of h |
| | • h as a function of P |
| | • $\frac{P}{\rho}$ as a function of h |
| | • h as a function of $\frac{P}{\rho}$ |
| | • P as a function of ρh |
| | • ρh as a function of P |

For a correct description of how to use the slope to calculate density. Accept **ONE** of the following:

<table>
<thead>
<tr>
<th>Total for part (b)</th>
<th>2 points</th>
</tr>
</thead>
</table>

| (c) i | For listing appropriate quantities that could be graphed to determine the acceleration due to gravity. |
|-------|--|---------|
| | • Graphing v^2 as a function of Δv |
| | • Graphing v^2 as a function of $2\Delta v$ |

Scoring note: Other quantities that can lead to a linear graph where the slope can be used to determine the acceleration due to gravity can earn this point.
(c) ii For labeling axes correctly (including units) with a linear scale such that the plotted points are spread over at least half of the horizontal axis and at least half of the vertical axis.

Scoring Note: This point can be earned for labels and plotted points that are consistent with the previous part.

For a graph with correctly plotted points on an appropriate scale.

Scoring Note: This point can be earned for labels and plotted points that are consistent with the previous part.

1 point

(c) iii For a line that approximates the trend of the data.

Scoring Note: This point can be earned for labels and plotted points that are consistent with the previous part.

Example Response:

![Graph with labeled axes and a line approximating the trend of the data.](image)

Total for part (c) 4 points

(d) For using two points from the best-fit line to calculate the slope with appropriate units.

For calculating the value of the acceleration due to gravity.

Example Response:

\[
\text{slope} = \frac{1.0 - 0.0}{0.05 - 0.0} = 20 \text{ m/s}^2
\]

\[
v^2 = 2gh
\]

\[
g = \frac{\text{slope}}{2} = \frac{20}{2} = 10 \text{ m/s}^2
\]

Total for part (d) 2 points

Total for question 3 10 points
Scoring Guidelines for Question 4: Qualitative/Quantitative Translation

Learning Objectives: 4.1.A 4.3.A

(a) For a claim that the final velocity will be approximately equal to the initial velocity of Block 1.

\[v_f \approx v_i \]

1 point

For connecting the claim to ONE of the following:

- the conservation of momentum.
- Newton’s third law
- the momentum of the center of mass of the system

1 point

For the justification of the evidence supporting the claim. Accept ONE of the following:

- a correct statement relating either block’s mass to the relative magnitude of the change in that block’s momentum.
- a correct statement relating Newton’s third law to a small acceleration for Block 2 or a large acceleration for Block 1
- a correct statement relating the speed of either block to the momentum of the center of mass of the system

1 point

Example Response

If the mass of Block 2 is really really small, the final momentum of Block 2 will also be really, really small. This means that the change in momentum of Block 2 is really small. The change in momentum of each block is equal and opposite, so if the change in momentum of Block 2 is small, so is the change in momentum of Block 1, so Block 1 is still traveling at approximately the same speed.

OR

Newton’s third law states that the force that the two blocks exert on each other must be equal in magnitude and opposite in direction. If the mass of Block 2 is very very small, the force exerted on it by Block 1 will mean that relative to Block 1, Block 2 will have a large acceleration (changing its velocity from zero to almost \(v_i \)), while that same force exerted on Block 1 will result in a very small acceleration – so the speed of Block 1 remains almost equal to \(v_i \).

OR

If the mass of Block 2 is very very small, the addition of the mass of Block 2 to the mass of the system is a very small mass change. Which means that the additional momentum of adding the momentum of Block 2 moving is very very small, which means that the final speed of the system should be equal to the initial speed of the system because of the conservation of momentum.

Total for part (a) 3 points

(b) For a multistep derivation that begins with conservation of momentum

\[p_i = p_f \]

1 point

For substituting appropriate values of mass and initial velocities

\[M_1 v_{i1} + M_2 (0) = (M_1 + M_2) v_f \]

1 point

For a correct equation for the final velocity of the two-block system after the collision.

\[v_f = \frac{M_1 v_i}{M_1 + M_2} \]

1 point
Example Response:

\[P_i = P_f \]
\[M_1v_{1f} + M_2v_{2f} = (M_1 + M_2)v_f \]
\[M_1v_{1f} + M_2(0) = (M_1 + M_2)v_f \]
\[v_f = \frac{M_1v_0}{M_1 + M_2} \]

<table>
<thead>
<tr>
<th></th>
<th>Total for part (b)</th>
<th>3 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>For a statement that addresses functional dependence between the mass of Block 2 and the final speed of the two-block system.</td>
<td>1 point</td>
</tr>
<tr>
<td></td>
<td>Scoring Note: It is not necessary to use functional dependence correctly to earn this point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For a correct justification using functional dependence to link the claim made in part (a) to the equation derived in part (b).</td>
<td>1 point</td>
</tr>
</tbody>
</table>

Example Response:

In Part (a) I claimed that if the mass of Block 2 was much less than the mass of Block 1 that the final speed of the two-block system would be approximately equal to the original speed of Block 1. In the equation I derived in part (b) since the final speed of the block is inversely related to the mass of Block 2, if the mass of Block 2 is very small, it will effectively mean that the masses in the numerator and denominator cancel leaving the final mass equal to the initial mass, which is what I claimed in part (a).

<table>
<thead>
<tr>
<th></th>
<th>Total for part (c)</th>
<th>2 points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total for question 4</td>
<td>8 points</td>
</tr>
</tbody>
</table>
Appendix
Vocabulary and Definitions of Important Ideas in AP Physics

Vocabulary and Word Choice in AP Physics

The discussions below are included to elaborate on the choice of words and vocabulary used within AP Physics. Many of these words, when used in the context of AP Physics, have very specific and intentional meanings. The intentional use of certain words within specific contexts can have a significant impact on student understanding as well as their ability to communicate that understanding with others.

The AP Physics Exam will NOT directly assess student understanding of physics vocabulary. For instance, students will not be asked to identify the correct definition of acceleration, or the difference between a system and an object. Students will be expected to use these definitions in contextually appropriate situations. Descriptions and definitions, found in the appendix, are intended to be used as starting points for discussions and are included to help students be more conscientious about the language they use to describe a scenario—that they are inherently thinking more about the underlying principles and ideas that apply to that scenario. This can lead to a deeper and more robust understanding of the course content.

Often in physics contexts, words have specific meanings and are used differently than in colloquial conversation. Common examples of words that have specific physics definitions include object, system, momentum, and work. Students need to be aware of these subtleties, so that they can communicate appropriately about the details of a scenario. Ultimately, the language used to describe the natural world can be very important when helping students build understanding of physics concepts in measured and intentional increments.

Models

A PHYSICAL, MATHEMATICAL, OR CONCEPTUAL REPRESENTATION OF A SYSTEM OF IDEAS, EVENTS, OR PROCESSES.

A scientific model can be thought of as the set of rules that describe a physical phenomenon. The model sets out the boundaries within which the scientist will consider that phenomenon. Typically, these boundaries simplify a complex scenario to make the analysis and description of that scenario easier and more accessible, particularly to students just beginning their studies in physics.

Consider perhaps the most common example of an introductory physics problem: “A block is at rest at the top of an inclined plane. Determine the speed of a block at the bottom of the inclined plane.” What should students consider in their calculations? What model of the block/incline/earth should students use to describe this situation? To describe the subtleties of the scenario, students would need to consider friction and air resistance; the slight increase in gravitational field as the block slides downward; and the loss of energy to vibrations, sound, and thermal energy. Does the coefficient of friction decrease slightly as the abrasion between the block and incline subtly smooths the surfaces? Should the density, temperature, and relative humidity of the air be considered? Clearly, the physics of even such a straightforward example of a block-on-a-ramp can raise many questions to be considered.

Therefore, in introductory physics courses, phenomena are typically analyzed in the most basic conditions, using the most simplified models. This allows students to focus on big concepts and ideas, before exploring more complex models that include more detailed considerations. For example, when modeling Earth, we typically consider it to be uniform density, spherical, and an inertial frame of reference, even though none of those properties are completely accurate. Most often,
only gravitational effects from the Sun are considered. Even tidal effects from the Moon are only considered after introductory courses. This spherical, uniform description of Earth is a simplified model that is used to focus on bigger concepts without getting stuck with extraneous details and nuance. In the earlier block-on-a-ramp example, virtually all of the effects listed are considered negligible and are ignored in favor of obtaining an answer that is within the level of accuracy needed for the course. The mathematics required to describe these effects tends to get complex quickly. It is important, however, that students understand they are using a simplified model so that later extensions can be added in the context of refining the model—a normal scientific process.

The models chosen to simplify the universe have been done so with alignment to their respective AP Physics courses. These models are elaborated on within the boundary statements provided in the course frameworks, as well as in the conventions for the AP Exams, listed on the equation sheets. While nuances of these models are described in detail within each course’s course framework, these models can be summarized as follows.

Unless otherwise stated, students may assume that:

- Frames of reference are inertial.
- Air resistance is negligible.
- Frictional/drag forces are negligible.
- Edge effects of charged plates are negligible.
- Strings, springs, and pulleys are ideal.

Representations

A METHOD OF UNDERSTANDING AND COMMUNICATING UNDERSTANDINGS ABOUT PHYSICS.

Once deciding on the boundaries of a model, scientists must decide how to communicate those boundaries to others. A representation is a depiction of a model or aspects of that model. Representations can take many forms, and scientists are consistently developing new representations.

Representations that are frequently used within AP Physics 1 include (but are not limited to):

- Written descriptions
- Drawings and pictures
- Diagrams or schematics
- Mathematical equations or sets of equations
- Graphs and data tables
- Charts
- Motion maps

- Energy bar charts
- Momentum charts
- Free-body diagrams
- Force diagrams

Students will benefit from familiarity with as many different representations as possible. What makes a concept or idea clear to one student using one representation may not be clear to another. The more methods that students are given to access and describe content, the more likely they are to use those descriptions. The depth to which a student understands course content is related to the variety of representations with which that student can communicate their knowledge. True understanding is demonstrated through the ability to use many different representations in many different situations. To this end, the AP Physics 1 Exam will use many representations, as well as require students to create many representations.

Objects

A PHYSICAL THING WHERE THE INTERNAL STRUCTURE AND PROPERTIES OF THE THING ARE IGNORED.

Whether it be a cow, the Earth, a car, or pencil, the object model of these entities has a very specific meaning. Within the context of AP Physics, using the word “object” denotes some key characteristics, and is used, as most models are, to simplify the analysis and descriptions of the interactions between two or more masses. Most notably, an object has no internal structure or surface properties. An object can be considered as a collection of atoms or molecules that stick together in a functional way. A person could imagine handling an object, picking it up, as though the object had no internal structure.

Consider a truck. Most often, it’s simply “a truck.” The user of the truck does not consider the multitude of components that make a truck a truck: the engine, the doors and windows, the wheels, the frame, the radio, the suspension, and so on. The user treats the truck as a single object, neglecting the constituent parts and structure of the truck itself.

Similar to a well-packed box, an object is treated the same from different perspectives. The truck is a truck if viewed from the top, bottom, or side. However, when carrying a load of unsecured bricks, the object model of the truck may not be sufficient. The motion of the bricks within the truck may affect the behavior of the truck itself. Sudden accelerations—in any direction—may have significant effects on how the truck behaves.
Furthermore, using the object model ignores the physical size of the object itself. Objects cannot be compressed, twisted, or rotated because the physical dimensions of the object are ignored. When considering a truck as an object, there would be no need to make the distinction between the front, back, or sides of the truck. However, in the physical world, pushing the top of a truck has a different effect than pushing the bottom or middle of the truck. If the truck is modeled as an object, these effects are ignored; the location of the application of the force is not considered.

A notable discussion of some nuances of the object model can be found when analyzing friction. Friction, by definition, is the interaction of two objects in physical contact with each other. The amount of friction is inherently tied to the structure and properties of those objects. For instance, two wooden blocks will slide across each other differently if they are covered with sandpaper than if they are covered in grease. The surfaces of the blocks matter when it comes to describing their interactions. However, the blocks may still be treated as objects because the force of friction exerted on one block by the other block does not depend on the size or shape of the blocks. The amount of area of the blocks that are in contact with each other does not change the force of friction, and so the blocks may still be modeled as objects.

The object model is used throughout AP Physics 1 to simplify the analysis of most phenomena. An “object” can be anything because what the object is is not important to the analysis. The properties that matter to the analysis—the mass of the object, the coefficient of friction between the object and a surface, the speed of the object, and so on—can be used to describe any number of physical things. In this case, it is up to the student to create their own mental representation of the situation.

Systems

A COLLECTION OF OBJECTS THAT ARE ANALYZED TOGETHER.

A system is how a physicist chooses to group objects together to analyze a given scenario. As students gain a deeper understanding of physics concepts, they will notice that how systems are chosen can significantly simplify (or significantly complicate) the analysis of a problem. There is no single right or wrong way to group objects, but often the preferred method is to choose a system that simplifies the analysis.

Note that in special cases, a system can itself be reduced to a single object. This can happen when the behaviors and interactions of the individual parts of the system do not affect the behavior or analysis of the system as a whole. Consider a box of cereal. In reality, this is a very complex system. A cardboard box, a plastic bag, and a large number of pieces of cereal within. However, the complex motion of the pieces of cereal within the box are not important to consider when handling the box of cereal. Therefore, the entire box–bag–cereal system can itself be considered as a single object.

Unless the system is chosen to be the entire observable universe (which would require an exceedingly complex analysis), a small group of objects chosen to be a system will exist as part of a larger local environment. The system as a whole then may interact with that environment. Consider the box of cereal above. Perhaps the box is torn, and cereal begins to spill. The physicist has a decision to make with regard to their system: continue to include every piece of cereal as part of the system (System A) or consider only the cereal inside the box to be part of the system (System B). See the figure below.

Analyzing System A will be exceedingly complex, as the small pieces of cereal move, bounce, accelerate, and collide with each other and the environment and scatter. Analyzing System B is much simpler: the box is losing mass to the environment, but the box–bag–cereal system may be modeled as a single object that has a changing mass.

Rigid System

A SYSTEM THAT DOES NOT CHANGE SHAPE, BUT DIFFERENT POINTS WITHIN THE SYSTEM MAY MOVE IN DIFFERENT DIRECTIONS AND WITH DIFFERENT SPEEDS.

Suppose a wheel is supported by a horizontal axle, so that the bottom of the wheel is not contacting the ground. While the wheel rotates, all points move together, and the shape of the wheel does not change. Points A and B are marked on the wheel, as shown in the following figure.
At any given instant in time, Point A is traveling with a greater translational speed and in a different direction than Point B. If the rotation of the wheel is relevant to the analysis of the situation, it cannot be modeled as an object because, by definition, the object model does not account for these differences. Instead, the wheel is modeled as a rigid system.

For a rigid system, the location at which forces are exerted or the location of the point of analysis matters. Pushing on the top of the wheel will have a different effect than pushing on the bottom of the wheel or pushing directly toward the axle of the wheel. Again, the goals and complexity of the analysis dictates what model to use.

Constant or conserved?

The cereal example is a good place to discuss the subtlety between the terms *constant* and *conserved*, and how the choice of the system determines whether a quantity is constant or conserved. For the leaking cereal box, the total amount of cereal is *conserved*, in both System A and System B. In both choices of system, the total amount of cereal that exists does not change. However, the choice of system does influence whether the amount of cereal within that system is *constant*. In the first choice, where the student decides to continue to include each individual piece of cereal as part of the system, even as the cereal spills from the box, the total amount of cereal within the system is constant. In the second choice, where the student decides to only consider the cereal within the box as part of the system, even as the cereal spills from the box, the total amount of cereal within the system decreases, and is not constant. However, this cereal is still conserved—the cereal does not simply vanish, disappear, or cease to exist because it is not selected to be part of the system. The cereal is transferred out of the system.

Suppose students wanted to analyze the energy of the box of cereal as it falls toward Earth. In the box–Earth system, total mechanical energy is both conserved and constant. The total amount of energy within the system does not change as the box gains kinetic energy, and the gravitational potential energy of the box–Earth system decreases. However, in a system consisting only of the box, the total amount of energy that system is *not* constant, but energy *is* conserved. The kinetic energy of the box increases, but this increase in energy is due to the transfer of energy into the box system by the external force of gravity doing work on the box. The energy transferred into the box by the force of gravity is not “new” energy that was created by gravity—the total energy of the universe has remained the same and has been conserved.
Table of Information: Equations
CONSTANTS AND CONVERSION FACTORS

| Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{N} \cdot \text{m}^2/\text{kg}^2$ |
| 1 atmosphere of pressure, $1 \text{ atm} = 1.0 \times 10^5 \text{ N} / \text{m}^2 = 1.0 \times 10^5 \text{ Pa}$ |
| Acceleration due to gravity at Earth’s surface, $g = 9.8 \text{ m/s}^2$ |
| Magnitude of the gravitational field strength at the Earth’s surface, $g = 9.8 \text{ N/kg}$ |

PREFIXES

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{12}</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>10^9</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>µ</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
</tbody>
</table>

UNIT SYMBOLS

<table>
<thead>
<tr>
<th></th>
<th>hertz, Hz</th>
<th>newton, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>joule, J</td>
<td>pascal, Pa</td>
<td></td>
</tr>
<tr>
<td>kilogram, kg</td>
<td>second, s</td>
<td></td>
</tr>
<tr>
<td>meter, m</td>
<td>watt, W</td>
<td></td>
</tr>
</tbody>
</table>

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES

<table>
<thead>
<tr>
<th>θ</th>
<th>0°</th>
<th>30°</th>
<th>37°</th>
<th>45°</th>
<th>53°</th>
<th>60°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin \theta$</td>
<td>0</td>
<td>$1/2$</td>
<td>$3/5$</td>
<td>$\sqrt{2}/2$</td>
<td>$4/5$</td>
<td>$\sqrt{3}/2$</td>
<td>1</td>
</tr>
<tr>
<td>$\cos \theta$</td>
<td>1</td>
<td>$\sqrt{3}/2$</td>
<td>$4/5$</td>
<td>$\sqrt{2}/2$</td>
<td>$3/5$</td>
<td>$1/2$</td>
<td>0</td>
</tr>
<tr>
<td>$\tan \theta$</td>
<td>0</td>
<td>$\sqrt{3}/3$</td>
<td>3/4</td>
<td>1</td>
<td>4/3</td>
<td>$\sqrt{3}$</td>
<td>∞</td>
</tr>
</tbody>
</table>

The following conventions are used in this exam:
- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

GEOMETRY AND TRIGONOMETRY

<table>
<thead>
<tr>
<th>Rectangle</th>
<th>Rectangular Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = bh$</td>
<td>$V = \ell \cdot w \cdot h$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triangle</th>
<th>Cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \frac{1}{2}bh$</td>
<td>$V = \pi r^2 \ell$</td>
</tr>
<tr>
<td>$S = 2\pi r \ell + 2\pi r^2$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circle</th>
<th>Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \pi r^2$</td>
<td>$V = \frac{4}{3} \pi r^3$</td>
</tr>
<tr>
<td>$s = r\theta$</td>
<td>$S = 4\pi r^2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Right Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^2 + b^2 = c^2$</td>
</tr>
<tr>
<td>$\sin \theta = \frac{a}{c}$</td>
</tr>
<tr>
<td>$\cos \theta = \frac{b}{c}$</td>
</tr>
<tr>
<td>$\tan \theta = \frac{a}{b}$</td>
</tr>
</tbody>
</table>

© 2024 College Board
<table>
<thead>
<tr>
<th>Symbols</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>velocity or speed</td>
</tr>
<tr>
<td>x</td>
<td>position</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>a</td>
<td>acceleration</td>
</tr>
<tr>
<td>d</td>
<td>distance</td>
</tr>
<tr>
<td>E</td>
<td>energy</td>
</tr>
<tr>
<td>F</td>
<td>force</td>
</tr>
<tr>
<td>J</td>
<td>impulse</td>
</tr>
<tr>
<td>k</td>
<td>spring constant</td>
</tr>
<tr>
<td>K</td>
<td>kinetic energy</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
</tr>
<tr>
<td>p</td>
<td>momentum</td>
</tr>
<tr>
<td>P</td>
<td>power</td>
</tr>
<tr>
<td>r</td>
<td>radius, distance, or position</td>
</tr>
<tr>
<td>U</td>
<td>potential energy</td>
</tr>
<tr>
<td>V</td>
<td>volume</td>
</tr>
<tr>
<td>W</td>
<td>work</td>
</tr>
<tr>
<td>x_0</td>
<td>initial position</td>
</tr>
<tr>
<td>a_0</td>
<td>initial acceleration</td>
</tr>
<tr>
<td>v_0</td>
<td>initial velocity</td>
</tr>
<tr>
<td>t_0</td>
<td>initial time</td>
</tr>
<tr>
<td>α</td>
<td>coefficient of friction</td>
</tr>
<tr>
<td>ω</td>
<td>angular speed</td>
</tr>
<tr>
<td>A</td>
<td>amplitude or area</td>
</tr>
<tr>
<td>d</td>
<td>distance</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
</tr>
<tr>
<td>F</td>
<td>force</td>
</tr>
<tr>
<td>h</td>
<td>height</td>
</tr>
<tr>
<td>I</td>
<td>rotational inertia</td>
</tr>
<tr>
<td>k</td>
<td>spring constant</td>
</tr>
<tr>
<td>K</td>
<td>kinetic energy</td>
</tr>
<tr>
<td>L</td>
<td>length</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
</tr>
<tr>
<td>M</td>
<td>mass</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>r</td>
<td>radius, distance, or position</td>
</tr>
<tr>
<td>T</td>
<td>time</td>
</tr>
<tr>
<td>T</td>
<td>period</td>
</tr>
<tr>
<td>v</td>
<td>velocity or speed</td>
</tr>
<tr>
<td>W</td>
<td>work</td>
</tr>
<tr>
<td>x</td>
<td>position</td>
</tr>
<tr>
<td>y</td>
<td>vertical position</td>
</tr>
<tr>
<td>α</td>
<td>angular acceleration</td>
</tr>
<tr>
<td>θ</td>
<td>angle</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>τ</td>
<td>torque</td>
</tr>
<tr>
<td>ω</td>
<td>angular speed</td>
</tr>
</tbody>
</table>

Equations

- $v = v_0t + \frac{1}{2}a_0t^2$
- $x = x_0 + v_0t + \frac{1}{2}a_0t^2$
- $v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$
- $\ddot{x}_{cm} = \frac{\sum m_i \ddot{x}_i}{\sum m_i}$
- $\ddot{a}_{sys} = \frac{\sum F_i}{m_{sys}}$
- $|\ddot{F}_g| = G \frac{m_1 m_2}{r^2}$
- $|\ddot{F}_f| \leq \mu |\ddot{F}_n|$
- $\ddot{F}_i = -k \Delta \ddot{x}$
- $\ddot{a} = \frac{v^2}{r}$
- $K = \frac{1}{2}mv^2$
- $W = F \cdot d = Fd \cos \theta$
- $\Delta K = \sum W_i = \sum F_i \cdot d_i$
- $\Delta U_i = \frac{1}{2}k(\Delta x)^2$
- $U_G = -G \frac{m_1 m_2}{r}$
- $\Delta U_g = mg \Delta y$
- $P_{avg} = \frac{W}{\Delta t}$
- $P_{int} = F_{int} \cdot v = Fv \cos \theta$
- $\ddot{p} = m \ddot{v}$
- $\ddot{F}_{net} = \frac{\Delta \ddot{p}}{\Delta t} = m \frac{\Delta \ddot{v}}{\Delta t} = m \ddot{a}$
- $J = \ddot{F}_{avg} \Delta t = \Delta \ddot{p}$
- $\ddot{v}_{cm} = \frac{\sum \ddot{p}_i}{\sum m_i}$

- $\omega = \omega_0 + at$
- $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
- $\omega^2 = \omega_0^2 + 2 \alpha (\theta - \theta_0)$
- $v = r \omega$
- $a_r = r \alpha$
- $\tau = r_i F = r F \sin \theta$
- $I = \sum m_i r_i^2$
- $I' = I_{cm} + Md^2$
- $\alpha_{sys} = \frac{\sum \tau}{I_{sys}} = \frac{\tau_{net}}{I_{sys}}$
- $K = \frac{1}{2}I \omega^2$
- $W = \tau \Delta \theta$
- $L = I \omega$
- $L = rmv \sin \theta$
- $\Delta L = \tau \Delta t$
- $\Delta x_{cm} = r \Delta \theta$
- $T = \frac{1}{f}$
- $T_s = 2\pi \sqrt{\frac{m}{k}}$
- $T_p = 2\pi \sqrt{\frac{\ell}{g}}$
- $x_A = Acos(2\pi ft)$
- $x = A \sin(2\pi ft)$
- $J = \frac{m}{V}$
- $P = \frac{F}{A}$
- $P = P_0 + \rho gh$
- $P_{gauge} = \rho gh$
- $F_b = \rho v g$
- $A_1 v_1 = A_2 v_2$
- $P_1 + \rho g v_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g v_2 + \frac{1}{2} \rho v_2^2$
THIS PAGE IS INTENTIONALLY LEFT BLANK.