
AP CSP Exam
Reference Sheet

AP COMPUTER SCIENCE PRINCIPLES

Effective
Fall 2020

THIS PAGE IS INTENTIONALLY LEFT BLANK.

Exam Reference Sheet
Instruction Explanation

Assignment, Display, and Input
Text:
a ← expression

Block:

a expression

Evaluates expression and then assigns a copy of the result to
the variable a.

Text:
DISPLAY(expression)

Block:

DISPLAY expression

Displays the value of expression, followed by a space.

Text:
INPUT()

Block:
INPUT

Accepts a value from the user and returns the input value.

Arithmetic Operators and Numeric Procedures
Text and Block:
a + b
a - b
a * b
a / b

The arithmetic operators +, -, *, and / are used to perform
arithmetic on a and b.

For example, 17 / 5 evaluates to 3.4.

The order of operations used in mathematics applies when evaluating
expressions.

Text and Block:
a MOD b

Evaluates to the remainder when a is divided by b. Assume that
a is an integer greater than or equal to 0 and b is an integer
greater than 0.

For example, 17 MOD 5 evaluates to 2.

The MOD operator has the same precedence as the * and /
operators.

Text:
RANDOM(a, b)

Block:

RANDOM a, b

Generates and returns a random integer from a to b, including
a and b. Each result is equally likely to occur.

For example, RANDOM(1, 3) could return 1, 2, or 3.

Relational and Boolean Operators
Text and Block:
a = b
a ≠ b
a > b
a < b
a ≥ b
a ≤ b

The relational operators =, ≠, >, <, ≥, and ≤ are used to test
the relationship between two variables, expressions, or values. A
comparison using relational operators evaluates to a Boolean value.

For example, a = b evaluates to true if a and b are
equal; otherwise it evaluates to false.

AP Computer Science Principles Exam Reference V.1 | 1
 Return to Table of Contents

© 2023 College Board

Instruction Explanation
Relational and Boolean Operators (continued)

Text:
NOT condition

Block:
NOT condition

Evaluates to true if condition is false; otherwise
evaluates to false.

Text:
condition1 AND condition2

Block:

condition1 condition2AND

Evaluates to true if both condition1 and condition2
are true; otherwise evaluates to false.

Text:
condition1 OR condition2

Block:

condition1 OR condition2

Evaluates to true if condition1 is true or if
condition2 is true or if both condition1 and
condition2 are true; otherwise evaluates to false.

Selection
Text:
IF(condition)
{
 <block of statements>
}

Block:

IF condition

block of statements

The code in block of statements is executed if the
Boolean expression condition evaluates to true; no
action is taken if condition evaluates to false.

Text:
IF(condition)
{
 <first block of statements>
}
ELSE
{
 <second block of statements>
}

Block:

IF condition

first block of statements

ELSE

second block of statements

The code in first block of statements is executed
if the Boolean expression condition evaluates to true;
otherwise the code in second block of statements is
executed.

AP Computer Science Principles

© 2023 College Board

Exam Reference V.1 | 2
 Return to Table of Contents

Instruction Explanation
Iteration

Text:
REPEAT n TIMES
{
 <block of statements>
}

Block:

REPEAT n TIMES

block of statements

The code in block of statements is executed n times.

Text:
REPEAT UNTIL(condition)
{
 <block of statements>
}

Block:

REPEAT UNTIL

block of statements

condition

The code in block of statements is repeated until the
Boolean expression condition evaluates to true.

List Operations
For all list operations, if a list index is less than 1 or greater than the length of the list, an error message is produced and the program
terminates.
Text:
aList ← [value1, value2, value3, ...]

Block:

aList valuel, value2, value3

Creates a new list that contains the values value1, value2,
value3, and ... at indices 1, 2, 3, and ...
respectively and assigns it to aList.

Text:
aList ← []

Block:

aList

Creates an empty list and assigns it to aList.

Text:
aList ← bList

Block:

aList bList

Assigns a copy of the list bList to the list aList.

For example, if bList contains [20, 40, 60],
then aList will also contain [20, 40, 60] after the
assignment.

Text:
aList[i]

Block:

aList i

Accesses the element of aList at index i. The first element
of aList is at index 1 and is accessed using the notation
aList[1].

AP Computer Science Principles

© 2023 College Board

Exam Reference V.1 | 3
 Return to Table of Contents

Instruction Explanation
List Operations (continued)

Text:
x ← aList[i]

Block:

x aList i

Assigns the value of aList[i] to the variable x.

Text:
aList[i] ← x

Block:

aList i x

Assigns the value of x to aList[i].

Text:
aList[i] ← aList[j]

Block:

aListaList i j

Assigns the value of aList[j] to aList[i].

Text:
INSERT(aList, i, value)

Block:

aList, i, valueINSERT

Any values in aList at indices greater than or equal to i are
shifted one position to the right. The length of the list is increased by
1, and value is placed at index i in aList.

Text:
APPEND(aList, value)

Block:

APPEND aList, value

The length of aList is increased by 1, and value is placed at
the end of aList.

Text:
REMOVE(aList, i)

Block:

REMOVE aList, i

Removes the item at index i in aList and shifts to the left
any values at indices greater than i. The length of aList is
decreased by 1.

Text:
LENGTH(aList)

Block:
LENGTH aList

Evaluates to the number of elements in aList.

Text:
FOR EACH item IN aList
{
 <block of statements>
}

Block:

FOR EACH item IN aList

block of statements

The variable item is assigned the value of each element of
aList sequentially, in order, from the first element to the last
element. The code in block of statements is executed
once for each assignment of item.

AP Computer Science Principles

© 2023 College Board

Exam Reference V.1 | 4
 Return to Table of Contents

Instruction Explanation
Procedures and Procedure Calls

Text:
PROCEDURE procName(parameter1,

 parameter2, ...)
{
 <block of statements>
}
Block:

PROCEDURE procName

block of statements

parameter1,
parameter2,...

Defines procName as a procedure that takes zero or more
arguments. The procedure contains block of statements.
The procedure procName can be called using the following
notation, where arg1 is assigned to parameter1, arg2 is
assigned to parameter2, etc.:
procName(arg1, arg2, ...)

Text:
PROCEDURE procName(parameter1,

 parameter2, ...)
{
 <block of statements>
 RETURN(expression)
}
Block:

PROCEDURE procName

block of statements

RETURN expression

parameter1,
parameter2,...

Defines procName as a procedure that takes zero or more
arguments. The procedure contains block of statements
and returns the value of expression. The RETURN
statement may appear at any point inside the procedure and
causes an immediate return from the procedure back to the calling
statement.
The value returned by the procedure procName can be assigned
to the variable result using the following notation:
result ← procName(arg1, arg2, ...)

Text:
RETURN(expression)
Block:

RETURN expression

Returns the flow of control to the point where the procedure was
called and returns the value of expression.

Robot

If the robot attempts to move to a square that is not open or is beyond the edge of the grid, the robot will stay in its current location
and the program will terminate.

Text:
MOVE_FORWARD()
Block:

MOVE_FORWARD

The robot moves one square forward in the direction it is facing.

Text:
ROTATE_LEFT()
Block:

ROTATE_LEFT

The robot rotates in place 90 degrees counterclockwise (i.e., makes
an in-place left turn).

AP Computer Science Principles

© 2023 College Board

Exam Reference V.1 | 5
 Return to Table of Contents

Instruction Explanation
Robot

Text:
ROTATE_RIGHT()
Block:

ROTATE_RIGHT

The robot rotates in place 90 degrees clockwise (i.e., makes an in-
place right turn).

Text:
CAN_MOVE(direction)
Block:
CAN_MOVE direction

Evaluates to true if there is an open square one square in the
direction relative to where the robot is facing; otherwise evaluates to
false. The value of direction can be left, right,
forward, or backward.

AP Computer Science Principles

© 2023 College Board

Exam Reference V.1 | 6
 Return to Table of Contents

