
AP
®

 Computer
Science A
Draft Course Framework

Public Comment
June 2023

DRAFT

AP Computer Science A
Curriculum Framework

Verb Definitions
Develop code—Design and write/implement code that would be used to meet a specification.
Determine the result—Analyze code and describe the value or give the value of the outcome of executing this code.
Represent—Use appropriate symbols or words to describe a process or solution to a problem.
Identify—Provide a name for the specific topic, without elaboration or explanation.
Explain—Provide information about how or why a relationship, situation, or outcome occurs, listing detailed steps of the algorithm or using evidence and/or
reasoning.
Compare—Identify similarities and differences in code and the outputs that are produced.
Calculate—Perform mathematical and logical steps to arrive at a final answer.
Describe—Provide the relevant features or characteristics of what the code represents or is being used to accomplish.

Unit 1: Using Objects and Methods

Topic # & Title Learning Objective Essential Knowledge
1.1
Introduction to
Algorithms

1.1.A Represent patterns and algorithms found
in everyday life using written language or
diagrams.

1.1.A.1 Algorithms define step-by-step processes to follow when completing a task
or solving a problem. These algorithms can be represented using written language or
diagrams.
1.1.A.2 Sequencing defines an order for when steps in a process are completed.
Steps in a process are completed one at a time.

1.2
Introduction to
Programming
and Compilers

1.2.A Explain the code compilation and
execution process.

1.2.A.1 Code can be written in any text editor; however, an Integrated Development
Environment (IDE) is often used to write programs because it provides tools for a
programmer to write, compile, and run code.
1.2.A.2 A compiler checks code for some errors. Errors detectable by the compiler
need to be fixed before the program can be run.

1.2.B Identify types of programming errors. 1.2.B.1 A syntax error is a mistake in the program where the rules of the
programming language are not followed. These errors are detected by the compiler.
1.2.B.2 A logic error is a mistake in the algorithm or program that causes it to behave
incorrectly or unexpectedly. These errors are detected by testing the program with
specific data to see if it produces the expected outcome.

DRAFT

1.2.B.3 A run-time error is a mistake in the program that occurs during the execution
of a program. Run-time errors typically cause the program to terminate abnormally.
1.2.B.4 An exception is a type of run-time error that occurs as a result of an
unexpected error that was not detected by the compiler. It interrupts the normal
flow of the program’s execution.

1.3 Variables
and Data Types

1.3.A Identify the most appropriate data type
category for a particular specification.

1.3.A.1 A data type is a set of values and a corresponding set of operations on those
values. Data types can be categorized as either primitive or reference.
1.3.A.2 The primitive data types used in this course define the set of values and
corresponding operations on those values for numbers and Boolean values.
1.3.A.3 A reference type is used to define objects that are not primitive types.

1.3.B Develop code to declare variables to
store numbers and Boolean values.

1.3.B.1 The three primitive data types used in this course are int, double, and
boolean. An int value is an integer. A double value is a real number. A
boolean value is either true or false.
EXCLUSION STATEMENT
The other five primitive data types (long, short, byte, float, and char) are outside the
scope of the AP Computer Science A course and exam.
1.3.B.2 A variable is a storage location that holds a value, which can change while
the program is running. Every variable has a name and an associated data type. A
variable of a primitive type holds a primitive value from that type.

1.4 Expressions
and Output

1.4.A Develop code to generate output and
determine the result that would be displayed.

1.4.A.1 System.out.print and System.out.println display
information on the computer display. System.out.println moves the cursor
to a new line after the information has been displayed, while
System.out.print does not.

1.4.B Develop code to utilize string literals and
determine the result of using string literals.

1.4.B.1 A literal is the source code representation of a fixed value.
1.4.B.2 A string literal is a sequence of characters enclosed in double quotes.
1.4.B.3 Escape sequences start with a \ and have a special meaning in Java. Escape
sequences used in this course include \”, \\, and \n.

1.4.C Develop code for arithmetic expressions
and determine the result of these expressions.

1.4.C.1 Arithmetic expressions include expressions of type int and double.
1.4.C.2 The arithmetic operators consist of addition +, subtraction -,
multiplication *, division /, and remainder %. An arithmetic operation that uses
two int values will evaluate to an int value. An arithmetic operation that uses
a double value will evaluate to a double value.

DRAFT

EXCLUSION STATEMENT
Expressions that result in special double values (e.g., infinities and NaN) are outside
the scope of the AP Computer Science A course and exam.
1.4.C.3 When dividing operands that are both int values, the result is only the
integer portion of the quotient. When dividing operands that use at least one
double value, the result is the quotient.
1.4.C.4 The remainder operator % evaluates to the remainder when a is divided
by b.
EXCLUSION STATEMENT
The use of values less than 0 for a and the use of values less than or equal to 0 for b is
outside the scope of the AP Computer Science A course and exam.
1.4.C.5 Operators can be used to construct compound expressions. At compile time,
operands are associated with operators according to operator precedence to
determine how they are grouped. Parentheses can be used to modify operator
precedence.
1.4.C.6 An attempt to divide an integer by the integer zero will result in an
ArithmeticException.
EXCLUSION STATEMENT
The use of dividing by zero when one operand is a double is outside the scope of
the AP Computer Science A course and exam.

1.5 Assignment
Statements and
Input

1.5.A Develop code for assignment statements
with expressions and determine the value that
is stored in the variable as a result of these
statements.

1.5.A.1 Every variable must be assigned a value before it can be used in an
expression. That value must be from a compatible data type. A variable is initialized
the first time it is assigned a value.
1.5.A.2 The assignment operator = allows a program to initialize or change the
value stored in a variable. The value of the expression on the right is stored in the
variable on the left.
EXCLUSION STATEMENT
The use of assignment operators inside expressions (e.g., a = b = 4; or a[i += 5]) is
outside the scope of the AP Computer Science A course and exam.
1.5.A.3 During execution, an expression is evaluated to produce a single value. The
value of an expression has a type based on the evaluation of the expression.

 1.5.B Develop code to read input. 1.5.B.1 Input can come in a variety of forms, such as tactile, audio, visual, or text.
The Scanner class is one way to obtain text input from the keyboard.

DRAFT

EXCLUSION STATEMENT
Any specific form of input from the user is outside the scope of the AP Computer
Science A course and exam.

1.6 Casting and
Range of
Variables

1.6.A Develop code to cast primitive values to
different primitive types in arithmetic
expressions and determine the value that is
produced as a result.

1.6.A.1 The casting operators (int) and (double) can be used to convert
from a double value to an int value (or vice versa).
1.6.A.2 Casting a double value to an int value causes the digits to the right of
the decimal point to be truncated.
1.6.A.3 Some code causes int values to be automatically cast (widened) to
double values.
1.6.A.4 Values of type double can be rounded to the nearest integer by
(int)(x + 0.5) for non-negative numbers or (int)(x – 0.5) for
negative numbers.

 1.6.B Describe conditions when an integer
expression evaluates to a value out of range.

1.6.B.1 The constant Integer.MAX_VALUE holds the value of the largest
possible int value. The constant Integer.MIN_VALUE holds the value of
the smallest possible int value.
1.6.B.2 Integer values in Java are represented by values of type int, which are
stored using a finite amount (4 bytes) of memory. Therefore, an int value must
be in the range from Integer.MIN_VALUE to Integer.MAX_VALUE
inclusive.
1.6.B.3 If an expression would evaluate to an int value outside of the allowed
range, an integer overflow occurs. The result is an int value in the allowed range,
but not necessarily the value expected.

 1.6.C Describe conditions that limit accuracy of
expressions.

1.6.C.1 Computers allot a specified amount of memory to store data based on the
data type. If an expression would evaluate to a double that is more precise than
can be stored in the allotted amount of memory, a round-off error occurs. The result
will be rounded to the representable value. To avoid rounding errors that naturally
occur, use int values.
EXCLUSION STATEMENT
Other special decimal data types that can be used to avoid rounding errors are
outside the scope of the AP Computer Science A course and exam.

1.7 Compound
Assignment
Operators

1.7.A Develop code for assignment statements
with compound assignment operators and
determine the value that is stored in the
variable as a result.

1.7.A.1 Compound assignment operators +=, -=, *=, /=, %= can be used in
place of the assignment operator in numeric expressions. A compound assignment
operator performs the indicated arithmetic operation between the value on the left
and the value on the right and then assigns the result to the variable on the left.

DRAFT

1.7.A.2 The post-increment operator ++ and post-decrement operator -- are
used to add 1 or subtract 1 from the stored value of a numeric variable. The new
value is assigned to the variable.
EXCLUSION STATEMENT
The use of increment and decrement operators in prefix form (i.e., ++x) is outside
the scope of this course and AP Exam. The use of increment and decrement operators
inside other expressions (i.e., arr[x++]) is outside the scope of the AP Computer
Science A course and exam.

1.8 Application
Program
Interface (API)
and Libraries

1.8.A Identify the attributes and behaviors of a
class found in the libraries contained in an API.

1.8.A.1 Libraries are collections of classes. An Application Programming Interface
(API) specification informs the programmer how to use those classes.
Documentation found in API specifications and libraries is essential to understanding
the attributes and behaviors of a class defined by the API. A class defines a specific
reference type. Classes in the APIs and libraries are grouped into packages.
1.8.A.2 Attributes refer to the data related to the class and are stored in variables.
Behaviors refer to what instances of the class can do (or what can be done with it)
and are defined by methods.

1.9
Documentation
with Comments

1.9.A Describe the functionality and use of
code through comments.

1.9.A.1 Comments are written for other programmers to understand the code and
its functionality, but are ignored by the compiler and are not executed when the
program is run.
Three types of comments in Java include /* */, which generates a block of
comments, //, which generates a comment on one line, and /** */, which are
Javadoc comments and are used to create API documentation.
1.9.A.2 A precondition is a condition that must be true just prior to the execution of
a method in order for it to behave as expected. There is no expectation that the
method will check to ensure preconditions are satisfied.
1.9.A.3 A postcondition is a condition that must always be true after the execution of
a method. Postconditions describe the outcome of the execution in terms of what is
being returned or the current value of the attributes of an object.

1.10 Method
Signatures

1.10.A Identify the correct method to call
based on documentation and method
signatures.

1.10.A.1 Procedural abstraction allows a programmer to use a method by knowing
what the method does even if they do not know how the method was written.
1.10.A.2 A parameter is a variable declared in the header of a method or constructor
and can be used inside the body of the method. This allows values or arguments to
be passed and used by a method or constructor. A method signature for a method
without parameters consists of the method name and an empty parameter list. A

DRAFT

method signature for a method with parameters consists of the method name and
the ordered list of parameter types.

 1.10.B Describe how to call methods. 1.10.B.1 A void method does not have a return value and is therefore not called as
part of an expression.
1.10.B.2 A non-void method returns a value that is the same type as the return type
in the header. To use the return value when calling a non-void method, it must be
stored in a variable or used as part of an expression.
1.10.B.3 An argument is a value that is passed into a method when the method is
called. The arguments passed to a method must be compatible in number and order
with the types identified in the parameter list of the method signature. When calling
methods, arguments are passed using call by value. Call by value initializes the
parameters with copies of the arguments.
1.10.B.4 Methods are said to be overloaded when there are multiple methods with
the same name but different signatures.
1.10.B.5 A method call interrupts the sequential execution of statements, causing
the program to first execute the statements in the method before continuing. Once
the last statement in the method has been executed or a return statement is
executed, the flow of control is returned to the point immediately following where
the method was called.

1.11 Calling
Class Methods

1.11.A Develop code to call class methods. 1.11.A.1 Class methods are associated with the class, not instances of the class. Class
methods include the keyword static in the header before the method name.
1.11.A.2 Class methods are typically called using the dot operator along with the
class name. When the method call occurs in the defining class, the use of the class
name is optional in the call.

1.12 Math Class 1.12.A Develop code to write expressions that
incorporate calls to built-in mathematical
libraries and determine the value that is
produced as a result.

1.12.A.1 The Math class is part of the java.lang package. Classes in the
java.lang package are available by default.
1.12.A.2 The Math class contains only class methods. The following class Math
methods—including what they do and when they are used—are part of the AP Java
Quick Reference:
• static int abs(int x) returns the absolute value of an int value
• static double abs(double x) returns the absolute value of a double

value
• static double pow(double base, double exponent) returns

the value of the first parameter raised to the power of the second parameter

DRAFT

• static double sqrt(double x) returns the positive square root of a
double value

• static double random() returns a double value greater than or
equal to 0.0 and less than 1.0

1.12.A.3 The values returned from Math.random() can be manipulated using
arithmetic and casting operators to produce a random int or double in a
defined range based on specified criteria. For example, a random even int
between 10 and 50 or a random double between 2.0 inclusive and 5.0
exclusive.

1.13 Objects:
Instances of
Classes

1.13.A Explain the relationship between a class
and an object.

1.13.A.1 An object is a specific instance of a class with defined attributes. A class is
the formal implementation, or blueprint, of the attributes and behaviors of an
object.

 1.13.B Develop code to declare variables to
store reference types.

1.13.B.1 A variable of a reference type holds an object reference, which can be
thought of as the memory address of that object.

1.14 Object
Creation and
Storage
(Instantiation)

1.14.A Identify, using its signature, the correct
constructor being called.

1.14.A.1 A class contains constructors that are called to create objects. They have
the same name as the class.
1.14.A.2 A constructor signature consists of the constructor’s name and the ordered
list of parameter types. The parameter list, in the header of a constructor, lists the
types of the values that are passed and their variable names.
1.14.A.3 Constructors are said to be overloaded when there are multiple
constructors with different signatures.

 1.14.B Develop code to declare variables of the
correct types to hold object references.

1.14.B.1 The literal null is a special value used to indicate that a reference is not
associated with any object. A variable of a reference type holds an object reference
or, if there is no object, null.

 1.14.C Develop code to create an object by
calling a constructor.

1.14.C.1 An object is typically created using the keyword new followed by a call to
one of the class’s constructors.
1.14.C.2 Parameters allow constructors to accept values to establish the initial
values of the attributes of the object.
1.14.C.3 A constructor argument is a value that is passed into a constructor when the
constructor is called. The arguments passed to a constructor must be compatible in
order and number with the types identified in the parameter list in the constructor
signature. When calling constructors, arguments are passed using call by value. Call
by value initializes the parameters with copies of the arguments.

DRAFT

1.14.C.4 A constructor call interrupts the sequential execution of statements,
causing the program to first execute the statements in the constructor before
continuing. Once the last statement in the constructor has been executed, the flow
of control is returned to the point immediately following where the constructor was
called.

1.15 Calling
Instance
Methods

1.15.A Develop code to call methods and
determine the result of these calls.

1.15.A.1 Instance methods are called on objects of the class. The dot operator is
used along with the object name to call instance methods.
1.15.A.2 A method call on a null reference will result in a
NullPointerException.

1.16 String
Manipulation

1.16.A Develop code to create string objects
and determine the result of creating and
combining strings.

1.16.A.1 A String object represents a sequence of characters and can be created
by using a string literal.
1.16.A.2 The String class is part of the java.lang package. Classes in the
java.lang package are available by default.
1.16.A.3 A String object is immutable, meaning once a String object is
created, its attributes cannot be changed. Methods called on a String object do
not change the content of the String object.
1.16.A.4 Two String objects can be concatenated together or combined using
the + or += operator, resulting in a new String object. A primitive value can
be concatenated with a String object. This causes the implicit conversion of the
primitive value to a String object.
1.16.A.5 A String object can be concatenated with any object, which implicitly
calls the object’s toString method. An object’s toString method returns a
string value representing the object.
EXCLUSION STATEMENT
Overriding the toString method is outside the scope of the AP Computer Science
A course and exam.

1.16.B Develop code to call methods on string
objects and determine the result of calling
these methods.

1.16.B.1 A String object has index values from 0 to one less than the length of
the string. Attempting to access indices outside this range will result in an
IndexOutOfBoundsException.
1.16.B.2 The following String methods—including what they do and when they
are used—are part of the AP Java Quick Reference:
• int length()returns the number of characters in a String object
• String substring(int from, int to)returns the substring beginning

at index from and ending at index to – 1

DRAFT

• String substring(int from) returns substring(from,
length())

• int indexOf(String str) returns the index of the first occurrence of
str; returns -1 if not found

• boolean equals(String other) returns true if this corresponds
to the same sequence of characters as other; returns false otherwise

• int compareTo(String other) returns a value < 0 if this is less than
other; returns zero if this is equal to other; returns a value > 0 if this
is greater than other. Strings are ordered based upon the alphabet.

1.16.B.3 A string identical to the single element substring at position index can
be created by calling substring(index, index + 1).

DRAFT

Unit 2: Selection and Iteration

Topic # & Title Learning Objective Essential Knowledge
2.1 Algorithms
with Selection
and Repetition

2.1.A Represent patterns and algorithms that
involve selection and repetition found in
everyday life using written language or
diagrams.

 2.1.A.1 Algorithms can contain selection, through decision-making, and repetition,
via looping.
2.1.A.2 The building blocks of algorithms include sequencing, selection, and
repetition.
2.1.A.3 Selection occurs when a choice of how the execution of an algorithm will
proceed is based on a true or false decision.
2.1.A.4 Repetition is when a process repeats itself until a desired outcome is
reached.
2.1.A.5 The order in which sequencing, selection, and repetition are used
contributes to the outcome of the algorithm.

2.2 Boolean
Expressions

2.2.A Develop code to create Boolean
expressions with relational operators and
determine the result of these expressions.

2.2.A.1 Values can be compared using the relational operators == and != to
determine whether the values are the same. With primitive types, this compares the
actual primitive values. With reference types, this compares the object references.
2.2.A.2 Numeric values can be compared using the relational operators <, >, <=,
and >= to determine the relationship between the values.
2.2.A.3 An expression involving relational operators evaluates to a Boolean value.

2.3 if
Statements

2.3.A Develop code to represent branching
logical processes by using selection statements
and determine the result of these processes.

2.3.A.1 Selection statements change the sequential execution of statements.
2.3.A.2 An if statement is a type of selection statement that affects the flow of
control by executing different segments of code based on the value of a Boolean
expression.
2.3.A.3 A one-way selection (if statement) is written when there is a segment of
code to execute under a certain condition. In this case, the body is executed only
when the Boolean expression is true.
2.3.A.4 A two-way selection (if-else statement) is written when there are two
segments of code—one to be executed when the Boolean expression is true, and
another segment for when the Boolean expression is false. In this case, the body
of the if is executed when the Boolean expression is true, and the body of the
else is executed when the Boolean expression is false.

2.4 Nested if
Statements

2.4.A Develop code to represent nested
branching logical processes and determine the
result of these processes.

2.4.A.1 Nested if statements consist of if statements within if or if-
else statements.

DRAFT

2.4.A.2 The Boolean expression of the inner nested if statement is evaluated only
if the Boolean expression of the outer if statement evaluates to true.
2.4.A.3 A multi-way selection (if-else-if) is written when there are a series of
expressions with different segments of code for each condition. Multi-way selection
is performed such that no more than one segment of code is executed based on the
first expression that evaluates to true. If no expression evaluates to true and
there is a trailing else statement, then the body of the else is executed.

2.5 Compound
Boolean
Expressions

2.5.A Develop code to represent compound
Boolean expressions and determine the result
of these expressions.

2.5.A.1 Logical operators ! (not), && (and), and || (or) are used with Boolean
values. The order of precedence for evaluating logical operators is ! (not), &&
(and), then || (or). An expression involving logical operators evaluates to a
Boolean value.
2.5.A.2 Short-circuit evaluation occurs when the result of a logical operation using
&& or || can be determined by evaluating only the first Boolean operand, the
second is not evaluated.

2.6 Comparing
Boolean
Expressions

2.6.A Compare equivalent Boolean
expressions.

2.6.A.1 Two Boolean expressions are equivalent if they evaluate to the same value in
all cases. Truth tables can be used to prove Boolean expressions are equivalent.
2.6.A.2 De Morgan’s Law can be applied to Boolean expressions to create equivalent
Boolean expressions. Under De Morgan’s Law, the Boolean expression !(a && b)
is equivalent to !a || !b and the Boolean expression !(a || b) is
equivalent to !a && !b.

 2.6.B Develop code to compare object
references using Boolean expressions and
determine the result of these expressions.

2.6.B.1 Two different variables can hold references to the same object. Object
references can be compared, using == and !=.
2.6.B.2 A object reference can be compared with null, using == or !=, to
determine if the reference actually references an object.
2.6.B.3 Often classes define their own equals method, which can be used to
specify the criteria for equivalency for two objects of the class. The equivalency of
two objects is most often determined using attributes from the two objects.
EXCLUSION STATEMENT
Overriding the equals method is outside the scope of the AP Computer Science A
course and exam.

2.7 while
Loops

2.7.A Identify when an iterative process is
required to achieve a desired result.

2.7.A.1 Iteration is a form of repetition. Iteration statements change the flow of
control by repeating a segment of code zero or more times as long as the Boolean
expression controlling the loop evaluates to true.

DRAFT

2.7.A.2 An iteration statement can cause infinite repetition when the Boolean
expression always evaluates to true.
2.7.A.3 An iteration statement that evaluates the condition before the loop body will
not execute the loop at all if the Boolean expression initially evaluates to false.
2.7.A.4 Executing a return statement inside an iteration statement will halt the
iteration and exit the method or constructor.
2.7.A.5 “Off by one” errors occur when the iteration statement loops one time too
many or one time too few.

 2.7.B Develop code to represent iterative
processes using while loops and determine
the result of these processes.

2.7.B.1 A while loop is a type of iterative statement. In while loops, the
Boolean expression is evaluated before each iteration of the loop body, including the
first. When the expression evaluates to true, the loop body is executed. This
continues until the Boolean expression evaluates to false, whereupon the
iteration terminates.

2.8 for Loops 2.8.A Develop code to represent iterative
processes using for loops and determine
the result of these processes.

2.8.A.1 A for loop is a type of iterative statement. There are three parts in a for
loop header—the initialization, the Boolean expression, and the update.
2.8.A.2 In a for loop, the initialization statement is only executed once before the
first Boolean expression evaluation. The variable being initialized is referred to as a
loop control variable. The Boolean expression is evaluated immediately after the
loop control variable is initialized and then followed by each execution of the
increment statement until it is false. In each iteration, the update is executed
after the entire loop body is executed and before the Boolean expression is
evaluated again.
2.8.A.3 A for loop can be rewritten into an equivalent while loop (and vice
versa).

2.9
Implementing
Selection and
Iteration
Algorithms

2.9.A Develop code for standard and original
algorithms (without data structures) and
determine the result of these algorithms.

2.9.A.1 There are standard algorithms to
• identify if an integer is or is not evenly divisible by another integer
• identify the individual digits in an integer
• determine the frequency with which a specific criterion is met
• determine a minimum or maximum value
• compute a sum or average

2.10
Implementing
String
Algorithms

2.10.A Develop code for standard and original
algorithms that involve strings and determine
the result of these algorithms.

2.10.A.1 There are standard string algorithms to
• find if one or more substrings have a particular property
• determine the number of substrings that meet specific criteria
• create a new string with the characters reversed

DRAFT

2.11 Nested
Iteration

2.11.A Develop code to represent nested
iterative processes and determine the result of
these processes.

2.11.A.1 Nested iteration statements are iteration statements that appear in the
body of another iteration statement. When a loop is nested inside another loop, the
inner loop must complete all its iterations before the outer loop can continue to its
next iteration.

2.12 Informal
Run-Time
Analysis

2.12.A Calculate statement execution counts
and informal run-time comparison of iterative
statements.

2.12.A.1 A statement execution count indicates the number of times a statement is
executed by the program. Statement execution counts are often calculated
informally through tracing and analysis of the iterative statements.

DRAFT

Unit 3: Class Creation
Topic # & Title Learning Objective Essential Knowledge
3.1 Abstraction
and Program
Design

3.1.A Represent the design of a program by
creating diagrams that indicate the classes in
the program and the data and procedural
abstractions found in each class by including
all attributes and behaviors.

3.1.A.1 Abstraction is the process of reducing complexity by focusing on the main
idea. By hiding details irrelevant to the question at hand and bringing together
related and useful details, abstraction reduces complexity and allows one to focus
on the idea.
3.1.A.2 Data abstraction provides a separation between the abstract properties of
a data type and the concrete details of its representation. Data abstraction
manages complexity by giving data a name without referencing the specific details
of the representation. Data can take the form of a single variable or a collection of
data, such as in a class or a set of data.
3.1.A.3 An attribute is a type of data abstraction that is defined in a class outside
any method or constructor. An instance variable is an attribute whose value is
unique to each instance of the class. A class variable is an attribute shared by all
instances of the class.
3.1.A.4 Procedural abstraction provides a name for a process and allows a method
to be used only knowing what it does, not how it does it. Through method
decomposition, a programmer breaks down larger behaviors of the class into
smaller behaviors by creating methods to represent each individual smaller
behavior. A procedural abstraction may extract shared features to generalize
functionality instead of duplicating code. This allows for code reuse, which helps
manage complexity.
3.1.A.5 Using parameters allows procedures to be generalized, enabling the
procedures to be reused with a range of input values or arguments.
3.1.A.6 Using procedural abstraction in a program allows programmers to change
the internals of a method (to make it faster, more efficient, use less storage, etc.)
without needing to notify users of the method of the change as long as the method
signature and what the method does is preserved.
3.1.A.7 Prior to implementing a class, it is helpful to take time to design each class
including its attributes and behaviors. This design can be represented using natural
language or diagrams.

3.2 Impact of
Program Design

3.2.A Explain the social and ethical
implications of computing systems.

3.2.A.1 System reliability refers to the program being able to perform its tasks as
expected under stated conditions without failure. Programmers should make an

DRAFT

effort to maximize system reliability by testing the program with a variety of
conditions.
3.2.A.2 The creation of programs has impacts on society, economies, and culture.
These impacts can be both beneficial and harmful. Programs meant to fill a need or
solve a problem can have unintended harmful effects beyond their intended use.
3.2.A.3 Legal issues and intellectual property concerns arise when creating
programs. Programmers often reuse code written by others and published as open
source and free to use. Incorporation of code that is not published as open source
requires the programmer to obtain permission and often purchase the code before
integrating it into their program.

3.3 Anatomy of a
Class

3.3.A Develop code to designate access and
visibility constraints to classes, data,
constructors, and methods.

3.3.A.1 A block of code is any section of code that is enclosed in braces. Some examples
of blocks of code are a class, method, or body of a loop or iterative statement.
3.3.A.2 Data encapsulation is a technique in which the implementation details of a
class are kept hidden from external classes. The keywords public and
private affect the access of classes, data, constructors, and methods. The
keyword private restricts access to the declaring class, while the keyword
public allows access from classes outside the declaring class.
3.3.A.3 In this course, classes are always designated public.
3.3.A.4 In this course, constructors are always designated public.
3.3.A.5 Instance variables belong to the object, and each object has its own copy of
the variable.
3.3.A.6 Access to attributes should be kept internal to the class in order to
accomplish encapsulation. Therefore, it is good programming practice to designate
the instance variables for these attributes as private unless the class
specification states otherwise.
3.3.A.7 Access to behaviors can be internal or external to the class. Therefore,
methods can be designated as either public or private.

3.4 Constructors 3.4.A Develop code to declare instance
variables for the attributes to be initialized in
the body of the constructors of a class.

3.4.A.1 An object’s state refers to its attributes and their values at a given time and
is defined by instance variables belonging to the object. This defines a “has-a”
relationship between the object and its instance variables.
3.4.A.2 A constructor is used to set the initial state of an object, which should
include initial values for all instance variables. When a constructor is called,
memory is allocated for the object and the associated object reference is returned.
Constructor parameters provide data to initialize instance variables.

DRAFT

3.4.A.3 When a mutable object is a constructor parameter, the instance variable
should be initialized with a copy of the referenced object. In this way, the instance
variable does not hold a reference to the original object, and methods are
prevented from modifying the state of the original object.
3.4.A.4 When no constructor is written, Java provides a no-parameter constructor,
and the instance variables are set to default values according to the data type of
the attribute. This constructor is called the default constructor.
3.4.A.5 The default value for an attribute of type int is 0. The default value of
an attribute of type double is 0.0. The default value of an attribute of type
boolean is false. The default value of a reference type is null.

3.5 Methods:
How to Write
Them

3.5.A Develop code to define behaviors of an
object through methods written in a class
using primitive values and determine the
result of calling these methods.

3.5.A.1 A void method does not return a value. Its header contains the keyword
void before the method name.
3.5.A.2 A non-void method returns a single value. Its header includes the return
type in place of the keyword void.
3.5.A.3 In non-void methods, a return expression compatible with the return type is
evaluated, and the value is returned. This is referred to as “return by value.”
3.5.A.4 The return keyword is used to return the flow of control to the point
where the method or constructor was called. Any code that is sequentially after a
return statement will never be executed.
3.5.A.5 An accessor method allows objects of other classes to obtain a copy of the
value of instance variables or class variables.
3.5.A.6 A mutator (modifier) method is a method that changes the values of the
instance variables or class variables. A mutator method is often a void method.
3.5.A.7 Methods with parameters receive values through those parameters and use
those values in accomplishing the method's task.
3.5.A.8 When an argument is a primitive value, the parameter is initialized with a
copy of that value. Changes to the parameter have no effect on the corresponding
argument.

3.6 Methods:
Passing and
Returning
References of an
Object

3.6.A Develop code to define behaviors of an
object through methods written in a class
using object references and determine the
result of calling these methods.

3.6.A.1 When an argument is an object reference, the parameter is initialized with
a copy of that reference; it does not create a new independent copy of the object.
If the parameter refers to a mutable object, the method or constructor can use this
reference to alter the state of the object. It is good programming practice to not
modify mutable objects that are passed as parameters unless required in the
specification.

DRAFT

3.6.A.2 When the return expression evaluates to an object reference, the reference
is returned, not a reference to a new copy of the object.
3.6.A.3 Methods cannot access the private data and methods of a parameter that
holds a reference to an object unless the parameter is the same type as the
method’s enclosing class.

3.7 Class
Variables and
Methods

3.7.A Develop code to define behaviors of a
class through class methods.

3.7.A.1 Class methods cannot access or change the values of instance variables or
call instance methods without being passed an instance of the class via a
parameter.
3.7.A.2 Class methods can access or change the values of class variables and can
call other class methods.

 3.7.B Develop code to declare the class
variables that belong to the class.

3.7.B.1 Class variables belong to the class, with all objects of a class sharing a single
copy of the class variable. Class variables are designated with the static
keyword before the variable type.
3.7.B.2 Class variables that are designated public are accessed outside of the
class by using the class name and the dot operator, since they are associated with a
class, not objects of a class.
3.7.B.3 When a variable is declared final, its value is not modifiable.

3.8 Scope and
Access

3.8.A Explain where variables can be used in
the code.

3.8.A.1 Local variables are variables declared in the headers or bodies of blocks of
code. Local variables can only be accessed in the block in which they are declared.
Since constructors and methods are blocks of code, parameters to constructor or
method are also considered local variables. These variables may only be used
within the constructor or method and cannot be declared to be public or
private.
3.8.A.2 When there is a local variable or parameter with the same name as an
instance variable, the variable name will refer to the local variable instead of the
instance variable within the body of the constructor or method.

3.9 this
Keyword

3.9.A Develop code for expressions that are
self-referencing and determine the result of
these expressions.

3.9.A.1 Within an instance method or a constructor, the keyword this acts as a
special variable that holds a reference to the current object—the object whose
method or constructor is being called.
3.9.A.2 The keyword this can be used to pass the current object as an argument
in a method call.
3.9.A.3 Class methods do not have a this reference.

DRAFT

Unit 4: Data Collections
Topic # & Title Learning Objective Essential Knowledge
4.1 Ethical and
Social Issues
Around Data
Collection

4.1.A Explain the risks to privacy from
collecting and storing personal data on
computer systems.

4.1.A.1 When using a computer, personal privacy is at risk. When developing new
programs, programmers should attempt to safeguard personal privacy of the user.
One way to keep personal data secure is to ensure that attributes are encapsulated.

4.1.B Explain the importance of recognizing
data quality and potential issues when using a
data set.

4.1.B.1 Algorithmic bias describes systemic and repeated errors in a program that
create unfair outcomes for a specific group of users.
4.1.B.2 Programmers should be aware of the data set collection method and the
potential for bias when using this method before using the data to extrapolate new
information or drawing conclusions.
4.1.B.3 Some data sets are incomplete or contain inaccurate data. Using such data in
the development or use of a program can cause the program to work incorrectly or
inefficiently.

4.1.C Identify an appropriate data set to use in
order to solve a problem or answer a specific
question.

4.1.C.1 Contents of a data set might be related to a specific question or topic and
might not be appropriate to give correct answers or extrapolate information for a
different question or topic.

4.2
Introduction to
Using Data Sets

4.2.A Represent patterns and algorithms that
involve data sets found in everyday life using
written language or diagrams.

4.2.A.1 Data sets are a collection of specific pieces of information or data.
4.2.A.2 Data sets can be manipulated and analyzed to solve a problem or answer a
question. When analyzing data sets, values within the set are accessed and utilized
one at a time and then processed according to the desired outcome.
4.2.A.3 Data can be represented in a diagram by using a chart or table. This visual
can be used to plan the algorithm that will be used to manipulate the data.

4.3 Array
Creation and
Access

4.3.A Develop code used to represent
collections of related data using one-
dimensional (1D) array objects.

4.3.A.1 An array stores multiple values of the same type. The values can be either
primitive values or object references.
4.3.A.2 The length of an array is established at the time of creation and cannot be
changed. The length of an array can be accessed through the length attribute.
4.3.A.3 When an array is created using the keyword new, all of its elements are
initialized to the default values for the element data type. The default value for int
is 0; double is 0.0; boolean is false; and for a reference type is null.
4.3.A.4 Initializer lists can be used to create and initialize arrays. For example,
int[] arr = {1,2,3};

DRAFT

4.3.A.5 Square brackets [] are used to access and modify an element in a 1D array
using an index.
4.3.A.6 The valid index values for an array are 0 through one less than the length of
the array, inclusive. Using an index value outside of this range will result in an
ArrayIndexOutOfBoundsException.

4.4 Array
Traversals

4.4.A Develop code used to traverse the
elements in a 1D array and determine the
result of these traversals.

4.4.A.1 Traversing an array is when repetition statements are used to access all or
an ordered sequence of elements in an array.
4.4.A.2 Traversing an array with an indexed for loop or while loop requires
elements to be accessed using their indices.
4.4.A.3 An enhanced for loop header includes a variable, referred to as the
enhanced for loop variable. For each iteration of the enhanced for loop, the
enhanced for loop variable is assigned a copy of an element without using its
index.
4.4.A.4 Assigning a new value to the enhanced for loop variable does not change
the value stored in the array.
4.4.A.5 When an array stores object references, the attributes can be modified by
calling methods on the enhanced for loop variable. This does not change the
object references stored in the array.
4.4.A.6 Code written using an enhanced for loop to traverse elements in an array
can be rewritten using an indexed for loop or a while loop.

4.5
Implementing
Array
Algorithms

4.5.A Develop code for standard and original
algorithms for a particular context or
specification that involve arrays and determine
the result of these algorithms.

4.5.A.1 There are standard algorithms that utilize array traversals to
• determine a minimum or maximum value
• compute a sum or average
• determine if at least one element has a particular property
• determine if all elements have a particular property
• determine the number of elements having a particular property
• access all consecutive pairs of elements
• determine the presence or absence of duplicate elements
• shift or rotate elements left or right
• reverse the order of the elements

DRAFT

4.6 Using Text
Files

4.6.A Develop code to read data from a text
file.

4.6.A.1 A file is storage for data that persists when the program is not running. The
data in a file can be retrieved during program execution.
4.6.A.2 A file can be connected to the program using the File and Scanner
classes.
4.6.A.3 A file can be opened by creating a File object, using the name of the file
as the argument of the constructor.
• File(String str) the File constructor that accepts a String file

name to open for reading.
4.6.A.4 When using the File class, it is required to validate the file name being
used. One way to accomplish this is to add throws IOException to the
header of the method that uses the file. If the file name is invalid, the program will
terminate.
4.6.A.5 The File and IOException classes are part of the java.io
package. An import statement must be used to make these classes available for
use in the program.
4.6.A.6 The following Scanner methods and constructor are used to create
Scanner objects and read from a file:
• Scanner(File f) the Scanner constructor that accepts a File for

reading
• int nextInt() returns the next int read from the file or input source if

available. If the next int does not exist, it will result in an
InputMismatchException

• double nextDouble() returns the next double read from the file or
input source

• boolean nextBoolean() returns the next Boolean read from the file or
input source

• String nextLine() returns the next line of text as a String read from
the file or input source; returns the empty string if called immediately after
another Scanner method that is reading from the file or input source

• String next() returns the next String read from the file or input source
• boolean hasNext() returns true if there is a next item to read in the file

or input source; false otherwise
• void close() closes this scanner

DRAFT

EXCLUSION STATEMENT
Accepting input from the keyboard is outside the scope of the AP Computer Science A
course and exam.
4.6.A.7 The following additional String methods—including what they do and
when they are used—are part of the AP Java Quick Reference:
• String[] split(String del) returns a String array where each

element is a substring of this String which has been split around matches
of the given expression del

4.6.A.8 A while loop can be used to detect if the file still contains elements to
read by using the hasNext method as the condition of the loop.
4.6.A.9 A file should be closed when the program is finished using it. The close
method from Scanner is called to close the file.

4.7 Wrapper
Classes

4.7.A Develop code to use Integer and
Double objects from their primitive
counterparts and determine the result of using
these objects.

4.7.A.1 The Integer class and Double class are part of the java.lang
package. An Integer object is immutable, meaning once an Integer object is
created, its attributes cannot be changed. A Double object is immutable,
meaning once a Double object is created, its attributes cannot be changed.
4.7.A.2 Autoboxing is the automatic conversion that the Java compiler makes
between primitive types and their corresponding object wrapper classes. This
includes converting an int to an Integer and a double to a Double. The
Java compiler applies autoboxing when a primitive value is
• passed as a parameter to a method that expects an object of the corresponding

wrapper class
• assigned to a variable of the corresponding wrapper class
4.7.A.3 Unboxing is the automatic conversion that the Java compiler makes from the
wrapper class to the primitive type. This includes converting an Integer to an
int and a Double to a double. The Java compiler applies unboxing when a
wrapper class object is
• passed as a parameter to a method that expects a value of the corresponding

primitive type
• assigned to a variable of the corresponding primitive type
4.7.A.4 The following class Integer method—including what it does and when it
is used—are part of the AP Java Quick Reference:
• static Integer parseInt(String s)returns the String argument

as a signed Integer

DRAFT

4.7.A.5 The following class Double method—including what it does and when it is
used—are part of the AP Java Quick Reference:
• static Double parseDouble(String s)returns the String

argument as a signed Double
4.8
ArrayList
Methods

4.8.A Develop code for collections of related
objects using ArrayList objects and the
result of calling methods on these objects.

4.8.A.1 An ArrayList object is mutable in size and contains object references.
4.8.A.2 The ArrayList constructor ArrayList() constructs an empty list.
4.8.A.3 Java allows the generic type ArrayList<E>, where the type parameter
E specifies the type of the elements. When ArrayList<E> is specified, the
types of the reference parameters and return type when using the ArrayList
methods are type E. ArrayList<E> is preferred over ArrayList. For
example, ArrayList<String> names = new ArrayList<String>();
allows the compiler to find errors that would otherwise be found at run-time.
4.8.A.4 The ArrayList class is part of the java.util package. An import
statement can be used to make this class available for use in the program.
4.8.A.5 The following ArrayList methods—including what they do and when
they are used—are part of the AP Java Quick Reference:
• int size() returns the number of elements in the list
• boolean add(E obj) appends obj to end of list; returns true
• void add(int index, E obj) inserts obj at position index (0 <=

index <= size), moving elements at position index and higher to the
right (adds 1 to their indices) and adds 1 to size

• E get(int index) returns the element at position index in the list
• E set(int index, E obj) replaces the element at position index

with obj; returns the element formerly at position index
• E remove(int index) removes element from position index, moving

elements at position index + 1 and higher to the left (subtracts 1 from their
indices) and subtracts 1 from size; returns the element formerly at position
index)

4.8.A.6 The indices for an ArrayList start at 0 and end at the number of
elements - 1.

4.9
ArrayList
Traversals

4.9.A Develop code used to traverse the
 elements of an ArrayList and determine

the results of these traversals.

4.9.A.1 Traversing an ArrayList is when iteration or recursive statements are
used to access all or an ordered sequence of the elements in an ArrayList.

DRAFT

4.9.A.2 Deleting elements during a traversal of an ArrayList requires the use of
special techniques to avoid skipping elements.
4.9.A.3 Attempting to access an index value outside of its range will result in an
IndexOutOfBoundsException.
4.9.A.4 Changing the size of an ArrayList while traversing it using an enhanced
for loop can result in a ConcurrentModifcationException. Therefore,
when using an enhanced for loop to traverse an ArrayList, you should not
add or remove elements.

4.10
Implementing
ArrayList
Algorithms

4.10.A Develop code for standard and original
algorithms for a particular context or
specification that involve ArrayList
objects and determine the result of these
algorithms.

4.10.A.1 There are standard ArrayList algorithms that utilize traversals to
• determine a minimum or maximum value
• compute a sum or average
• determine if at least one element has a particular property
• determine if all elements have a particular property
• determine the number of elements having a particular property
• access all consecutive pairs of elements
• determine the presence or absence of duplicate elements
• shift or rotate elements left or right
• reverse the order of the elements
• insert elements
• delete elements
4.10.A.2 Some algorithms require multiple String, array, or ArrayList
objects to be traversed simultaneously.

4.11 2D Array
Creation and
Access

4.11.A Develop code used to represent
collections of related data using two-
dimensional (2D) array objects.

4.11.A.1 A 2D array is stored as an array of arrays. Therefore, the way 2D arrays are
created and indexed is similar to 1D array objects. The size of a 2D array is
established at the time of creation and cannot be changed. 2D arrays can store
either primitive data or object reference data.
EXCLUSION STATEMENT
Non-rectangular 2D array objects are outside the scope of the AP Computer Science A
course and exam.
4.11.A.2 When a 2D array is created using the keyword new, all of its elements are
initialized to the default values for the element data type. The default value for int
is 0; double is 0.0; boolean is false; and for a reference type is null.

DRAFT

4.11.A.3 The initializer list used to create and initialize a 2D array consists of
initializer lists that represent 1D arrays. For example, int[][] arr2D = {
{1, 2, 3}, {4, 5, 6} };.
4.11.A.4 The square brackets [row][col] are used to access and modify an
element in a 2D array. For the purposes of the exam, when accessing the element at
arr[first][second], the first index is used for rows, the second index is used
for columns.
4.11.A.5 A single array that is a row of a 2D array can be accessed using the 2D array
name and a single set of square brackets containing the row index.
4.11.A.6 The number of rows contained in a 2D array can be accessed through the
length attribute. The valid row index values for a 2D array are 0 through one less
than the number of rows or the length of the array, inclusive. The number of
columns contained in a 2D array can be accessed through the length attribute of
one of the rows. The valid column index values for a 2D array are 0 through one less
than the number of columns or the length of any given row of the array, inclusive.
For example, given a 2D array named values, the number of rows is
values.length and the number of columns is values[0].length. Using
an index value outside of these ranges will result in an
ArrayIndexOutOfBoundsException.

4.12 2D Array
Traversals

4.12.A Develop code used to traverse the
elements in a 2D array and determine the
result of these traversals.

4.12.A.1 Nested iteration statements are used to traverse and access all or an
ordered sequence of elements in a 2D array. Since 2D arrays are stored as arrays of
arrays, the way 2D arrays are traversed using for loops and enhanced for
loops is similar to 1D array objects. Nested iteration statements can be written to
traverse the 2D array in “row-major order,” “column-major order,” or a uniquely
defined order. “Row-major order” refers to an ordering of 2D array elements where
traversal occurs across each row, where as “column-major order” traversal occurs
down each column.
4.12.A.2 The outer loop of a nested enhanced for loop used to traverse a 2D array
traverses the rows. Therefore, the enhanced for loop variable must be the type of
each row, which is a 1D array. The inner loop traverses a single row. Therefore, the
inner enhanced for loop variable must be the same type as the elements stored
in the 1D array. Assigning a new value to the enhanced for loop variable does not
change the value stored in the array.

DRAFT

4.13
Implementing
2D Array
Algorithms

4.13.A Develop code for standard and original
algorithms for a particular context or
specification that involve 2D arrays and
determine the result of these algorithms.

4.13.A.1 There are standard algorithms that utilize 2D array traversals to
• determine a minimum or maximum value of all the elements or for a designated

row, column, or other sub-section
• compute a sum or average of all the elements or for a designated row, column, or

other sub-section
• determine if at least one element has a particular property in the entire 2D array

or for a designated row, column, or other sub-section
• determine if all elements of the 2D array or a designated row, column, or other

sub-section have a particular property
• determine the number of elements in the 2D array or in a designated row,

column, or other sub-section having a particular property
• access all consecutive pairs of elements
• determine the presence or absence of duplicate elements in the 2D array or in a

designated row, column, or other sub-section
• shift or rotate elements in a row left or right or in a column up or down
• reverse the order of the elements in a row or column

4.14 Searching
Algorithms

4.14.A Develop code used for linear search
algorithms to search for specific information in
a collection and determine the results of
executing a search.

4.14.A.1 Linear search algorithms are standard algorithms that check each element
in order until the desired value is found or all elements in the array or ArrayList
have been checked. Linear search algorithms can begin the search process from
either end of the array or ArrayList.
4.14.A.2 When applying linear search algorithms to 2D arrays, each row must be
accessed then linear search applied to each row of the 2D array.

4.15 Sorting
Algorithms

4.15.A Determine the result of executing
sorting algorithms to sort the elements of a
collection.

4.15.A.1 Selection sort and insertion sort are iterative sorting algorithms that can be
used to sort elements in an array or ArrayList.
4.15.A.2 Selection sort repeatedly selects the smallest (or largest) element from
the unsorted portion of the list and swaps it into its correct (and final) position in
the sorted portion of the list.
4.15.A.3 Insertion sort inserts an element from the unsorted portion of a list into
its correct (but not necessarily final) position in the sorted portion of the list by
shifting elements of the sorted portion to make room for the new element.

4.16 Recursion 4.16.A Determine the result of calling recursive
methods.

4.16.A.1 A recursive method is a method that calls itself. Recursive methods contain
at least one base case, which halts the recursion, and at least one recursive call.
Recursion is another form of repetition.

DRAFT

4.16.A.2 Each recursive call has its own set of local variables, including the
parameters. Parameter values capture the progress of a recursive process, much like
loop control variable values capture the progress of a loop.
4.16.A.3 Any recursive solution can be replicated through the use of an iterative
approach and vice versa.
EXCLUSION STATEMENT
Writing recursive code is outside the scope of the AP Computer Science A course and
exam.

4.17 Recursive
Searching and
Sorting

4.17.A Determine the result of executing
recursive algorithms that use strings or
collections.

4.17.A.1 Recursion can be used to traverse String objects, arrays, and
ArrayList objects.

 4.17.B Determine the result of each iteration
of a binary search algorithm used to search for
information in a collection.

4.17.B.1 Data must be in sorted order to use the binary search algorithm. Binary
search starts at the middle of a sorted array or ArrayList and eliminates half of
the array or ArrayList in each recursive call until the desired value is found or
all elements have been eliminated.
4.17.B.2 Binary search is typically more efficient than linear search.
EXCLUSION STATEMENT
Search algorithms other than linear and binary search are outside the scope of the AP
Computer Science A course and exam.
4.17.B.3 The binary search algorithm can be written either iteratively or recursively.

 4.17.C Determine the result of each iteration of
the merge sort algorithm when used to sort a
collection.

4.17.C.1 Merge sort is a recursive sorting algorithm that can be used to sort
elements in an array or ArrayList.
EXCLUSION STATEMENT
Sorting algorithms other than selection, insertion, and merge sort are outside the
scope of the AP Computer Science A course and exam.
4.17.C.2 Merge sort repeatedly divides an array into smaller subarrays until each
subarray is one element and then recursively merges the sorted subarrays back
together in sorted order to form the final sorted array.

DRAFT

	AP® Computer Science A
	AP Computer Science A Curriculum Framework
	Unit 1: Using Objects and Methods
	Unit 2: Selection and Iteration
	Unit 3: Class Creation
	Unit 4: Data Collections

