AP® CHEMISTRY EQUATIONS AND CONSTANTS

UNIT SYMBOLS	UNIT CONVERSIONS		METRIC PREFIXES			
gram, g	1 hertz = 1 s ⁻¹		Factor	Prefix	Symbol	
mole, mol			109	σίσα	G	
liter, L			10	Bigu	0	
meter, m	1 atm = 760 mm Hg = 760 torr		10 ⁶	mega	М	
second, s			103	kilo	k	
hertz, Hz	$K = {}^{\circ}C + 273.15$		10		K	
atmosphere, atm			10 ⁻²	centi	с	
millimeter of mercury, mm Hg	$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ joule}}$		10 ⁻³	milli	m	
degree Celsius, °C	1 coulomb		10			
kelvin, K	$1 \text{ ampere} = \frac{1 \text{ coulomb}}{1 \text{ coulomb}}$		10 ⁻⁶	micro	μ	
Joule, J	1 second		10 ⁻⁹	nano	n	
coulomb C			10			
ampere. A			10 ⁻¹²	pico	р	
ATOMIC STRUCTURE			E = energy v = frequency			
E = hv						
$c = \lambda v$			$\lambda =$ wavelength			
			F = force			
$F_{coulombic} \propto \frac{q_1 q_2}{r^2}$	$F_{coulombic} \propto \frac{q_1 q_2}{2}$		q = charge			
r		D1 11	r = s		34 .	
		Planck's constant, $h = 6.626 \times 10^{-1}$ J s				
		Speed of light, $c = 2.998 \times 10^{\circ} \text{ m s}^{-1}$				
		Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$				
GASES, LIOUIDS, AND SOLUTIONS		P = pressure				
		V = volume				
$\frac{P_1 v_1}{T} = \frac{P_2 v_2}{T}$		T = temperature				
	n = number of moles					
PV = nRT	X = mole fraction					
$P_{i} = P_{i} \times X_{i}$, where $X_{i} = \frac{\text{moles A}}{1}$		m = mass M = molar mass				
total moles		D = density				
$P_{\text{total}} = P_{\text{A}} + P_{\text{B}} + P_{\text{C}} + \dots$		KE = kinetic energy				
т		v = velocity				
$n = \frac{1}{M}$		M = molarity				
		A = absorbance				
$D = \frac{1}{V}$		ε = molar absorptivity				
$KE = \frac{1}{m^2}$		b = path length				
$KL = \frac{1}{2}mv$		$C = \text{concentration}$ Cas constant $R = 8.314 \text{ J} \text{mol}^{-1} \text{ K}^{-1}$				
n_{solute}		Gas constant, $K = 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$				
$M = \frac{1}{L_{solution}}$		$= 0.08206 \text{ L atm K} \text{ mol}^{-1}$ STP $= 273.15 \text{ K and } 1.0 \text{ atm}$				
$A = \varepsilon bc$	SIF = 2/3.13 K and 1.0 atm Ideal gas at STP = 22.4 L mol ⁻¹					
	Ideal gas at $STP = 22.4$ L mol					

KINETICS			
$\left[\mathbf{A}\right]_{t} - \left[\mathbf{A}\right]_{0} = -kt$	k = rate constant		
$\ln[A]_t - \ln[A]_0 = -kt$	t = time $t \neq t = half-life$		
$\frac{1}{[\mathbf{A}]_t} - \frac{1}{[\mathbf{A}]_0} = kt$	y_2 had he		
$t_{\frac{1}{2}} = \frac{0.693}{k}$			
EQUILIBRIUM			
$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$, where $a A + b B \rightleftharpoons c C + d D$	Equilibrium Constants K_c (molar concentrations)		
$K_{p} = \frac{(P_{\rm C})^{c} (P_{\rm D})^{d}}{(P_{\rm A})^{a} (P_{\rm B})^{b}}$	K_p (gas pressures) K_w (water)		
$K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$	K_a (acid)		
$pK_w = 14 = pH + pOH at 25^{\circ}C$	K_b (base)		
$pH = -\log[H_3O^+], \qquad pOH = -\log[OH^-]$			
$K_a = \frac{[H_3O^+][A^-]}{[HA]}, \qquad K_b = \frac{[OH^-][HB^+]}{[B]}$			
$pK_a = -\log K_a, \qquad pK_b = -\log K_b$			
$K_w = K_a \times K_b,$ $pK_w = pK_a + pK_b$			
$pH = pK_a + \log\frac{[A^-]}{[HA]}$			
THERMODYNAMICS/ELECTROCHEMISTRY	a = heat		
$q = mc\Delta T$	m = mass		
$\Delta H_{reaction}^{\circ} = \sum \Delta H_{f \ products}^{\circ} - \sum \Delta H_{f \ reactants}^{\circ}$	c = specific heat capacity		
$\Delta S_{reaction}^{\circ} = \sum S_{products}^{\circ} - \sum S_{reactants}^{\circ}$	$S^{\circ} = \text{standard entropy}$		
$\Delta G_{reaction}^{\circ} = \sum \Delta G_{f products}^{\circ} - \sum \Delta G_{f reactants}^{\circ}$	H° = standard enthalpy		
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	G^{*} = standard Gibbs free energy R = gas constant		
$= -RT \ln K$	K = equilibrium constant n = number of moles of electrons		
$=-nFE^{\circ}$	E° = standard potential		
I - q	I = current (amperes)		
$I = \frac{1}{t}$	q = charge (coulombs)		
$E_{cell} = E_{cell}^{\circ} - \frac{RT}{L} \ln Q$	t = time (seconds) Q = reaction quotient		
nr	\mathcal{L} = reaction quotient Faraday's constant $F = 96.485$ coulombs / 1 mol e^{-1}		