# Course at a Glance

#### Plan

The Course at a Glance provides a useful visual organization of the AP Calculus AB and AP Calculus BC curricular components, including:

- Sequence of units, along with approximate weighting and suggested pacing.
   Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and mathematical practices across units.

#### **Teach**

#### **MATHEMATICAL PRACTICES**

Mathematical practices spiral throughout the course.

- 1 Implementing Mathematical Processes
- 3 Justification
  4 Communication

and Notation

2 Connecting Representations

#### **BIG IDEAS**

 ${\it Big\ ideas\ spiral\ across\ topics\ and\ units}.$ 

- CHA Change
- FUN Analysis of Functions

#### **BC ONLY**

The purple shading represents BC only content.

#### Assess

Assign the Personal Progress Checks—either as homework or in class—for each unit. Each Personal Progress Check contains formative multiple-choice and free-response questions. The feedback from the Personal Progress Checks shows students the areas where they need to focus.



CLASS PERIODS

### Limits and Continuity

~22-23 AB ~13-14 BC

WEIGHTING 10-12% AB 4-7% BC

- CHA 1.1 Introducing Calculus:
  Can Change Occur at
  an Instant?
- 1.2 Defining Limits and Using Limit Notation
- 1.3 Estimating Limit
  Values from Graphs
- 1.4 Estimating Limit
  Values from Tables
- 1.5 Determining Limits
  Using Algebraic
  Properties of Limits
- 1.6 Determining Limits
  Using Algebraic
  Manipulation
- 1.7 Selecting Procedures for Determining Limits
- 1.8 Determining Limits
  Using the Squeeze
  Theorem
- 1.9 Connecting Multiple
  Representations
  of Limits
- 1.10 Exploring Types of Discontinuities
- 1.11 Defining Continuity at a Point
- 1.12 Confirming Continuity
  over an Interval
- 1.13 Removing
  Discontinuities
- 1.14 Connecting Infinite
  Limits and Vertical
  Asymptotes
- 1.15 Connecting Limits at Infinity and Horizontal Asymptotes
- 1.16 Working with the
  Intermediate Value
  Theorem (IVT)

#### Personal Progress Check 1

Multiple-choice: ~45 questions Free-response: 3 questions (partial)



Differentiation: Definition and Basic Derivative Rules

AP EXAM WEIGHTING

10-12% AB 4-7% BC

CLASS PERIODS ~1

~13-14 AB ~9-10 BC

- 2.1 Defining Average and Instantaneous Rates of Change at a Point
- 2.2 Defining the Derivative of a Function and Using Derivative Notation
- 2.3 Estimating Derivatives of a Function at a Point
- 2.4 Connecting
  Differentiability
  and Continuity:
  Determining When
  Derivatives Do and
  Do Not Exist
- 2.5 Applying the Power Rule
- Constant, Sum,
  Difference, and
  Constant Multiple
- **2.7** Derivatives of  $\cos x$ ,  $\sin x$ ,  $e^x$ , and  $\ln x$
- 2.8 The Product Rule
- FUN 2.9 The Quotient Rule
- FUN 2.10 Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions

#### Personal Progress Check 2

Multiple-choice: ~30 questions Free-response: 3 questions (partial)

### UNIT 3

#### Differentiation: Composite, Implicit, and **Inverse Functions**

AP EXAM WEIGHTING

9-13% AB 4-7% BC

CLASS PERIODS ~10-11 AB ~8-9 BC

|          | 10 11 11                                                    |
|----------|-------------------------------------------------------------|
| FUN<br>1 | 3.1 The Chain Rule                                          |
| FUN<br>1 | 3.2 Implicit Differentiation                                |
| FUN<br>3 | 3.3 Differentiating Inverse Functions                       |
| FUN<br>1 | 3.4 Differentiating Inverse Trigonometric Functions         |
| FUN<br>1 | <b>3.5</b> Selecting Procedures for Calculating Derivatives |
| FUN<br>1 | 3.6 Calculating Higher-<br>Order Derivatives                |



#### **Contextual Applications of** Differentiation

AP EXAM WEIGHTING

10-15% AB 6-9% BC

CLASS PERIODS ~10-11 AB ~6-7 BC

| СНА | 4.1 Interpreting the         |   |
|-----|------------------------------|---|
|     | Meaning of the               |   |
| 1   | <b>Derivative in Context</b> |   |
| СНА | 4.2 Straight-Line            |   |
|     | <b>Motion: Connecting</b>    |   |
| 1   | Position, Velocity, and      |   |
|     | Acceleration                 |   |
| СНА | 4.3 Rates of Change in       |   |
|     | <b>Applied Contexts Othe</b> | r |
| 2   | Than Motion                  |   |
| СНА | 4.4 Introduction to Related  | ĺ |
| 1   | Rates                        |   |
|     |                              |   |

| CHA | 4.5 Solving Related Rates |
|-----|---------------------------|
| 3   | Problems                  |

**4.6** Approximating Values of a Function Using **Local Linearity and** Linearization

LIM 4.7 Using L'Hospital's Rule for Determining Limits of Indeterminate Forms



#### **Analytical Applications of** Differentiation

AP EXAM WEIGHTING

15-18% AB 8-11% BC

CLASS PERIODS ~15-16 AB ~10-11 BC

|          |      | TO TO AB TO TI BC                                                                |
|----------|------|----------------------------------------------------------------------------------|
| FUN<br>3 | 5.1  | Using the Mean Value<br>Theorem                                                  |
| FUN<br>3 | 5.2  | Extreme Value Theorem,<br>Global Versus Local<br>Extrema, and Critical<br>Points |
| FUN<br>2 | 5.3  | Determining Intervals<br>on Which a Function Is<br>Increasing or Decreasing      |
| FUN<br>3 | 5.4  | Using the First<br>Derivative Test to<br>Determine Relative<br>(Local) Extrema   |
| FUN<br>1 | 5.5  | Using the Candidates<br>Test to Determine<br>Absolute (Global)<br>Extrema        |
| FUN<br>2 | 5.6  | Determining Concavity<br>of Functions over Their<br>Domains                      |
| FUN<br>3 | 5.7  | Using the Second<br>Derivative Test to<br>Determine Extrema                      |
| FUN<br>2 | 5.8  | Sketching Graphs of<br>Functions and Their<br>Derivatives                        |
| FUN<br>2 | 5.9  | Connecting a Function,<br>Its First Derivative, and<br>Its Second Derivative     |
| FUN<br>2 | 5.10 | Introduction to<br>Optimization Problems                                         |
| FUN<br>3 | 5.11 | Problems                                                                         |
| FUN 1 3  | 5.12 | Exploring Behaviors of Implicit Relations                                        |

#### Personal Progress Check 3

Multiple-choice: ~15 questions Free-response: 3 questions (partial/full)

#### Personal Progress Check 4

Multiple-choice: ~15 questions Free-response: 3 questions

#### Personal Progress Check 5

Multiple-choice: ~35 questions Free-response: 3 questions



# Integration and Accumulation of Change

AP EXAM WEIGHTING

17-20% AB 17-20% BC

CLASS PERIODS ~18-20 AB ~15-16 BC

| CHA<br>4 | <b>6.1</b> Exploring Accumulations of Change |
|----------|----------------------------------------------|
| LIM<br>1 | 6.2 Approximating Areas with Riemann Sums    |

| .IM | 6.3 Riemann Sums,                                        |
|-----|----------------------------------------------------------|
| 2   | Summation Notation,<br>and Definite Integral<br>Notation |

| ntal    |
|---------|
| alculus |
| ation   |
|         |
|         |

| FUN | 6.5 Interpreting              |
|-----|-------------------------------|
|     | the Behavior of               |
| 2   | <b>Accumulation Functions</b> |
|     | <b>Involving Area</b>         |

| FUN | <b>6.6</b> Applying Properties of |  |
|-----|-----------------------------------|--|
| 3   | Definite Integrals                |  |

| FUN | <b>6.7</b> The Fundamental                 |  |  |
|-----|--------------------------------------------|--|--|
| 3   | Theorem of Calculus and Definite Integrals |  |  |

| FUN | 6.8 Finding Antiderivatives |
|-----|-----------------------------|
|     | and Indefinite              |
| 4   | Integrals: Basic Rules      |
|     | and Notation                |

| FUN | 6.9 | Integrating  | Using |
|-----|-----|--------------|-------|
| 1   |     | Substitution | n     |

| FUN | <b>6.10</b> Integrating Functions |
|-----|-----------------------------------|
|     | <b>Using Long Division</b>        |
| 1   | and Completing the                |
|     | Square                            |

| FUN | 6.11 | Integrating Using           |
|-----|------|-----------------------------|
| 1   |      | <b>Integration by Parts</b> |
| 1   |      | BC ONLY                     |

| FUN | 6.12 | <b>Using Linear Partial</b> |
|-----|------|-----------------------------|
| 1   |      | Fractions acous             |

| LIM | 6.13 | <b>Evaluating Improper</b> |
|-----|------|----------------------------|
| 1   |      | Integrals BC ONLY          |

| FUN | <b>6.14</b> Selecting Techniques |
|-----|----------------------------------|
| 1   | for Antidifferentiation          |

# UNIT 7

## Differential Equations

AP EXAM WEIGHTING

6-12% AB 6-9% BC

CLASS PERIODS ~8-9 AB ~9-10 BC

| FUN | 7.1 Modeling Situations |
|-----|-------------------------|
| 2   | with Differential       |
|     | Equations               |

| FUN | 7.2 Verifying Solutions for |
|-----|-----------------------------|
| 3   | Differential Equations      |

| FUN | 7.3 | Sketching | Slope | Fields |
|-----|-----|-----------|-------|--------|
| 2   |     |           |       |        |

| FUN | 7.4 Reasoning Using Slope |
|-----|---------------------------|
| 4   | Fields                    |

| FUN | 7.5 Approximating       |
|-----|-------------------------|
|     | Solutions Using Euler's |
| 1   | Method BC ONLY          |

| FUN | 7.6 Finding General     |
|-----|-------------------------|
| 4   | <b>Solutions Using</b>  |
| •   | Separation of Variables |

| FUN | 7.7 Finding Particular        |
|-----|-------------------------------|
|     | Solutions Using               |
| 1   | <b>Initial Conditions and</b> |
|     | Separation of Variables       |

| FUN | 7.8 Exponential Models |
|-----|------------------------|
|     | with Differential      |
| 3   | Equations              |

| FUN | 7.9 | <b>Logistic Models with</b>   |
|-----|-----|-------------------------------|
| 3   |     | <b>Differential Equations</b> |
| 3   |     | BC ONLY                       |



## **Applications** of Integration

AP EXAM WEIGHTING

10-15% AB 6-9% BC

CLASS PERIODS ~19-20 AB ~13-14 BC

| CHA | 8.1 Finding the Average            |
|-----|------------------------------------|
| 1   | Value of a Function on an Interval |
|     | an interval                        |

| СНА | 8.2 Connecting                       |
|-----|--------------------------------------|
|     | Position, Velocity, and Acceleration |
| 1   | of Functions Using<br>Integrals      |

| CHA | 8.3 Using Accumulation |
|-----|------------------------|
|     | Functions and Definite |
| 3   | Integrals in Applied   |
|     | Contexts               |

| СНА | 8.4 Finding the Area Between Curves |
|-----|-------------------------------------|
| 4   | Expressed as<br>Functions of x      |

| CHA | 8.5 Finding the Area |
|-----|----------------------|
|     | Between Curves       |
| 1   | Expressed as         |
|     | Functions of v       |

| CHA | 8.6 Finding the Area       |
|-----|----------------------------|
|     | <b>Between Curves That</b> |
| 2   | Intersect at More Than     |
| _   | Two Points                 |

| CHA | <b>8.7</b> Volumes with Cross |
|-----|-------------------------------|
|     | Sections: Squares and         |
| 3   | Rectangles                    |

| CHA | 8.9 Volume with Disc    |
|-----|-------------------------|
|     | Method: Revolving       |
| 3   | Around the x- or y-Axis |

| СНА | 8.10 | <b>Volume with Disc</b> |
|-----|------|-------------------------|
| 2   |      | Method: Revolving       |

| СНА | 8.11 Volume with Washer Method: Revolving | er                   |      |
|-----|-------------------------------------------|----------------------|------|
|     | 4                                         | Around the x- or y-A | Axis |

| СНА | 8.12 Volume with Washer  |
|-----|--------------------------|
|     | Method: Revolving        |
| 2   | <b>Around Other Axes</b> |

| СНА | 8.13 The Arc Length of a Smooth, Planar Curve |
|-----|-----------------------------------------------|
| 3   | and Distance Traveled                         |
|     | RC ONLY                                       |

#### Personal Progress Check 6

#### Multiple-choice:

- ~25 questions (AB)
- ~35 questions (BC)

Free-response: 3 questions

#### Personal Progress Check 7

#### Multiple-choice:

- ~15 questions (AB)
- ~20 questions (BC)

Free-response: 3 questions

#### **Personal Progress Check 8**

Multiple-choice: ~30 questions Free-response: 3 questions



**Parametric Equations, Polar** Coordinates, and **Vector-Valued** Functions BC ONLY

AP EXAM WEIGHTING

N/A AB

11-12% BC

CLASS PERIODS N/A AB

~10-11 BC

СНА 9.1 Defining and Differentiating **Parametric Equations** 

СНА 9.2 Second Derivatives of Parametric **Equations** 

CHA 9.3 Finding Arc Lengths of Curves Given by Parametric Equations

CHA 9.4 Defining and **Differentiating Vector-Valued Functions** 

9.5 Integrating Vector-**Valued Functions** 

9.6 Solving Motion Problems Using Parametric and Vector-**Valued Functions** 

FUN 9.7 Defining Polar Coordinates and Differentiating in **Polar Form** 

CHA 9.8 Find the Area of a Polar Region or the Area Bounded by a Single **Polar Curve** 

CHA 9.9 Finding the Area of the Region Bounded by **Two Polar Curves** 

### UNIT 10

#### Infinite Sequences and Series BC ONLY

AP EXAM WEIGHTING

N/A AB

17-18% BC

CLASS PERIODS N/A AB

~17-18 BC

10.1 Defining Convergent and Divergent Infinite Series

10.2 Working with LIM **Geometric Series** 

LIM 10.3 The *n*th Term Test for Divergence

LIM 10.4 Integral Test for Convergence 3

LIM 10.5 Harmonic Series and p-Series

LIM 10.6 Comparison Tests for Convergence

LIM **10.7** Alternating Series Test for Convergence 3

LIM 10.8 Ratio Test for Convergence 3

LIM 10.9 Determining Absolute or Conditional Convergence

10.10 Alternating Series **Error Bound** 

LIM 10.11 Finding Taylor **Polynomial Approximations** of Functions

LIM 10.12 Lagrange Error Bound

LIM 10.13 Radius and Interval of Convergence of **Power Series** 

10.14 Finding Taylor or **Maclaurin Series for** a Function

10.15 Representing **Functions** as **Power Series** 

#### Personal Progress Check 9

Multiple-choice: ~25 questions Free-response: 3 questions

#### Personal Progress Check 10

Multiple-choice: ~45 questions Free-response: 3 questions