

Part A (AB or BC): Graphing Calculator Required

t (hours)	0	2	4	6	8	10	12
R(t) (vehicles per hour)	2935	3653	3442	3010	3604	1986	2201

- 1. On a certain weekday, the rate at which vehicles cross a bridge is modeled by the differentiable function R for $0 \le t \le 12$, where R(t) is measured in vehicles per hour and t is the number of hours since 7:00 A.M. (t = 0). Values of R(t) for selected values of t are given in the table above.
 - (a) Use the data in the table to approximate R'(5). Show the computations that lead to your answer. Using correct units, explain the meaning of R'(5) in the context of the problem.
 - (b) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\int_0^{12} R(t)dt$. Indicate units of measure.
 - (c) On a certain weekend day, the rate at which vehicles cross the bridge is modeled by the function H defined by $H(t) = -t^3 3t^2 + 288t + 1300$ for $0 \le t \le 17$, where H(t) is measured in vehicles per hour and t is the number of hours since 7:00 A.M. (t = 0). According to this model, what is the average number of vehicles crossing the bridge per hour on the weekend day for $0 \le t \le 12$?
 - (d) For 12 < t < 17, L(t), the local linear approximation to the function H given in part (c) at t = 12, is a better model for the rate at which vehicles cross the bridge on the weekend day. Use L(t) to find the time t, for 12 < t < 17, at which the rate of vehicles crossing the bridge is 2000 vehicles per hour. Show the work that leads to your answer.

Part A (AB or BC): Graphing calculator required **Scoring Guidelines for Question 1**

9 points

Learning Objectives: CHA-2.D CHA-3.A CHA-3.C CHA-3.F CHA-4.B LIM-5.A

(a) Use the data in the table to approximate R'(5). Show the computations that lead to your answer. Using correct units, explain the meaning of R'(5) in the context of the problem.

	Using correct units, explain the meaning of R'(5) in the context of the pro-	obiem.	
	Model Solution	Scoring	
	$R'(5) \approx \frac{R(6) - R(4)}{6 - 4} = \frac{3010 - 3442}{2} = -216$	Approximation using values from table	1 point
	At time $t\!=\!5$ hours (12 P.M.), the rate at which vehicles cross the bridge is decreasing at a rate of approximately 216 vehicles per hour per hour.	Interpretation with units	1 point 3.F 4.B
		Total for part (a)	2 points
(b)	Use a midpoint sum with three subintervals of equal length indicated by approximate the value of $\int_0^{12} R(t) dt$. Indicate units of measure.	the data in the table to	
	$\int_0^{12} R(t) dt \approx 4(R(2) + R(6) + R(10))$	Midpoint sum setup	1 point
	= 4(3653+3010+1986) = 34,596 vehicles	Approximation using values from the table with units	1 point 2.B 4.B
		Total for part (b)	2 points
(6)	What is the average number of vehicles crossing the bridge per hour on for $0 \le t \le 12$? $\frac{1}{12-0} \int_0^{12} H(t) dt = 2452$ Definite Answer integral	Definite integral Answer with supporting work	1 point 1.D 4.C 1 point 1.E
		Total for part (c)	2 points
(d)	Use $L(t)$ to find the time t , for $12 \le t \le 17$, at which the rate of vehicles crossin per hour. Show the work that leads to your answer.	g the bridge is 2000 vehicles	
	L(t) = H(12) - H'(12)(t-12)	Slope	1 point
	H(12) = 2596', H'(12) = -216		1.E 4.E
	L(t) = 2000	L(t) = 2000	1 point
	$\Rightarrow t = 14.759$	Answer with supporting work	1 point
		Total for part (d)	3 points

9 points

Total for Question 1

PART B (AB OR BC): Calculator not Permitted

Graph of f'

- 2. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval [0, 4]. The areas of the regions bounded by the graph of f' and the x-axis on the intervals [0, 1], [1, 2], [2, 3], and [3, 4] are 2, 6, 10, and 14, respectively. The graph of f' has horizontal tangents at x = 0.6, x = 1.6, x = 2.5, and x = 3.5. It is known that f(2) = 5.
 - (a) On what open intervals contained in (0, 4) is the graph of *f* both decreasing and concave down? Give a reason for your answer.
 - (b) Find the absolute minimum value of f on the interval [0,4]. Justify your answer.
 - (c) Evaluate $\int_0^4 f(x)f'(x)dx$.
 - (d) The function g is defined by $g(x) = x^3 f(x)$. Find g'(2). Show the work that leads to your answer.

Part A (AB or BC): Calculator not Permitted Scoring Guidelines for Question 2

9 points

Learning Objectives: FUN-3.B FUN-4.A FUN-5.A FUN-6.D

(a) On what open intervals contained in (0,4) is the graph of f both decreasing and concave down? Give a reason for your answer.

	Model Solution	Scoring	
	The graph of f is decreasing and concave down on the intervals (1, 1.6) and (3, 3.5)	Answer	1 point
	because f' is negative and decreasing on these intervals.	Reason	1 point
		Total for part (a)	2 points
(b)	Find the absolute minimum value of f on the interval [0, 4]. Justify your answer	:	
	The graph of f' changes from negative to positive only at $x = 2$.	Considers <i>x</i> = 2 as a candidate	1 point
	$f(0) = f(2) + \int_{2}^{0} f'(x) dx = f(2) - \int_{0}^{2} f'(x) dx = 5 - (2 - 6) = 9$ f(2) = 5	Answer with justification	1 point
	$f(4) = f(2) + \int_{2}^{4} f'(x) dx = 5 + (10 - 14) = 1$		
	On the interval [0, 4], the absolute minimum value of f is $f(4) = 1$.		
		Total for part (b)	2 points
(c)	Evaluate $\int_0^4 f(x)f'(x) dx$.		
	$\int_0^4 f(x)f'(x) dx = \frac{1}{2} (f(x))^2 \bigg _{x=0}^{x=4}$	Antiderivative of the form $a[f(x)]^2$	1 point
	$= \frac{1}{2} \left(\left(f(4) \right)^2 - \left(f(0) \right)^2 \right)$	Earned the first point and $a = \frac{1}{2}$	1 point
	$=\frac{1}{2}(1^2-9^2)=-40$	Answer	1 point
		Total for part (c)	3 points
(d)	Find $g'(2)$. Show the work that leads to your answer.		
	$g'(x) = 3x^{2}f(x) + x^{3}f'(x)$ $g'(2) = 3 \cdot 2^{2}f(2) + 2^{3}f'(2) = 12 \cdot 5 + 8 \cdot 0 = 60$	Product Rule	1 point
		Answer	1 point
		Total for part (d)	2 points
		Total for Question 2	9 points

PART A (BC ONLY): Graphing Calculator Required

- 3. For $0 \le t \le 5$, a particle is moving along a curve so that its position at time t is (x(t), y(t)). At time t = 1, the particle is at position (2, -7). It is known that $\frac{dx}{dt} = \sin\left(\frac{t}{t+3}\right)$ and $\frac{dy}{dt} = e^{\cos t}$.
 - (a) Write an equation for the line tangent to the curve at the point (2, -7).
 - (b) Find the *y*-coordinate of the position of the particle at time t = 4.
 - (c) Find the total distance traveled by the particle from time t = 1 to time t = 4.
 - (d) Find the time at which the speed of the particle is 2.5. Find the acceleration vector of the particle at this time.

Part A (BC ONLY): Graphing Calculator Required Scoring Guidelines for Question 3

9 points

Learning Objectives: CHA-3.G FUN-8.B

(a) Write an equation for the line tangent to the curve at the point (2, -7).

		Total for Question 3	9 points
		Total for part (d)	3 points
	The acceleration vector of the particle at time $t = 0.415$ is: $\langle x''(0.415), y''(0.415) \rangle = \langle 0.255, -1.007 \rangle$ (or $\langle 0.255, -1.006 \rangle$).	Acceleration vector	1 point
	The speed of the particle is 2.5 at time $t = 0.415$.	Value of t	1 point
	$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = 2.5 \implies t = 0.415007$	Speed equation	1 point
(d)	Find the time at which the speed of the particle is 2.5. Find the acceleration vectorime.	or of the particle at this	
		Total for part (c)	2 points
	The total distance traveled by the particle from time $t = 1$ to time $t = 4$ is 2.469.	Answer	1 point
	$\int_{1}^{4} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = 2.469242$ The total distance traveled by the partials from time	Definite integral	1 point 1.D 4.c
(c)	Find the total distance traveled by the particle from time $t=1$ to time $t=4$.		
		Total for part (b)	2 points
	The <i>y</i> -coordinate of the position of the particle at time $t=4$ is -5.007 (or -5.006).	Answer	1 point
	$y(4) = -7 + \int_{1}^{4} \frac{dy}{dt} dt = -5.006667$	Definite integral	1 point 1.D 4.C
(b)	Find the <i>y</i> -coordinate of the position of the particle at time $t = 4$.		
		Total for part (a)	2 points
	(2, -7) is $y = -7 + 6.938(x - 2)$.		
	$\frac{dy}{dx}\Big _{t=1} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}\Big _{t=1} = \frac{e^{\cos 1}}{\sin(\frac{1}{4})} = 6.938150$ An equation for the line tangent to the curve at the point	Tangent line equation	1 point
	$\frac{dy}{dt}$ $e^{\cos t}$	Slope	1 point
	Model Solution	Scoring	
(4)	write an equation for the line tangent to the our ve at the point (2, 7).		

PART B (BC ONLY): Calculator not Permitted

4. The Maclaurin series for the function f is given by

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k^2} = x - \frac{x^2}{4} + \frac{x^3}{9} - \dots$$
 on its interval of convergence.

- (a) Use the ratio test to determine the interval of convergence of the Maclaurin series for *f*. Show the work that leads to your answer.
- (b) The Maclaurin series for f evaluated at $x=\frac{1}{4}$ is an alternating series whose terms decrease in absolute value to 0. The approximation for $f\left(\frac{1}{4}\right)$ using the first two nonzero terms of this series is $\frac{15}{64}$. Show that this approximation differs from $f\left(\frac{1}{4}\right)$ by less than $\frac{1}{500}$.
- (c) Let h be the function defined by $h(x) = \int_0^x f(t)dt$. Write the first three nonzero terms and the general term of the Maclaurin series for h.

Part B: (BC ONLY): Calculator not Permitted **Scoring Guidelines for Question 4**

9 points

Learning Objectives: LIM-7.A LIM-7.B LIM-8.D LIM-8.G

(a) Use the ratio test to determine the interval of convergence of the Maclaurin series for f. Show the work that leads to your answer.

	Model Solution	Scoring	
	$\left \frac{(-1)^{k+2} x^{k+1}}{(k+1)^2} \right $	Sets up ratio	1 point
	$\lim_{k \to \infty} \frac{\frac{(-1)}{(k+1)^2}}{\frac{(-1)^{k+1}x^k}{k^2}} = \lim_{k \to \infty} \frac{k^2}{(k+1)^2} x = x $	Computes limit of ratio	1 point
	x < 1 The series converges for $-1 < x < 1$.	Identifies interior or interval of convergence	1 point
	When $x = -1$, the series is $\sum_{k=1}^{\infty} \frac{-1}{k^2}$. This is a convergent <i>p</i> -series.	Considers both endpoints	1 point
	When $x = 1$, the series is $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}$. This series converges by the alternating series test.	Analysis and interval of convergence	1 point
	The interval of convergence of the Maclaurin series for f is $-1 \le x \le 1$.		
		Total for part (a)	5 points
(b)	Show that this approximation differs from $f\left(\frac{1}{4}\right)$ by less than $\frac{1}{500}$.		
	$\left f\left(\frac{1}{4}\right) - \frac{15}{64} \right < \frac{\left(\frac{1}{4}\right)^3}{9} = \frac{1}{576}$	Uses third term as error bound	1 point
	$\frac{1}{576} < \frac{1}{500}$	Error bound	1 point
		Total for part (b)	2 points
(c)	Write the first three nonzero terms and the general term of the Maclaurin	series for h.	
	$h(x) = \int_0^x f(t) dt = \frac{x^2}{2} - \frac{x^3}{12} + \frac{x^4}{36} - \dots + \frac{(-1)^{k+1} x^{k+1}}{(k+1)k^2} + \dots$	First three nonzero terms	l point
	General term First three nonzero terms	General term	1 point
		Total for part (c)	2 points
		Total for Question 4	9 points