AP CALCULUS AB/BC

Scoring Guidelines

Part A (AB or BC): Graphing Calculator Required

t (hours)	0	2	4	6	8	10	12
$R(t)$ (vehicles per hour)	2935	3653	3442	3010	3604	1986	2201

1. On a certain weekday, the rate at which vehicles cross a bridge is modeled by the differentiable function R for $0 \leq t \leq 12$, where $R(t)$ is measured in vehicles per hour and t is the number of hours since 7:00 A.M. $(t=0)$.
Values of $R(t)$ for selected values of t are given in the table above.
(a) Use the data in the table to approximate $R^{\prime}(5)$. Show the computations that lead to your answer. Using correct units, explain the meaning of $R^{\prime}(5)$ in the context of the problem.
(b) Use a midpoint sum with three subintervals of equal length indicated by
the data in the table to approximate the value of $\int_{0}^{12} R(t) d t$. Indicate units of measure.
(c) On a certain weekend day, the rate at which vehicles cross the bridge is modeled by the function H defined by $H(t)=-t^{3}-3 t^{2}+288 t+1300$ for $0 \leq t \leq 17$, where $H(t)$ is measured in vehicles per hour and t is the number of hours since 7:00 A.m. $(t=0)$. According to this model, what is the average number of vehicles crossing the bridge per hour on the weekend day for $0 \leq t \leq 12$?
(d) For $12<t<17, L(t)$, the local linear approximation to the function H given in part (c) at $t=12$, is a better model for the rate at which vehicles cross the bridge on the weekend day. Use $L(t)$ to find the time t, for $12<t<17$, at which the rate of vehicles crossing the bridge is 2000 vehicles per hour. Show the work that leads to your answer.

Part A (AB or BC): Graphing calculator required

 Scoring Guidelines for Question 1
Learning Objectives: CHA-2.D CHA-3.A CHA-3.C CHA-3.F CHA-4.B LIM-5.A

(a) Use the data in the table to approximate $R^{\prime}(5)$. Show the computations that lead to your answer. Using correct units, explain the meaning of $R^{\prime}(5)$ in the context of the problem.

Model Solution
 Scoring

$R^{\prime}(5) \approx \frac{R(6)-R(4)}{6-4}=\frac{3010-3442}{2}=-216$

Approximation using values from table	1 point 2.B
Interpretation with units	1 point
	3.F 4.B

Total for part (a)

2 points
(b) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\int_{0}^{12} R(t) d t$. Indicate units of measure.

$$
\begin{aligned}
\int_{0}^{12} R(t) d t & \approx 4(R(2)+R(6)+R(10)) & & \text { Midpoint sum setup } \\
& =4(3653+3010+1986) & & \text { point } \\
& =34,596 \text { vehicles } & & \text { Approximation using values }
\end{aligned}
$$

(c) What is the average number of vehicles crossing the bridge per hour on the weekend day for $0 \leq t \leq 12$?

(d) Use $L(t)$ to find the time t, for $12 \leq t \leq 17$, at which the rate of vehicles crossing the bridge is 2000 vehicles per hour. Show the work that leads to your answer.
$L(t)=H(12)-H^{\prime}(12)(t-12) \quad$ Slope 1 point
$H(12)=2596^{\prime}, H^{\prime}(12)=-216$
1.E 4.E
$L(t)=2000$
$L(t)=2000 \quad 1$ point
$\Rightarrow t=14.759$
Answer with supporting 1 point work

	Total for part (d)
Total for Question 1 points	9 points

PART B (AB OR BC): Calculator not Permitted

Graph of f^{\prime}
2. The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $[0,4]$. The areas of the regions bounded by the graph of f^{\prime} and the x-axis on the intervals $[0,1],[1,2],[2,3]$, and $[3,4]$ are $2,6,10$, and 14 , respectively. The graph of f^{\prime} has horizontal tangents at $x=0.6, x=1.6$, $x=2.5$, and $x=3.5$. It is known that $f(2)=5$.
(a) On what open intervals contained in $(0,4)$ is the graph of f both decreasing and concave down? Give a reason for your answer.
(b) Find the absolute minimum value of f on the interval $[0,4]$. Justify your answer.
(c) Evaluate $\int_{0}^{4} f(x) f^{\prime}(x) d x$.
(d) The function g is defined by $g(x)=x^{3} f(x)$. Find $g^{\prime}(2)$. Show the work that leads to your answer.

Part A (AB or BC): Calculator not Permitted

 Scoring Guidelines for Question 2Learning Objectives: FUN-3.B FUN-4.A FUN-5.A FUN-6.D
(a) On what open intervals contained in $(0,4)$ is the graph of f both decreasing and concave down? Give a reason for your answer.

Model Solution

Scoring
The graph of f is decreasing and concave down on the intervals $(1,1.6)$ and $(3,3.5)$
because f^{\prime} is negative and decreasing on these intervals.

(b) Find the absolute minimum value of f on the interval [0, 4]. Justify your answer.

The graph of f^{\prime} changes from negative to positive only at $x=2$.

Considers $x=2$ as a candidate	$\mathbf{1}$ point
3.B	
Answer with	$\mathbf{1}$ point
justification	3.E

$$
\begin{aligned}
& f(0)=f(2)+\int_{2}^{0} f^{\prime}(x) d x=f(2)-\int_{0}^{2} f^{\prime}(x) d x=5-(2-6)=9 \\
& f(2)=5 \\
& f(4)=f(2)+\int_{2}^{4} f^{\prime}(x) d x=5+(10-14)=1
\end{aligned}
$$

On the interval $[0,4]$, the absolute minimum value of f is $f(4)=1$.
Total for part (b) 2 points
(c) Evaluate $\int_{0}^{4} f(x) f^{\prime}(x) d x$.

$\int_{0}^{4} f(x) f^{\prime}(x) d x=\left.\frac{1}{2}(f(x))^{2}\right\|_{x=0} ^{x=4}$	Antiderivative of the form $a[f(x)]^{2}$	1 point 1.C
$=\frac{1}{2}\left((f(4))^{2}-(f(0))^{2}\right)$	Earned the first point and $a=\frac{1}{2}$	1 point $1 . \mathrm{B}$
$=\frac{1}{2}\left(1^{2}-9^{2}\right)=-40$	Answer	1 point 2. B

Total for part (c)
(d) Find $g^{\prime}(2)$. Show the work that leads to your answer.

$g^{\prime}(x)=3 x^{2} f(x)+x^{3} f^{\prime}(x)$	Product Rule	$\mathbf{1}$ point
$g^{\prime}(2)=3 \cdot 2^{2} f(2)+2^{3} f^{\prime}(2)=12 \cdot 5+8 \cdot 0=60$	Answer	$\mathbf{1}$ point
	Total for part (d)	$\mathbf{2}$ points

PART A (BC ONLY): Graphing Calculator Required

3. For $0 \leq t \leq 5$, a particle is moving along a curve so that its position at time t is $(x(t), y(t))$. At time $t=1$, the particle is at position $(2,-7)$. It is known that $\frac{d x}{d t}=\sin \left(\frac{t}{t+3}\right)$ and $\frac{d y}{d t}=e^{\cos t}$.
(a) Write an equation for the line tangent to the curve at the point $(2,-7)$.
(b) Find the y-coordinate of the position of the particle at time $t=4$.
(c) Find the total distance traveled by the particle from time $t=1$ to time $t=4$.
(d) Find the time at which the speed of the particle is 2.5 . Find the acceleration vector of the particle at this time.

Part A (BC ONLY): Graphing Calculator Required

 Scoring Guidelines for Question 3
Learning Objectives: CHA-3.G FUN-8.B

(a) Write an equation for the line tangent to the curve at the point $(2,-7)$.

Model Solution
$\left.\frac{d y}{d x}\right|_{t=1}=\left.\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\right|_{t=1}=\frac{e^{\cos 1}}{\sin \left(\frac{1}{4}\right)}=6.938150 \quad$ Slope $\quad \begin{aligned} & \text { 1 point } \\ & \text { 1.c 4.E } \\ & \text { Tangent line equation } \\ & \text { 1 point }\end{aligned}$
An equation for the line tangent to the curve at the point
$(2,-7)$ is $y=-7+6.938(x-2)$.
Total for part (a) 2 points
(b) Find the y-coordinate of the position of the particle at time $t=4$.
$y(4)=-7+\int_{1}^{4} \frac{d y}{d t} d t=-5.006667$

Definite integral	1 point
	1.D $4 . c$
Answer	1 point
	2.8

Total for part (b)
2 points
(c) Find the total distance traveled by the particle from time $t=1$ to time $t=4$.

(d) Find the time at which the speed of the particle is 2.5 . Find the acceleration vector of the particle at this time.
$\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=2.5 \Rightarrow t=0.415007$

Speed equation	1 point
	1.D 4.c
Value of t	1 point
Acceleration vector	1.E point
Total for part (d)	4.E
Total for Question 3	9 points

PART B (BC ONLY): Calculator not Permitted

4. The Maclaurin series for the function f is given by
$f(x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k^{2}}=x-\frac{x^{2}}{4}+\frac{x^{3}}{9}-\cdots$ on its interval of convergence.
(a) Use the ratio test to determine the interval of convergence of the Maclaurin series for f. Show the work that leads to your answer.
(b) The Maclaurin series for f evaluated at $x=\frac{1}{4}$ is an alternating series whose terms decrease in absolute value to 0 . The approximation for $f\left(\frac{1}{4}\right)$ using the first two nonzero terms of this series is $\frac{15}{64}$. Show that this approximation differs from $f\left(\frac{1}{4}\right)$ by less than $\frac{1}{500}$.
(c) Let h be the function defined by $h(x)=\int_{0}^{x} f(t) d t$. Write the first three nonzero terms and the general term of the Maclaurin series for h.

Part B: (BC ONLY): Calculator not Permitted

 Scoring Guidelines for Question 4
Learning Objectives: LIM-7.A LIM-7.B LIM-8.D LIM-8.G

(a) Use the ratio test to determine the interval of convergence of the Maclaurin series for f. Show the work that leads to your answer.

Model Solution

$\lim _{k \rightarrow \infty} \left\lvert\, \frac{(-1)^{k+2} x^{k+1}}{\left.\frac{(k+1)^{2}}{\frac{(-1)^{k+1} x^{k}}{k^{2}}}\left|=\lim _{k \rightarrow \infty} \frac{k^{2}}{(k+1)^{2}}\right| x|=|x|||c| c \right\rvert\,}\right.$
$|x|<1$
The series converges for $-1<x<1$.
When $x=-1$, the series is $\sum_{k=1}^{\infty} \frac{-1}{k^{2}}$. This is a convergent p-series.
When $x=1$, the series is $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}$. This series converges by the alternating series test.

The interval of convergence of the Maclaurin series for f is $-1 \leq x \leq 1$.

Scoring

Sets up ratio	1 point
Computes limit of ratio	$\mathbf{1}$ point
Identifies interior or interval of convergence	$\mathbf{1}$ point
Considers both endpoints	
Analysis and interval of convergence	$\mathbf{1}$ point
1.D	

Total for part (a)
5 points
(b) Show that this approximation differs from $f\left(\frac{1}{4}\right)$ by less than $\frac{1}{500}$.

(c) Write the first three nonzero terms and the general term of the Maclaurin series for h.

