

AP ${ }^{\circledR}$ Statistics

2005-2006
Professional Development
Workshop Materials

Special Focus:
 Inference

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 4,700 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three and a half million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its bestknown programs are the SAT^{\oplus}, the $\mathrm{PSAT} / \mathrm{NMSQT}^{\oplus}$, and the Advanced Placement Program ${ }^{\oplus}$ $\left(A P^{\ominus}\right)$. The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

Equity Policy Statement

The College Board believes that all students should be prepared for and have an opportunity to participate successfully in college, and that equitable access to higher education must be a guiding principle for teachers, counselors, administrators, and policymakers. As part of this, all students should be given appropriate guidance about college admissions, and provided the full support necessary to ensure college admission and success. All students should be encouraged to accept the challenge of a rigorous academic curriculum through enrollment in college preparatory programs and AP courses. Schools should make every effort to ensure that AP and other college-level classes reflect the diversity of the student population. The College Board encourages the elimination of barriers that limit access to demanding courses for all students, particularly those from traditionally underrepresented ethnic, racial, and socioeconomic groups.

For more information about equity and access in principle and practice, please send an email to apequity@collegeboard.org.
© 2005 The College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service, CollegeEd, connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the Cornerstones are trademarks owned by the College Board. PSAT/NMSQT is a registered trademark of the College Board and National Merit Scholarship Corporation. All other products and services herein may be trademarks of their respective owners. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program and Pre-AP: apcentral.collegeboard.com.

The College Board mission to connect students to college success and opportunity is supported by the work of the K-12 Professional Development unit. Through the vast resources on AP Central, publications, workshops, electronic discussion groups (EDGs), online events, and other resources, AP teachers find valuable support for the important work of teaching challenging content, developing enthusiasm for learning in their students, and preparing students for the AP Exam.

The materials in this book were developed and produced in a joint effort by the College Board's K-12 Professional Development Content Development Group and the Technology and Digital Production Group. To learn more about the entire K-12 Professional Development and AP Program staff, visit the About Us page on AP Central.

Michael Johanek
Executive Director
K-12 Professional Development

Content Development
Susan Kornstein
Director
Lawrence Charap
Head, History/Social Sciences
Content Development Group
Marcia Wilbur
Head, World Languages and Cultures
Content Development Group
Austin Caperton
Coordinator
Gibson Knott
Project Assistant
Technology and Digital Production
Edward Nothnagle
Director
Matthew Hume
Digital Production Coordinator
Alexandra Ringe
Content Producer

Important Note on Course Updates

The Course Description on AP Central ${ }^{\circledR}$ provides current information about the AP^{\circledR} courses and exams. Other materials included in this book may have been published at an earlier date and may include information that has been recently updated. News about updates to courses and exams is available on AP Central at apcentral.collegeboard.com.

Recent Course Updates
 Statistics

The Student Performance Q\&A for the 2005 exam (available on AP Central this fall) provides valuable information on areas in which students continue to need attention. In general, on the free-response questions students need to be encouraged to show all of their work and justify their answers. Sample student responses with corresponding commentary on AP Central should also add to teachers' and students' understanding of what is expected on these questions. More details on student performance in 2005, in all content areas of the exam, can be found on AP Central.

Table of Contents

Table of Contents
I. Welcome 1
College Board President, Gaston Caperton
Executive Director, K-12 Professional Development, Michael Johanek 2
AP Statistics Development Committee Chair, Linda J. Young 3
II. Special Focus: Inference 5
Why Inference? 5
Chris Olsen
The Role of Inference in the AP Statistics Curriculum 7
Roxy Peck
Assumptions 12
Floyd Bullard
Some Reflections on How Inference Questions on the AP Exam are Scored 44
Daniel S. Yates
Model Responses 60
Daren Starnes
Inferential Problems for Practice 74
Chris Olsen
Contributors 85

Table of Contents

III. The Course 87
Excerpt from the 2005, 2006 AP Statistics Course Description 87
2005-2006 AP Statistics Development Committee 127
IV. The Examination 129
Exam Format 129
Multiple-Choice Questions and Answers from the 2002 AP Statistics Released Exam 130
2005 Free-Response Questions 153
2005 Scoring Guidelines 166
2005 Question Overview 185
2005 Score Legend 188
2005 Scoring Commentary 189
2005 Sample Student Responses 196
2005 Free-Response Questions: Form B. 227
2005 Scoring Guidelines: Form B 233
2006 Exam Schedule 250
V. Professional Development 251
Introduction 251
AP Central 255
Pre-AP Professional Development. 259
AP Publications and Other Resources 263
AP Order Form 264
Becoming an AP Exam Reader 276

Table of Contents

Becoming an AP and Pre-AP Workshop Consultant 282
VI. Program Information 283
Purpose and History 283
Advanced Placement Report to the Nation 286
AP Grades and College Credit. 287
AP Potential 289
Exam Security 291
College Board Regional Offices 292

Chapter I

Welcome

Welcome

College Board President Gaston Caperton

Dear Colleagues:

In 2005, more than 15,000 schools offered high school students the opportunity to take AP° courses, and over 1.2 million students then took the challenging AP Exams. These students felt the power of learning come alive in the classroom, and many earned college credit and placement while still in high school. Behind these students were talented, hardworking teachers who are the heart and soul of the Advanced Placement Program.

The College Board is committed to supporting the work of AP teachers. The AP Course Descriptions outline the content and goals of each course while still allowing teachers the flexibility to develop their own lesson plans and syllabi and bring their individual creativity to the AP classroom. Moreover, AP workshops and summer institutes, held around the globe, provide stimulating professional development for more than 60,000 teachers each year. The College Board Fellows stipends provide funds to support many teachers' attendance at these institutes. Stipends are now also available to middle school and high school teachers who use Pere- AP^{*} strategies.

Teachers and administrators can also visit AP Central ${ }^{\circ}$, the College Board's online home for AP professionals, at apcentral.collegeboard.com. Here, teachers have access to a growing set of resources, information, and tools, from textbook reviews and lesson plans to electronic discussion groups and the most up-to-date exam information. I invite all teachers, particularly those who are new to the AP Program, to take advantage of these resources.

As we look to the future, the College Board's goal is to broaden access to AP classes while maintaining high academic standards. Reaching this goal will require a lot of hard work. We encourage you to connect students to college and opportunity not only by providing them with the challenges and rewards of rigorous academic programs like AP, but also by preparing them in the years leading up to AP courses.

The College Board

Welcome

Executive Director
 K-12 Professional Development Michael Johanek

Dear Colleague:

We often hear from teachers, counselors, and administrators that the school day provides precious little opportunity to refresh one's thinking, reflect on what one does, and share insights with colleagues. I certainly recall that from my years as a teacher and administrator.

With that in mind, I hope this workshop provides a chance for you to enliven and reinvigorate your practice. Experienced colleagues who faced similar challenges stand behind each of our workshops as authors and reviewers, and many lead our workshops throughout the year.

To continue meeting your professional needs, we have added a number of offerings in the last year:

- Course-specific theme materials in 16 AP workshops, from "Immigration in U.S. History" to "The Fundamental Theorem" in calculus to "The Importance of Tone" in English literature
- Pre-AP workshops in algebraic thinking, world languages, biology and technology, differentiated instruction, social studies, and more
- Workshops to help prepare for the new SAT, with particular focus on the writing section, scoring the exam, and ESL/ELL strategies
- Events to support teachers as they plan for the new AP Italian course
- Online workshops and events, available live and as archives
- Publications in core content areas, including Differential Equations, The Importance of Lab Work, Reading Poetry, Teaching with Primary Sources, and more
- Workshops in your region, across the nation, and around the world

Thank you for choosing to continue your own learning through College Board professional development. After your successful completion of this event, you will receive Continuing Education Units (CEUs) certified by the International Association for Continuing Education and Training (IACET).

We hope your experience at this workshop provides the content, strategies, networking, and enthusiasm you need to return reinvigorated to your students. We invite you, as a member of the College Board community, to participate again very soon.

I wish you all the best this school year, and thank you for the important contributions you make to our children's lives!

Executive Director, K-12 Professional Development

Welcome

AP Statistics Development Committee Chair Linda J. Young

To AP Statistics teachers:

Welcome to this AP Statistics workshop! I wish I could be there with you, as it is always stimulating when current and future AP Statistics teachers meet. Insights into fundamental statistical concepts and ideas on how to share them with students in the classroom are exchanged, and all become more enthusiastic about teaching statistics. The Advanced Placement Program ${ }^{\bullet}$ exists to support you and to give your work credibility with colleges and universities-but also to assist you in finding more effective ways to help students learn statistics. To this end, this packet offers some great materials written by leading teachers in both high schools and colleges. I hope you'll find ideas that are both thought-provoking and useful.
"Inference" has been chosen as the theme of this year's materials. Students are accustomed to making inferences in their daily lives. Statistical inference is a formal process of using sample data to answer questions or to draw conclusions about a population. Without a census, we can never be certain that the inferences being made are correct. Statistics simply allows us to quantify the uncertainty associated with each inference. The mechanics of setting a confidence interval or conducting a hypothesis test are mathematically simple. Determining what confidence interval or hypothesis test is needed and what each means to the study upon completion of the computations are the real challenges. It is here that the mathematics becomes integrated with the application, and statistics becomes exciting.

You are AP Statistics, and you are doing a great job. Enjoy your workshop and keep up the enthusiasm!

Linda J. Young
Chair, AP Statistics Development Committee
University of Florida

Chapter II

Special Focus: Inference

Special Focus: Inference

Important Notes

The materials in the following section are organized around a particular theme that reflects important topics in AP Statistics. The materials are intended to provide teachers with professional development ideas and resources relating to that theme. However, the chosen theme cannot, and should not, be taken as any indication that a particular topic will appear on the AP Exam.

Within these materials, references to particular brands of calculators reflect the individual preferences of the respective authors; mention should not be interpreted as the College Board's endorsement or recommendation of a brand.

Why Inference?

Chris Olsen
Cedar Rapids Community Schools
Cedar Rapids, Iowa

The outline of the AP Statistics course as it appears in the Course Description presents four basic topics: exploring data, sampling and experimentation, probability, and statistical inference. It might seem at a casual glance that this Special Focus section is the result of simply listing four possible generic foci in the Course Description, and-after perhaps, in the manner of statisticians, rolling a tetrahedral die-selecting one of the four. In terms of importance, however, the four topics delineated in outline form for the purpose of describing the course may be thought of as three topics in service to the fourth.

Statistical inference, it may be said, exists in a larger context beyond the classroom, and moreover a context that truly represents the importance of statistics in general and the AP Statistics course in particular. Statistical inference appears to be the only reliable methodology to address one of the oldest of philosophical problems: what can we know, and how can we know it?

The problem of the scope and limits of human knowledge has generally been approached from two perspectives. The rationalist view, perhaps best represented by René Descartes (1596-1650), is that a well-executed logical process can begin with certain knowledge and lead progressively to derived knowledge. From the famous cogito ergo sum, which asserts that the existence of thought guarantees the existence of the thinker, Descartes built an impressive list of "truths" by appealing to reason alone. The eighteenth-century

Special Focus: Inference

British empiricists-John Locke, George Berkeley, and most effectively the Scot, David Hume-rejected the idea that man is born with innate concepts such as mathematics and logic and causality. In the view of the empiricists, knowledge is based on sense experience and mental reflection. Beginning with skepticism similar to Descartes's, the empiricists argued that the observing human makes "connections" between and among observationsassociations, as we would now call them-and knowledge consists of creating mental representations of these connections. Writing in 1740 in The Treatise on Human Nature, Hume dropped a bombshell unnoticed by his contemporaries: from observation alone, associations cannot be translated into statements of causation. As we would say today, correlation does not imply causation.

Over the course of two and a half centuries, these problems of "natural" philosophy have led to the development of the procedures and concepts known as the "scientific method," but Hume's "problem of induction" still challenges us. The fundamental problem still boils down to this: what may we infer from systematic observation, and by what logical process may we infer it? Two and a half centuries after Hume, we have a single best answer to that problem. Making inferences in an uncertain world fraught with many observational perils is the unquestioned domain of the discipline of statistics.

The framers of the AP Statistics topic outline wisely understood that the mere mechanics of hypothesis testing and building confidence intervals is only a part of the inferential landscape. Exploring and representing data numerically and visually can suggest scientific hypotheses and illuminate associations that may lead to more formal inference-making procedures. An understanding of random variables and probability allows us to quantify the inherent uncertainty of inferences based on sampling. Proper planning and execution of experiments, with appropriate concern for possible confounding variables, protects the validity of inferences when "statistically significant" results occur.

Successful students in AP Statistics will come to understand the role each of the parts of the topic outline plays in making inferences, and they will learn to communicate their methods and conclusions in a clear and unambiguous manner, with proper appreciation of both the power and limitations of their statistical procedures.

In this Special Focus section, we consider two aspects of inference that are "nonmechanical": the assumptions upon which sampling distributions (and thus the validity of the "mechanics" of inference) are based, and how students can effectively communicate their methods and conclusions in the classroom as well as on the AP Statistics Exam. We have been led toward this focus by the depth and variety of questions about these aspects appearing on the AP Statistics Electronic Discussion Group, as well as by our own teaching experience preparing students for the AP Statistics Exam.

The Role of Inference in the AP Statistics Curriculum

Roxy Peck
California Polytechnic State University
San Luis Obispo, California

Variability: The quality, state, or degree of being variable or changeable.

Variable: Likely to change or vary; subject to variation; changeable. Inconstant; fickle. Tending to deviate, as from a normal or recognized type; aberrant.
-The American Heritage ${ }^{\circledR}$ Dictionary of the English Language, 4th ed.

So what does variability have to do with statistics? The simple answer is-everything! In a world without variability, there would be little need for statistics (or statisticians). Think about this for a moment: Suppose every high school senior were identical—with respect to height, the time required to assemble a geometric puzzle, opinion on whether seniors should be permitted to leave campus during the lunch hour, and so on. In this case, answering questions about the population of high school seniors would be an easy process. Want to know the time required to assemble the geometric puzzle? Time one student and you would have your answer. Want to know if seniors think they should be allowed to leave campus for lunch? Asking one student would be enough! You would have no risk of being wrong when you generalize what you see in this "sample" of one to the population of all seniors.

A common objective of data analysis is statistical inference-generalizing from a sample to the larger population from which the sample was selected. It is variability that makes statistical inference a challenge. To see this, let's consider an example. Suppose that the math department at a particular college wanted to know if students who received credit for first-semester calculus based on their scores on the AP Calculus Exam tended to get higher grades in the second semester of calculus than students who did not have AP credit for the first semester and were required to complete the first-semester course offered by the college with a passing grade. This would require comparing two groups of second-semester calculus students: those with AP credit for first-semester calculus and those who did not have AP credit. If there were no variability in second-semester calculus grades in each of these two groups, it would be easy to compare the two groups.

Special Focus:
 Inference

If all students who had AP credit for the first semester earned a B in second-semester calculus, and all students in the other group earned a C, then we would know that students with AP credit in the first course performed better in the second course than students who successfully completed the first-semester college course. If all students who took the first-semester college course earned a B in the second semester, we would know that there was no difference between the two groups with respect to second-semester grades. And if all students who completed the first-semester college course earned an A in the second-semester course, we would know that the students with AP credit did not perform as well as those who took the college course. What is even more interesting is that if there were no variability in each of the two groups of interest, we would have only needed to look at the grade of a single student from each group to reach a conclusion, and we would have no risk of being wrong!

This example, as described, is clearly unrealistic. Of course there is variability in secondsemester calculus grades for each of the two groups of second-semester calculus students. The challenge is to answer the question of interest when faced with this variability. One way to overcome the "challenge of variability" is to obtain complete information for the populations of interest. In our example, suppose the populations of interest consist of all students who have taken second-semester calculus at the college in the past 10 years, divided into two groups based on whether the first-semester calculus requirement was satisfied by AP credit or by receiving a passing grade in the course offered by the college. If complete information is available for each of these two groups, a comparison of the groups is relatively straightforward. The data for each group would completely specify the grade distribution for that group. A table or graphical display like the ones below might be used to display the grade distributions.

Percent at Each Grade

Grade	Students with AP Credit for First Semester	Students Completing First-Semester Course at the College
A	20%	15%
B	25%	20%
C	30%	45%
D	15%	10%
F	10%	10%

Since the grade distribution for each of the two groups is known exactly, definitive statements can be made about the similarities and differences between the two groups. Comparison of the two groups is a bit more complex due to the variability in each of the two populations, but still there is no risk of error because complete information is available for both populations. There is no need for inferential methods in this situation.

Things get more complicated, though, when we don't have complete information, and we must base our comparison on data from samples. As noted earlier, if there is no variability in the population, there is no problem. But in any real situation of interest, we will need to consider variability. If every sample from a population looked exactly like a miniversion of the population (and therefore also exactly like every other sample), generalizing from a sample to the corresponding population would still be simple. Unfortunately, variability in the population leads to a second type of variability called sampling variability. Sampling variability refers to the variability that occurs from sample to sample from the same population due to chance as a result of the sample-selection process. And the greater the population variability is, the greater the sample-to-sample variability will be.

Getting back to our example, suppose that we have a random sample of 60 students who had AP credit for first-semester calculus and a random sample of 60 students who completed the college course, and that the sample grade distributions were as indicated in the following table.

Grade Distributions and AP Credit

Grade	Students with AP Credit for First Semester	Students Completing First-Semester Course at the College
A	12	10
B	15	12
C	18	24
D	8	7
F	7	7

The grade distributions for the two samples are not exactly alike. Is this because there is a real difference between the grade distributions for the two corresponding populations? Or might the grade distributions for the two populations be the same and the difference between the two sample distributions be attributable to sampling variability-i.e., the usual variation between a sample distribution and the corresponding population distribution that results from the sampling process? Deciding between these two competing explanations for the observed sample differences requires an understanding of sampling variability, and understanding sampling variability is the key to understanding statistical inference.

AP Statistics includes two general types of inferential procedures: confidence intervals and hypothesis tests. Confidence intervals provide a method for using sample data to construct estimates of population characteristics, whereas hypothesis tests allow us to use sample data to decide between two competing claims, called hypotheses, about a population characteristic. Although confidence intervals and hypothesis tests are generally used for different purposes, they share a common goal of generalizing from a sample to a population. Understanding the logic and rationale for both confidence intervals and hypothesis tests requires an understanding of sampling variability.

When the objective is to use sample data to estimate a population characteristic, such as a population mean or a population proportion, sampling variability must be taken into account. A consequence of the chance differences that occur from one sample to another is that a sample statistic (e.g., a sample proportion) will not be exactly equal to the corresponding population characteristic (e.g., the population proportion). Confidence intervals acknowledge this sampling variability in the way that the interval estimate is constructed. The greater the anticipated sampling variability is, the wider the resulting confidence interval will be.

Special Focus: Inference

In hypothesis tests, when sample data is used to make a decision between a null hypothesis and an alternative hypothesis, the decision ultimately comes down to deciding if a plausible explanation for what was observed in the sample is sampling variability in the situation where the null hypothesis is true. That is, if the null hypothesis is true, could what was observed in the sample have been a consequence of the sample selection process alone? Because our intuition about sampling variability is not always very good, we rely on formal inferential procedures to determine if chance (sampling variability) is a plausible explanation for the difference between what is observed in a sample and what is expected when the null hypothesis is true.

Because statistical inference is a major component of the AP Statistics course and because understanding sampling variability is the key to understanding inference procedures, it is important that students become comfortable with the concept of a sampling distribution. The sampling distribution of a sample statistic describes the variability in the values of the statistic that is attributable to sampling variability. The information that a sampling distribution provides about sampling variability is the basis for the confidence intervals and hypothesis tests that make up the inference section of the AP Statistics course. Students may initially struggle when they first encounter sampling distributions-this is the most abstract idea they will have to deal with in the course. But, if students do not have a conceptual understanding of sampling distributions, the procedures for creating confidence interval estimates and for testing hypotheses will seem very mechanical. Although they may be able to follow the prescribed sequence of steps and reach a conclusion in the end, the logic and rationale behind the procedures will be missing.

Statistical inference is a substantial portion of the AP Statistics course-the Course Description indicates that inference should make up 30 to 40 percent of the exam. This acknowledges the important role that statistical inference plays in allowing investigators to draw conclusions on the basis of sample data. In the "information age," it is hard to think of a discipline that does not make use of inferential techniques to address critical issues. So take your time when covering sampling distributions. Simulations and activities can be useful tools for developing conceptual understanding. And make sure to allow adequate time to cover the concepts and techniques of inference. A good conceptual understanding of the ideas of inference and the ability to employ inferential tools in thoughtful and appropriate ways will serve your students well-not just on the AP Statistics Exam, but in their future studies and in life as well.

Special Focus:
 Inference

Assumptions

Floyd Bullard
The North Carolina School of Science and Mathematics
Durham, North Carolina

Introduction

Even if you don't teach physics, you probably studied it or you have some familiarity with it because some of your math students also study physics. You are probably aware that it is common during introductory physics courses to make statements such as "Assume there is no air resistance," or "Assume this is a frictionless surface," or "Assume the force of gravity is constant." These assumptions simplify physics problems a great deal and, under some circumstances, may be quite reasonable, by which I mean that the assumptions are almost true, and the solution you obtain to a problem is about the same whether you make the simplifying assumption or not. Of course, students should always be aware that the reasonableness of the solution depends upon the reasonableness of the assumptions they make. When tossing a ball up into the air, it may be reasonable to assume that the Earth's gravitational pull on the ball is constant throughout its path. That assumption would not be reasonable if we were launching a rocket to the moon. In statistics we also make simplifying assumptions, and it is just as important that students question whether the assumptions are reasonable. For example, consider the familiar sampling scenario known as the "capture-recapture" technique. Suppose we were to capture 30 fish in a lake, tag them, and then release them back into the lake. Later, we capture 40 fish in the lake and find that 10 of them are tagged. Since one-quarter of the 40 fish are tagged, we might reasonably estimate $30 \times 4=120$ to be the number of fish in the lake. But what are some of the underlying assumptions we are making? ${ }^{1}$

We are assuming that both samples are random samples of all the fish in the lake. Is that reasonable? It depends upon how the fish were captured. Probably no capturing technique would catch all the fish in the lake with equal probability. But biologists have some idea of what techniques work better than others. Certainly we can easily imagine poor sampling techniques, such as placing many traps in the same place or at the same depth in the lake. Such a sampling technique would likely have a tendency to catch the

[^0]
Special Focus: Inference

same fish during both "capture" and "recapture" stages and so may tend to produce an underestimate of the population size; the point estimate would be biased.

We are also assuming that the population of fish from which we're sampling is the same during both stages of the study. This implies that we can't wait so long that many fish die and others are hatched. Such a delay would dilute our marked fish and yield a biased estimator, one that tended to overestimate the population size. It also implies that the method for marking the fish can't harm them in any way; if they die because of the marking, then we will again get a biased estimator, an overestimate of population size.

Yet another assumption we are making is that the fish are as likely to be caught the first time as the second. But if the capture technique is the same both times, it is at least plausible that fish caught the first time will be "trap-shy" the second time and will be better at avoiding capture. This, too, would tend to produce a biased overestimate of population size.

It can be seen from the preceding discussion that a capture-recapture study is particularly challenging to carry out in real life because in order for the assumptions to be reasonable, the sampling methods must be meticulous and the marking be harmless. What's more, I described the study as it would be done on fish in a lake-a contained population. Imagine the further assumptions we would have to make if studying a less well-defined population, such as squirrels in a city park.

Two Types of Assumptions

As mentioned earlier, a solution to a statistical problem is only as reasonable as the assumptions that lie behind it. In the AP curriculum, the assumptions students are asked to consider are generally of two types: those whose reasonableness can be checked by the data and those whose reasonableness can be assessed only by those with expertise in the field of study and knowledge of how the data were gathered. In the capture-recapture scenario I described in the previous section, all the assumptions were of the latter sort. The reasonableness of the assumptions (and hence of the population estimate) could not be assessed from the data alone. It would depend upon how the data were collected, and if you were a biologist, it might also depend upon your knowledge of the fish in the lake (e.g., where do they tend to swim? Do they school? How quickly might they learn to avoid a trap?).

The assumptions whose reasonableness can be checked with data often relate to sample size. $n p>10$ and $n(1-p)>10$ is an example of one such check, when the data context is

Special Focus:
 Inference

sample proportions. Another example is $n>40$, when the data context is sample means. All expected cell counts >5 and at least 80 percent of expected cell counts >5 is a third example, in the context of a chi-square test. These will all be considered more carefully in the following sections. I bring them up now just to point out what they have in common. They are all rules of thumb used to check the reasonableness of the assumption that the sample size is sufficiently large for a limiting distribution (e.g., normal, t, or chi-square) to be a good approximation for the actual distribution of a statistic.

Now is probably a good time to point out the difference between an assumption and a check for the reasonableness of that assumption. Students often mistake " $n>40$ " for an assumption, when obviously it need not be assumed; they can check whether $n>40$ or not. The assumption students are making, perhaps without realizing it, is that the sample size is sufficiently large for the distribution of the sample mean to be approximately normal. Students are using $n>40$ as a rule-of-thumb check to assess the reasonableness of the assumption. Likewise with $n p>10$ and so on. These are not assumptions: they are rules of thumb for assessing the reasonableness of assumptions.

We will consider in the following sections all the inference procedures that are part of the AP Statistics curriculum and examine in some detail the assumptions that often have to be made when performing them. I have made up most of the scenarios, but they are based on my experiences with my students and studies that they have designed for my AP Statistics class or for a biology class. You may recognize in some of the scenarios your own students' interests and experiences.

Single-Population Proportions

Suppose one of your students-let's call her Alice—wants to estimate the proportion of students at her school who can identify the two senators from your state. How might Alice design a study to find out? She may consider taking a simple random sample from a roster of the entire student body (if she can obtain one), but she will find it very difficult to contact them all, and some still will not participate in her study. She may decide instead to take a nonrandom sample of some sort. Now don't get upset with her, this is not necessarily a bad thing. In practice, it is often difficult or impossible to get a true simple random sample from a population; after all, how often do you have the luxury of a list of all your potential sampling or experimental units? Alice is going to take a nonrandom sample because this isn't a big project, and she only has a couple of days to do it, and you tell her that may be fine-but that she should think carefully about how she obtains her sample.

Special Focus: Inference

Alice knows her sample is not going to be a true random sample, but she wants it to be "like" a random sample. In fact, when she eventually calculates a confidence interval estimating her population proportion, she is probably going to assume that her nonrandom sample "acts like" a random sample. The reasonableness of her estimate depends in part upon the reasonableness of that assumption. What can she do to make the assumption more reasonable?

The main thing Alice wants is to avoid collecting a biased sample. She doesn't want the proportion of students in her sample who know their senators to tend to be greater or less than that proportion among all students at her school. So she would be unwise, for example, to survey all the students in a civics class, since one supposes they would tend to be more knowledgeable about their senators than would students in general. She would be unwise to favor high school freshmen in her sample, or high school seniors, since it is plausible that the older students might be more knowledgeable. She would also be unwise to favor girls in her sample, or boys, since it is plausible that the sexes might not be equally knowledgeable about politics. In fact, a nonrandom sample that is thoughtfully conducted might not be so convenient for Alice as she might like. But let us suppose that she finally decides to stand by the entrance to the school at the start of the school day and ask every fifth student who arrives to participate in her survey until she has 100 participants. This might still produce a biased sample-might early birds be more knowledgeable of politics than later arrivals?-but at least the assumption that her sample is "like" a random sample seems fairly reasonable.

Now let us suppose that 44 of the 100 students Alice sampled could identify both of the senators from her state. She is going to compute a confidence interval of the population proportion using the assumption that her observation (44) was drawn from a binomial distribution having $n=100$ and $p=$ the population proportion under consideration. How reasonable is that assumption? What are the underlying conditions that define a binomial setting? Do we have a fixed number of trials? Yes, $n=100$, determined in advance. Does each have the same probability of identifying the two senators? We are assuming so by virtue of the assumption that the sample is "like" a random sample. Are the observations independent of one another? Alice hopes that the students she has surveyed are not going back and telling others what she asked them so as to alter their responses. In fact, that's one of the reasons she wanted to catch students as they entered the school, to keep them from communicating. It appears to Alice that the assumptions behind the binomial are reasonable.

Special Focus:
 Inference

Next, Alice is going to assume that the sample proportion \hat{p} (which for her random sample happened to be equal to 0.44) is approximately normally distributed with mean p and standard deviation $\sqrt{\frac{p(1-p)}{n}}$. This is not absolutely necessary, because inference can be made using the binomial family of distributions (this procedure is not part of the AP Statistics curriculum), but the assumption makes her calculations easier for her. But how reasonable is the assumption?

Imagine that instead of Alice simply counting how many people in her sample correctly identified the senators, she wrote down a " 1 " for every person who did so, and a " 0 " for every person who failed. She would then have numerical data, of a sort, instead of categorical data. It is not hard to see that the average of her 1 s and 0 s would be precisely the sample proportion 0.44 of people who could identify the senators. What's more, if she were to similarly attach 1 s and 0 s to every student at her school, the average of all those 1 s and 0 s would be precisely the population proportion of all students who could identify the senators. In fact, proportions are a special case of averages, in which the data are all 1 s and 0 s . Since sample proportions are sample averages of 1 s and 0 s , they obey the Central Limit Theorem: the distribution of the sample proportion \hat{p} will be approximately normal if the sample size is large enough.

We'll return to Alice's survey in a moment. Let's digress briefly to address how we determine whether, in the case of a single proportion, the sample is "large enough" for the distribution of the sample mean to be approximately normal.

Since proportions are a special case, they can be treated specially with specific formulas. A very common check of whether the sample size is large enough for \hat{p} 's sampling distribution to be approximately normal is $n \hat{p}>10$ and $n(1-\hat{p})>10$. Some texts recommend $n \hat{p}>5$ and $n(1-\hat{p})>5$ or perhaps the single condition $n \hat{p}(1-\hat{p})>5$. But why do these "work"?

We will not prove the validity of the conditions here but will give an argument for why they make sense, followed by an explanation of why one of them "works." First, note that the distribution of \hat{p} is identical in shape to the binomial distribution of X; the difference between the distributions is that the distribution of \hat{p} has been rescaled by a factor of $\frac{1}{n}$. Since at present we're only interested in shape, we will consider the binomial distribution of X. We know that the binomial tends to look approximately normal, so

Special Focus: Inference

long as it doesn't bunch up too near 0 or too near n, in which case it is either right- or left-skewed, respectively. The condition $n \hat{p}>10$ is a way of making sure it doesn't bunch up too near 0 . If \hat{p} is small, that suggests that p is small, so n needs to be large enough to compensate. Likewise, when \hat{p} is close to 1 , there is a danger that the binomial distribution of X will bunch up near n. Requiring $n(1-\hat{p})$ to be larger than some cutoff prevents that from being a big problem. Hence the two cutoffs.

But why 10 ? Remember that some people use 5 or some other cutoff, so 10 isn't a magic number. The important thing is for your students to do some reasonable check. Here is an algebraic demonstration of why $n \hat{p}>10$ "works."

We begin by requiring that the center of the distribution of \hat{p} be at least three standard deviations greater than 0 . That should prevent the distribution from bunching up too near 0 . Stated mathematically, we require that $p>3 \sqrt{\frac{p(1-p)}{n}}$. Since these are positive numbers, we can square both sides of the inequality and obtain $p^{2}>9 \frac{p(1-p)}{n}$. Algebraic manipulation gives $n p>9(1-p)$, or $n p>9-9 p$. Now if $n p>10$, that inequality must follow, for $n p>10>9>9-9 p$. So it may be a bit of overkill, but it's just a rule of thumb, so that's okay. That overkill is actually useful, because we're going to be using \hat{p} instead of p, anyway, and \hat{p} may be a bit different (hopefully not too much) from p. But we still may be confident that if $n \hat{p}>10$, then the mean of p will be at least three standard deviations greater than zero. An analogous algebraic argument tells us that if $n(1-p)>10$, then the mean p must be at least three standard deviations less than 1.

Students do not need to know why this rule of thumb works (though it wouldn't hurt them), only that it does. The explanation above is given primarily for the edification of teachers who themselves would like to know where this rule of thumb came from. The four histograms below show the distribution of \hat{p} when $p=0.1$ for four different values of n. When $n=10$, we have $n p=1$, so we wouldn't expect the distribution to look very normal, and it doesn't. When $n=50$, we have $n p=5$, so the distribution should look fairly normal, since it meets the rule-of-thumb check that some people use, and indeed it does look fairly normal. In the third histogram, $n=100$, so $n p=10$, and the distribution looks more normal still, and with $n=200$, the normal approximation is very good indeed.

Special Focus: Inference

Let's now return to Alice. Alice confirms that the rule of thumb applies for her data and carries on with her assumption that \hat{p} is approximately normally distributed. She obtains as a 95 percent confidence interval estimate of $p, 0.44 \pm 1.96 \sqrt{\frac{.44 \times .56}{100}}$, or $.44 \pm 0.10$. She is confident that between 34 and 54 percent of the students at her school can identify the two senators from her state and the rest cannot.

Let's review the assumptions Alice made while reaching her inferential conclusion.

1. The sample was a random sample from the population. This was not true, but Alice tried valiantly to get a nonrandom sample that was not biased toward or against students who would know their senators. Her final estimate is dependent upon that assumption and is open to reasonable doubt for anyone who questions her sampling method.
2. The sample proportion was approximately normally distributed. This Alice could check by using the rule of thumb $n \hat{p}>10$ and $n(1-\hat{p})>10$.

An assumption that often troubles students is: "The sample represents no more than 10 percent of the population." This assumption applies more generally than the present case of single-population proportions, and thus will be addressed by itself later. For now, we remark only that so long as Alice's school has more than 1,000 students, this assumption is valid.

Special Focus: Inference

Before moving on to two-sample proportions, it should be mentioned that there is a small difference in the rules of thumb one checks when assuming the normality of \hat{p} 's distribution, depending on whether you are computing a confidence interval or performing a hypothesis test. Alice's check was that $n \hat{p}>10$ and that $n(1-\hat{p})>10$. Had she been doing a hypothesis test, then a slightly better check would have been $n p_{0}>10$ and $n\left(1-p_{0}\right)>10$, where p_{0} is the proportion claimed in the null hypothesis. The difference in these two checks is mathematically very slight, for p_{0} and \hat{p} should, under the null, be close to one another. It is the logical difference that is important. When doing a hypothesis test, all computations, including this check for normality, are performed under the assumption that the null hypothesis is true. Therefore, we use the proportion from the null hypothesis in our check for normality. But when computing a confidence interval, we have no known or hypothesized value for p, so we use our best guess, which is of course \hat{p}.

Comparison of Two Proportions

Suppose another of your students, Chuck, wants to see whether students at his school respond differently to a sensitive question if they have to answer in person versus answering it anonymously. He decides to ask only boys whether they perceive sexual harassment of girls by boys at the school to be a problem. Some of them he will ask orally and record their spoken responses. Others he will hand a slip of paper with the question written, and they can mark it and drop it into a slot in a sealed box. Chuck's null hypothesis is that they respond "yes" in the same proportion for the two "treatments." His alternate hypothesis is that they don't.

In preparation for the study, Chuck shuffles up 50 black cards and 50 red cards from two decks of cards he's mixed together. He writes down the order of reds and blacks in the shuffled stack to indicate the order of the treatments, while still assuring a sample size of 50 for each treatment.

Since much of what Chuck is doing is similar to Alice's study, some of the underlying assumptions only need to be mentioned briefly here. Like Alice, Chuck decides to take a nonrandom sample of 100 people rather than a simple random sample. Since he will be assuming that his sample is "like" a random sample as regards the response to the question, he wants to select it in a way that he believes will not favor one type of response over another. Since Chuck works in the school store, he decides to conduct his survey on the boys that happen to stop there. He carries out his plan, and by the end of the week has his 100 responses.

Special Focus: Inference

He finds that of the 50 boys he asked orally, 19 of them said that sexual harassment was a problem. Of those 50 whom he asked to respond anonymously, 9 of them said that sexual harassment was a problem.

As with Alice's single \hat{p}, the separate sample proportions are approximately normally distributed if each of the sample sizes is large enough, again by virtue of the Central Limit Theorem (used in concert with a theorem about "combining" normal distributions). We use the same criteria for checking the reasonableness of that assumption, only now we have to apply it to both samples. Since only 9 boys responded "yes" when responding anonymously, the condition $n \hat{p}_{\text {anon }}>10$ isn't quite met, but it's close enough that Chuck decides to "proceed with caution." His gut feeling is that $\frac{19}{50}$ is so different from $\frac{9}{50}$ that the difference will be very significant statistically, so much so that the slight risk of this assumption won't matter much.

Chuck decides all his assumptions are reasonable and computes a p-value for his significance test, finding it to be $p=0.026$. He is satisfied that boys respond differently to the question when asked out loud versus by anonymous written response.

Let's review the assumptions Chuck made while doing his study.

1. Chuck assumed that his sampling method is "like" a random sample of boys from his school. Without that assumption, he cannot extrapolate his conclusions beyond the sample of boys he happened to survey when they visited the school store. That assumption may or may not be reasonable.
2. $n \hat{p}_{\text {oral }}>10, n\left(1-\hat{p}_{\text {oral }}\right)>10, n \hat{p}_{\text {anon }}>10$, and $n\left(1-\hat{p}_{\text {anon }}\right)>10$. This condition was very nearly met, so any error in the p-value is likely not to be severe.

Chuck was sampling less than 10 percent of the population. Again, this potentially confusing assumption will receive its own special treatment later.

A Single Population Mean

Gavino is a student taking a health class. For a homework project, he decides to show people pictures of plates of food and ask them to estimate the number of calories that are on each plate. He has four such pictures, and he will show each one to 15 people. He will then report a confidence interval estimate of the mean guess for each picture along with the actual number of calories in the foods pictured.

Special Focus: Inference

Gavino knows he will have to make some assumptions. What are they? Well, we know that he will have to assume his sample is a random sample of the student body. (We've been through this before!) But since his sample is fairly small, Gavino decides it might be a good idea to get a roster of the student body and take an actual simple random sample. With help from the principal's office, he does this and is able to track down and survey 13 of the 15 people on his list. He can't find the other two, so he decides to replace them with two more randomly sampled people.

Now he plans to construct his confidence intervals using the single-sample t procedure. But $n=15$ is not a very large sample size, so he isn't sure whether this is legitimate. He knows there's something about "assuming normality" but can't really articulate what that means. Let's take a look at it.

The Central Limit Theorem tells us that \bar{X} will have an approximately normal distribution if the sample size n is "large enough." And if \bar{X} has a normal distribution, then another theorem (from "Student" and R. A. Fisher) tells us that the statistic $\frac{\bar{X}-\mu}{s / \sqrt{n}}$ has a t distribution with $n-1$ degrees of freedom. That's a fact that Gavino plans to use when constructing his confidence intervals. So the legitimacy of his procedure comes down to whether $n=15$ is "large enough" for the Central Limit Theorem to apply to each of his four \bar{X} s. (Note that Gavino is really performing four different studies that happen to involve the same sample of 15 subjects. The results of the studies are therefore not independent of one another, and some advanced analysis would be possible with his data, correlating responses to individual subjects. But for the purpose of an AP Statistics project, Gavino's plan to present one confidence interval for each food picture is reasonable, though he should inform his audience that the same subjects were used for each photo.)

The Central Limit Theorem does not itself dictate how large n needs to be, but two other facts can help us out. First of all, if the population from which the data are being drawn is exactly normal already, then the distribution of \bar{X} will be exactly normal no matter how large or small n is. And second, the more nonnormal the distribution is from which the data are drawn, the larger the sample size will need to be in order for the distribution of \bar{X} to be "approximately normal." Here is a rule of thumb that some texts use. If $n<15$, then you cannot really verify that the data come from a normal distribution. You should verify that there are no outliers and that no skew is obvious, but even then you are still assuming that the distribution from which the data were drawn is approximately normal. If n is between 15 and 40 , then the distribution of the population need not be so very normal,

Special Focus: Inference

just so long as it isn't extremely skewed or heavy-tailed. And if $n>40$, then you need not really worry much about nonnormality in the population, or even outliers in the data. All but the most unusually severe skew will be overcome by the Central Limit Theorem. ${ }^{2}$

Whether you choose that rule of thumb or another, it is always required that you assess the normality of the population distribution from which the data were drawn. This may be done by constructing a "normal probability" plot (also sometimes called a "normal quantile plot" or a " $\mathrm{Q}-\mathrm{Q}$ plot"). If the normal probability plot looks roughly linear, then the data could reasonably have come from an approximately normal distribution. There's a Catch- 22 here, which is that with smaller data sets, it is more difficult to assess normality than with larger data sets (nonlinearity in the normal probability plot is common when n is small, even when the data really do come from a normal distribution), yet normality is more important for inference. That can't be helped. That's why when $n<15$ we really are relying on the assumption that the data come from an approximately normal distribution. Boxplots, histograms, and dotplots are other tools that you might use to assess normality. They are less sophisticated than the normal probability plot, but they are still acceptable in the AP Statistics curriculum so long as they are used appropriately. For example, exceptionally long tails or outliers on only one side of the box are signs of nonnormality. Note too that a histogram representing few data points may change appearance dramatically as the width and placement of the bins changes. Drawing a small data set from a normal distribution will not produce a bell-shaped histogram! Students should be looking primarily for obvious skew or outliers.

In Gavino's case, he checked normal probability plots for his four data sets and found that in three cases there were neither obvious deviations from normality nor any extreme outliers. But the responses to one of the food pictures (a steak, broccoli, and a baked potato with sour cream) included two calorie estimates that were extreme outliers. For this data set, the assumption of normality was not reasonable and the sample size was too small to rely on the Central Limit Theorem to produce approximate normality in the distribution of his sample mean. Gavino was told that advanced techniques exist that permit inference in this situation, but they are beyond the AP syllabus. Therefore, he decided to drop that picture from his study altogether.

[^1]
Special Focus: Inference

Based on the advice of his health teacher, Gavino decided that seeing the variability in the students' guesses, not just an estimate of the mean, might be instructive. So along with his confidence intervals of the three means, Gavino also drew dotplots of the reported guesses for each of the three pictures of the foods and was able to include the fourth picture and data as well, excluding a confidence interval estimating the mean guess. In this way he not only was able to demonstrate how well (or poorly) people can guess the calorie content of different foods on average, but also in what way their guesses tend to be in error.

Comparing Two Means

Latisha is a female weightlifter. She can't lift as much weight as the strongest boys in her school, but she thinks that's an unfair comparison because she's shorter and lighter than they are. She thinks that the percent of a person's body weight that they can lift would be a fairer comparison, and she is certain that under this criterion she would compare favorably with the boys.

But Latisha is concerned that perhaps this criterion itself tends to favor girls, just as the absolute weight lifted tends to favor boys. She decides to do a hypothesis test. Her null hypothesis will be that the mean proportion of their weight that girls can lift is the same as the mean proportion of their weight that boys can lift. And her alternate hypothesis will be that for girls that mean proportion is less than it is for boys. If Latisha can reject the null hypothesis in favor of the alternate hypothesis, then she will have demonstrated that her criterion also actually favors boys; thus, her superior individual performance by that criterion will clearly indicate her weightlifting prowess.

Latisha decides to make this into her class project. But she'll have trouble determining whom she should include in her sample. A simple random sample would be too difficult to recruit, since the measuring process would not take a trivial amount of time. The most feasible thing she can think to do is take a nonrandom sample of students who are already at her school's gym, but then she has a problem: they tend to be those who are athletic already. Should her populations be students who frequent the gym? She has seen that boys who frequent the gym tend to use the weights a lot, while girls tend to use cardio equipment. Are those fair populations for her comparison? She doesn't think so.

Special Focus:
 Inference

Then she settles on a solution. There are boys' and girls' track teams at her school as well as boys' and girls' crew teams. The former will tend to be lean, the latter, more muscular. She will see whether she can recruit the members of both teams to participate in her study. She will end up conducting separate hypothesis tests on the athletes in the two sports since it doesn't seem quite right to mix the data together. (She's correct about this; we'll discuss it shortly.) Latisha knows that her sampling process has not the slightest claim of being random, but she thinks that she may reasonably be able to assume that her samples are "like" random samples of track athletes and crew athletes from all over. In neither sport does the girls' team perform noticeably different from the boys' team when competing against other schools.

She talks to the four teams' coaches and gets their permission to request the students' participation. All agree to participate. Latisha tries to control conditions as much as she can, getting each student to reach his or her maximal bench press within three lifts, before he or she has done any strenuous exercise for that day. Then she computes for each student the percent of his or her body weight that he or she lifted.

She examines the four data sets and finds to her pleasant surprise that none of them show obvious nonnormality or outliers. Her sample sizes are all fairly small, however, so she knows that she is relying on the assumption that these percentages come from an approximately normal distribution. Normal probability plots of the four data sets do not obviously contradict this assumption.

Latisha conducts her t-tests and finds that with the crew members, she rejects the null in favor of the alternate: even by the percent of body weight criterion, boys perform better on average than girls. She is thus satisfied that her superior performance by this criterion shows her actual superiority to many male weightlifters. With the track teams, however, she was not able to reject the null hypothesis. She thinks that perhaps with leaner people, percent of body weight they can bench press isn't very different for males and females, but that with more muscular people, the differential between boys and girls becomes greater. This would require a further study that she's not able to conduct right now, but her curiosity is piqued. At any rate, she is satisfied with the conclusions to her own study.

Let's review the assumptions that Latisha made. Just as was the case with Gavino, Latisha had small sample sizes. She checked them for outliers and obvious nonnormality and luckily found none. So she proceeded with her t-tests, under the assumption that the data could be regarded as coming from population distributions that were approximately normally distributed. Due to the small sample sizes, the normal probability plots were not sufficient to confirm that the data really came from approximately normal distributions,

Special Focus: Inference

but at least they didn't contradict it. The normality of the distributions from which the populations were drawn remained, therefore, an assumption.

Latisha's samples were not at all random. They were the track teams and crew teams from her school. The purpose of her research was to show that the percent of a person's body weight he or she could lift was, on average, higher for boys than for girls. She could not conclude this for students in general, since the only samples that demonstrated this were crew teams. But her assumption was that her school's crew team was "like" a random sample of muscular athletes. If we accept this assumption, then her conclusion about boys being able to lift a greater percent of their body weight than girls (among more muscular athletes) is reasonable.

Chi-Square Tests

Let's suppose that another student, Alissa, has proposed a project for your class in which she wants to test whether the sort of ads one hears on the radio is different for different stations. She comes up with several different ad categories, including "cars," "fast food," "drugs," "hygiene products," "charity groups," "beer," and a few others including the catchall "other." Her station types are "country," "pop," "hard rock," and "R\&B." She plans to listen to these stations and count the ad types she hears. She anticipates using a chi-square test of homogeneity of proportions to test the null hypothesis that the ads occur with equal frequency on all station types, against the alternate hypothesis that they don't.

You probe Alissa a little bit and find that she really plans to listen to only one station of each type because you can only reach one of some types in your area. Thus, her inference will only be about those particular stations, not about "station types" in general.

When you ask her how she plans to sample, she confesses that she hasn't thought about it much. "I could listen when I'm bored, picking a station at random?" she suggests. This is actually not so bad as it may at first sound. By picking the station at random that she listens to, she reduces the risk of the station being confounded with the time she happens to be listening. For example, if she were to consistently listen to the country station in the morning, the R\&B station in the early afternoon, and so on, then she would have a design problem. But so long as she chooses her station at random, this problem may be avoided. How long does she plan to listen to each station and how many ads will she record? She hasn't thought much about that either, but she discusses it with you and decides to listen to each station for 30 minutes each day for a week, with the time being randomly chosen from a lot of times of the day when she can listen, including early morning, after school, and evening times.

Special Focus: Inference

This can hardly be called a true simple random sample of ads, but perhaps the assumption that her sample of ads will resemble a random sample is reasonable. What other assumptions must Alissa make? She's preparing to do a chi-square test of homogeneity of proportions with several ad categories and four stations. The test statistic she computes, called a chi-square statistic, will indeed have a distribution that is approximately chi-square (with degrees of freedom $=$ number of stations $-1 \times$ number of ad categories -1), so long as two conditions are met. First, the null hypothesis must actually be true, of course. But second, she must also have enough observations that the expected cell count for every cell is at least 1 , and the expected cell count for at least 80 percent of the cells is at least 5 . That is, of course, a rule of thumb, but it is a very commonly used one. The chi-square distribution is actually a continuous limiting distribution of a discrete distribution; as the number of observations increases to infinity, the discrete distribution approaches the chi-square distribution in a similar manner to the binomial approaching a normal distribution. The rule of thumb suggests sample sizes from a number of samples that result in a collective sample that is "large enough."

Alissa cannot control the expected cell counts, of course, in a test of homogeneity of proportions. They will depend upon the actual observations she makes. (Note that in a chi-square test of goodness of fit, you can control the expected cell counts simply by adjusting the total number of observations.) But Alissa can make an educated guess based on her listening experience. She decides to throw out a couple of fairly rare categories ("charity groups" and "drugs"), lumping them in with "other." This will reduce the number of cells that produce small expected counts. Then she crosses her fingers and gets going.

After a week, she has listened to a whole lot of ads. Each 30-minute segment generated 14 ads on average, so with four stations and seven days, she has about 400 ads. Her expected cell counts do indeed all turn out to be greater than 1 . She comments that she didn't hear many "charity group" ads at all, which would have likely violated the "no expected counts less than 1" condition had she included that category. You inform her that a commonplace procedure is to combine categories after the fact in order to meet the conditions for the chi-square distribution. She only has 3 of 20 cells with expected counts less than 5, so she feels good about using the chi-square distribution. Her p-value is quite small, so she concludes that these particular four stations do not all play the same types of ads.

Regression

Joshua and Theo are doing a biology experiment in which they want to ascertain the extent to which a greater amount of light applied to plants will make them grow taller. They plant 25 lima beans in 25 separate pots. They have 25 separate small plant

Special Focus: Inference

chambers set on 25 different light timers. Five plants will be randomly allocated to each of five different treatments: $3,6,9,12$, and 15 hours of light each day. After two months they'll measure the heights of the plants and estimate the extent to which light affected their heights.

This sounds like a good regression context. The explanatory variable is numeric and comes at several different levels, and the response variable is also numeric. The students want to measure the extent to which light made a difference-essentially, they want to estimate the slope of the regression line of height on daily hours of sunlight. This will be possible using a simple software package and a simple linear regression model, so long as some assumptions are met.

What are the assumptions behind linear regression? First, we assume that the underlying relationship between x and y really is linear. This is almost never true, but it is often "close enough." The best way to evaluate this is by looking at a residual plot (residuals versus x or residuals versus \hat{y}) to see whether they show a pattern. Some students want to see sinusoidal patterns in any set of residuals that go up and down, but usually they are attributing a pattern to random noise. The biggest pattern to worry about is curvature: "positive-negative-positive" or "negative-positive-negative." Such a pattern suggests that there is a nonlinear underlying relationship. In that case, sometimes a transformation of variables can achieve near-linearity.

Two more assumptions are that the errors are normally distributed and that they have the same standard deviation for all x values. Although it is not at all obvious, this is not the same as saying that the residuals are normally distributed and all have the same standard deviation. The difference is that the "errors" are the deviations between the response variables and the "actual" underlying (invisible) linear phenomenon, whereas the "residuals" are the deviations between the response variables and the least-squares regression line, which is only an estimate of the "actual" line. Happily, we don't worry about this distinction in the AP curriculum, and it won't be discussed further here, except to say that although errors and residuals aren't identical, the latter are generally a sufficiently good estimate of the former (assuming the linear model is appropriate) that we can use them to evaluate the two assumptions about the errors. So we "eyeball" the residual plot to see whether the residuals' magnitudes seem roughly constant for all x-values. The most common way that this fails to be true is for errors to grow larger with larger y-values. This is because variability is often proportional to the measurement itself. A transformation of the response variable can sometimes correct for this problem, should it occur. And then we do some checks to see whether the residuals look approximately

Special Focus: Inference

normally distributed; perhaps we make a normal probability plot of them. Even a boxplot may be a fair assessment tool; we would want to see that there were no outliers, there was not strong skew, and the tails of the distribution were not excessively "heavy." Unfortunately, these checks cannot be made until after the data are collected. What happens if they are not met? Well, data transformations can help sometimes. But if they fail to fix the problems, then the basic linear regression tool cannot be used. That is one of the reasons that studies often involve a preliminary study stage: to anticipate what is going to happen so the full study may be designed appropriately.

Let us get back to Joshua and Theo. They spend a couple of months growing their lima beans (two of them do not germinate) and find to their relief that the regression assumptions seem reasonable. So they perform inference, finding that on average, each extra daily hour of sunlight resulted in an extra 1.4 cm of plant height.

Independence of Observations

I want to address fairly briefly one assumption that is often made almost without thought. It is not a "big deal," because it is usually a very reasonable assumption, but it is worth knowing why it is made. And of course, if the assumption is not reasonable, then the inference procedures in the AP curriculum may not be appropriate.

The models that we use-all of those in the AP curriculum-assume that all of our observations are independent of one another. This is only true if we are sampling with replacement. Otherwise, with every observation, the distribution of the remainder of the population would change, and we would lose independence. We assume that we are sampling with replacement from a population even though it is obvious that we are not, and indeed doing so would be a waste of resources. The reason we can get away with such an assumption is that with large populations, the distribution of the remaining population changes only ever so slightly with each observation, so the difference in sampling distributions based on independent sampling versus nonindependent sampling is negligible.

Is there a way to check whether this assumption is reasonable? Yes: if the sample does not represent more than a tenth of the population, then the assumption of independent observations is generally reasonable. This mystifies some people when they first encounter it, because it seems to suggest that more data would be a bad thing. But it is not saying that more data would be bad, only that more data would cause one particular model to be inaccurate. Indeed, imagine an extreme situation in which you

Special Focus: Inference

were sampling 90 percent of your population. There would in fact be very little sampling variability in any sample statistic you computed, because the samples would themselves all be so similar to one another, by necessity containing many of the exact same observations. But the mathematical models we use, such as \bar{X} being normally distributed with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$, would evaluate the variability in the statistic to be much higher. So more data would in fact be good because they would give more information-but our method for estimating the variability in our statistic would tend to produce an overestimate, so our inferential conclusions would not be correct if we stuck to the assumption of independent observations.

The fix for this "problem" is not part of the AP Statistics curriculum and will therefore not be discussed here. However, it is not difficult to find information about it in many texts and on the Internet. It is called the "finite population correction factor."

What Happens When Assumptions Are Violated?

Let's take a few minutes to talk about what happens when the assumptions are violated. Briefly, the confidence level of computed confidence intervals may be overstated (or occasionally understated), and the p-values computed for hypothesis tests may be underestimated. Let's see why that happens in a few particular examples.

Proportions

Suppose we're asking people to taste two drinks and say which one they prefer. We might perform a hypothesis test in which the null is that the proportion preferring drink A is 50 percent, and the alternate hypothesis is that it is not 50 percent. If we use the $n p>10$ and $n(1-p)>10$ rule of thumb for determining a sufficiently large sample size, then we ought to sample at least 20 people. Let's work out the p-value for an observation of 15 out of 20 people preferring drink A using the normal approximation and then using the more accurate binomial distribution.

When using the normal approximation, we are making an assumption that \hat{p} is approximately normally distributed with a mean of 0.5 and a standard deviation of $\sqrt{\frac{0.5 \times 0.5}{20}} \approx 0.118$. So the observation of $\frac{15}{20}$ is 2.24 standard deviations away from the mean, giving a p-value of 2.5 percent for the two-tailed test. If we use the binomial distribution, we find that the exact p-value associated with 15 out of 20 is

Special Focus:
 Inference

$\operatorname{Pr}(X \leq 5$ or $X \geq 15 \mid X \sim \operatorname{Bin}(20,0.5))$, which my calculator informs me is 4.1 percent. These are actually pretty different p-values; the normal approximation understated the p-value by quite a bit. ${ }^{3}$

Now let's do similar calculations for a case in which the normality conditions are not met, and we'll see that the normal approximation is quite a bit worse. Let's suppose our study involved only four people, of whom three preferred drink A. If we use the normal approximation, we assume that \hat{p} is normally distributed with a mean of 0.5 and a standard deviation of $\sqrt{\frac{0.5 \times 0.5}{4}}=0.25$. That means that our observation of $\frac{3}{4}$ is exactly one standard deviation away, and our two-sided p-value is 31.7 percent. The exact (binomial) p-value is $P(X \leq 1$ or $X \geq 3 \mid X \sim \operatorname{Bin}(4,0.5))=62.5 \%$. Clearly, the normal approximation gives a grossly underestimated p-value in this case.

Something similar happens with confidence intervals in this situation. If we construct a confidence interval assuming that \hat{p} is normally distributed when really it isn't, then our confidence interval will be too narrow, which means that our stated confidence level will actually be overstated. Consider the graph below. The horizontal axis shows different sample sizes, and the vertical axis shows different possible actual population proportions. For each of many lattice points in this graph, 10,000 random samples were simulated and a 95 percent confidence interval estimate of p was constructed for each sample, using the assumption of normality. Then the number of those intervals that actually contained p was counted and the proportion compared with the desired 95 percent. The darker the shaded area of the graph, the lower was the proportion of the intervals that actually captured the true population proportion. The lightest region corresponds to simulations in which at least 95 percent of the intervals captured the population proportion. The next-lightest region corresponds to simulations in which between 90 and 95 percent of the intervals captured the population proportion.

Superimposed on this graph are curves corresponding to $n p=10, n(1-p)=10$, $n p=5, n(1-p)=5$, and $n p(1-p)=5$, as labeled. We see in the graph that when $n p>10$ and $n(1-p)>10$ (to the right of the curves), we always have at least 90 percent

[^2]
Special Focus: Inference

coverage with our confidence intervals, and usually between 90 and 95 percent. The less strict condition $n p>5$ and $n(1-p)>5$ includes some results where fewer than 90 percent-but never fewer than 80 percent-of the intervals captured the proportion. And under the single condition $n p(1-p)=5$, we usually had between 90 and 95 percent coverage, though occasionally between 80 and 90 percent.

Special Focus: Inference

Means

What happens when one assumes that \bar{X} has a normal distribution even though the data are not really the result of sampling from a normal distribution? Once again, we'll look at a simulation. The figure below shows four distributions, all having mean 1 , from which we will simulate drawing random samples. The first distribution is very right-skewed, and the others become successively closer to normal.

For each of these distributions, we'll take 10,000 samples of size 2 , and for each sample we'll compute a 95 percent confidence interval estimate of the mean using the t-procedure. Notice that we will be violating (on purpose!) the assumption of a normal population but will get closer and closer to "not" violating it as the distributions become less and less skewed. We'll then count how many of those confidence intervals actually contain the mean value of 1 . We'll repeat this for samples of size $4,6,8$, and so on up to 50. Finally, for each of the four distributions, we'll make a graph showing the estimated confidence interval coverage probability (estimated from the 10,000 simulations) plotted against the sample size. Those graphs are shown on the next page, in positions corresponding to the four distributions in the previous figure.

Special Focus:
 Inference

We see from the figure that when the distribution being drawn from is very skewed, then a large sample size is required before the coverage probability actually approaches the desired 95 percent. But when the distribution is fairly close to normal to begin with, only slightly right-skewed, then the coverage probability is approximately 95 percent even for small samples ${ }^{4}$.

It takes some practice to get a feel for how big a sample size is required. The guidelines given in this section on assumptions and those in most textbooks can help. It is reassuring to see in the simulation just shown that even in the presence of very strong skew, and with very small sample sizes of, say, $n=5$ or fewer, the assumption of normality when computing a 95 percent confidence interval estimate of μ still tends to have a coverage probability not much less than 90 percent. This demonstrates, incidentally, what is meant by "robustness": the t procedures are "robust" against

[^3]
Special Focus: Inference

deviations from normality in that if the assumption of a normally distributed population is not met, the inferential conclusions are not far from correct.

Chi-Square Tests

With the chi-square test, we assume that the sample size is large enough for the test statistic to have approximately a chi-square distribution, and our check for that is to verify that all the expected cell counts are at least 1.0 , and no more than 20 percent of the expected cell counts are less than 5.0. (Some texts are more conservative and demand that all expected cell counts exceed 5.0). What happens if those conditions are not met?

Suppose that in the most recent census, a certain city was determined to have a population that was 45 percent white, 25 percent black, 20 percent Hispanic, 5 percent American Indian, and 5% other ethnicities. We wish to sample from the population today and perform a chi-square test of goodness-of-fit to see whether those proportions have changed today. The assumption of a chi-square distribution for the test statistic will only be met if we sample at least 100 people. Let's perform simulations with smaller sample sizes under the null hypothesis and see how often we reject it using a chi-square test.

The graph below is the result of 10,000 simulations at each sample size ranging from 1 to 120. The horizontal axis shows the sample size, and the vertical axis shows the proportion of times the (true) null hypothesis was rejected at an alpha level of 0.05.

Special Focus:
 Inference

We see that in this particular case, the chi-square test is fairly robust against small sample sizes. Even with sample sizes as small as 20, the proportion of times the test rejects the null is near the desired 5 percent.

Let's repeat the same simulation for a distribution with different census outcomes: 45 percent white, 25 percent black, 20 percent Hispanic, 9 percent American Indian, and 1 percent other ethnicities. This time the 1 percent group is problematic, because for sample sizes under 100, at least one of the expected cell counts is less than 1.

We see from the simulations that the chi-square test is still somewhat robust. While the proportions of Type I errors do tend to be slightly greater than the desired 5 percent, they are not much greater, even for small sample sizes of $n=20$ or so. Still, students should respect this rule of thumb or some other reasonable check before applying a chi-square test.

Special Focus:
 Inference

Review of the Assumptions

Let's review the assumptions behind each of the inference procedures in the AP Statistics curriculum and how they might be checked for their reasonableness. For all studies in which conclusions are to be generalized to the population from which the sample was drawn:

Assumption: The sample is a random sample from the population.
Check: This cannot be checked from the data. The reasonableness of the assumption must be assessed based on how the sample was collected. Since true random samples are difficult at best to collect, the reasonableness of the assumption often reduces to whether the sample was collected in such a way that it does not appear to bias the responses by over- or underrepresenting certain responses as compared to the whole population. Reasonable people may disagree about whether a sampling method produces a sample that is sufficiently "like" a random sample to allow generalization.

For studies involving proportions:
Assumption: The sample size(s) is/are large enough to reasonably ensure that the sampling distribution(s) of the sample proportion(s) involved is/are approximately normal.
Check: There are a number of different checks people may use. A common one is $n \hat{p}>10$ and $n(1-\hat{p})>10$. Note that in the case of a hypothesis test of a single proportion, the hypothesized population proportion should be used in the check; for the construction of a confidence interval, the sample proportion should be used.

For studies involving means:
Assumption: The sample size(s) is/are large enough to reasonably ensure that the sampling distribution(s) of the sample mean(s) involved is/are approximately normal. Check: In AP Statistics, different graphic checks are possible. (Analytic checks exist but are not in the syllabus.) A fairly sophisticated one is the normal probability plot, in which linearity in the plot corresponds to normality in the data. Histograms and boxplots are more crude but may be sufficient so long as students can recognize deviations from normality, such as skew or heavy tails. If a sample size is quite small (say, less than 15), then indications of a deviation from normality, such as skew or outliers, are quite troublesome and may invalidate the inference procedures. If the sample size is a bit larger (say, between 15 and 40) then skew, outliers, or heavy tails are less of a problem unless they are fairly severe. And if the sample size is quite large (say, greater than 40), only exceptionally severe deviations from normality will cause problems. If two samples are involved, each of them must be checked.

Special Focus: Inference

Note that a normally distributed population is still the assumption even when using " t " procedures.

For chi-square tests:
Assumption: The sample is large enough that the test statistic has approximately a chi-square distribution.
Check: A common check is that all of the expected cell counts must be at least 1 , and no more than 20 percent of the expected cell counts may be less than 5 .

For linear regression:
Assumption 1: The underlying relationship between x and y is linear.
Check: The residual plot shows no pattern, particularly no clear curvature.

Assumption 2: The errors have the same standard deviation for all values of x.
Check: "Eyeballing" the residual plot is sufficient for AP Statistics students. Be sure the residuals are of roughly the same magnitude across all values of x. In particular, be sure that they do not tend to grow as the response variable grows. If they do, then a transformation of the data may be appropriate.

Assumption 3: The errors are normally distributed.
Check: Look at the distribution of the residuals, either using a normal probability plot (better), a histogram, or a boxplot (more crude, but adequate). Be sure the residuals do not display obvious deviations from normality.

What Are Students Expected to Write?

At this point, you may be thinking, "This section about assumptions seems awfully long. Sometimes the discussion about whether an assumption was reasonable went on for a paragraph or more. Surely on the AP Exam itself our students aren't expected to write that much. So what must they write about assumptions in the free-response section?"

Students should know and state what the assumptions are behind the models they are using. If it is possible to check the reasonableness of assumptions using the data, they are expected to do that as well.

Sometimes assumptions will be stated explicitly in a problem for the students. For example, a problem may state explicitly that the given data represent a random sample from some population. That may be done because the assumption should not be the

Special Focus: Inference

focus of students' energies. It doesn't hurt for the students to repeat the assumption if they are performing inference that requires it, but it would not be absolutely necessary if the assumption were explicitly stated in the problem.

If a student thinks one of the assumptions required for inference is violated, but the question appears to demand inference nevertheless, the student would be wise to write something indicating his or her dilemma, such as, "I would ordinarily not want to use a t distribution when the data are so grossly nonnormal, but since this question seems to require a confidence interval calculation, I don't know what else to do, so I'll do that." That at least indicates that the student understands the connection between assumptions and inference. Some teachers suggest to their students that if they find themselves in that situation, they write, "Because the assumptions are not met, I will proceed with caution." That also indicates that the student is aware that something is wrong. Contrast that with a student who sees a small set of data and writes, "Check for normality," then sketches a boxplot showing skew and two outliers and goes on with inference anyway. Such a student response may not get any credit for checking assumptions at all, even with the supposed check for normality, since that student didn't seem to know what the purpose was for the check nor recognize that the assumption was not reasonable.

In situations such as described in the preceding paragraph, i.e., necessary assumptions are not met, the student has in all likelihood made an error somewhere. The free-response questions will not demand the use of unjustifiable inference procedures from students when the procedures in the AP syllabus are invalid. Even the best of students can still stumble, but students should recognize something is wrong and communicate this awareness as a part of their response.

The entire focus of a free-response question may be the validity of the assumptions in a particular situation. Students who make a very regular habit of beginning every inference question with a thoughtful check of assumptions will know what to do. Consider, for example, question 2 of the 2000 AP Statistics Exam in which students were told of a cave containing footprints of prehistoric humans. The question gave sample statistics and asked students what assumptions were required to construct a confidence interval. It also asked whether the assumptions were reasonable. In that question, students should have thoughtfully considered whether the sample was a random sample or anything like one. They should have realized that it was not, that indeed, many of the footprints may have been from the same person, or perhaps that some footprints (from heavier people, perhaps?) may have been more likely to appear in fossil form than others.

Special Focus: Inference

2000 AP Statistics Free-Response Question 2

2. Anthropologists have discovered a prehistoric cave dwelling that contains a large number of adult human footprints. To study the size of the adults who used the cave dwelling, they randomly selected 20 of the footprints from the population of all footprints in the cave and measured the length of those footprints. Some statistics resulting from this random sample are as follows.

Sample size	20	Minimum	15.2 cm
Mean	24.8 cm	First quartile	18.7 cm
Standard deviation	7.5 cm	Median	21.5 cm
		Third quartile	30.0 cm
		Maximum	37.0 cm

The anthropologists would like to construct a 95 percent confidence interval for the mean foot length of the adults who used the cave dwelling.
(a) What assumptions are necessary in order for this confidence interval to be appropriate?
(b) Discuss whether each of the assumptions listed in your response to (a) appears to be satisfied in this situation.

Special Focus:
 Inference

Question 3(d) on the 2004 exam was similar. Students were asked whether conclusions from a sample of dinosaur bones could be extrapolated to all dinosaurs. They were to realize that the sample was not random and that the assumption that it was representative of all dinosaurs might well be unreasonable.

2004 AP Statistics Free-Response Question 3

3. At an archaeological site that was an ancient swamp, the bones from 20 brontosaur skeletons have been unearthed. The bones do not show any sign of disease or malformation. It is thought that these animals wandered into a deep area of the swamp and became trapped in the swamp bottom. The 20 left femur bones (thigh bones) were located and 4 of these left femurs are to be randomly selected without replacement for DNA testing to determine gender.
(a) Let X be the number out of the 4 selected left femurs that are from males. Based on how these bones were sampled, explain why the probability distribution of X is not binomial.
(b) Suppose that the group of 20 brontosaurs whose remains were found in the swamp had been made up of 10 males and 10 females. What is the probability that all 4 in the sample to be tested are male?
(c) The DNA testing revealed that all 4 femurs tested were from males. Based on this result and your answer from part (b), do you think that males and females were equally represented in the group of 20 brontosaurs stuck in the swamp? Explain.
(d) Is it reasonable to generalize your conclusion in part (c) pertaining to the group of 20 brontosaurs to the population of all brontosaurs? Explain why or why not.

If a free-response question does not appear to be focusing primarily on the assumptions (as in the cave problem) but is instead asking students to perform a hypothesis test or construct a confidence interval, then the students need not write paragraphs about the assumptions, but they should quickly and clearly state them and, if possible, check that that the assumptions are reasonable. (Some students erroneously think that "checking assumptions" means drawing a little check mark next to them. It does not! Checking assumptions means writing a sentence or an inequality or a graph or calculation that communicates in what way the data are consistent with the assumptions.)

Special Focus: Inference

Suppose the student is asked to construct a confidence interval estimate of the mean weight of apples from an orchard given the weights of eight apples randomly sampled from the orchard. Here is an example of a poor check of assumptions.

$$
\begin{aligned}
& n p>10 \\
& n(1-p)>10 \\
& n<15, \text { assume normal }
\end{aligned}
$$

Obviously the first two statements do not apply here in the context of means. Yet AP Statistics Readers will confirm that these show up like a talisman on a surprising number of responses to questions having nothing to do with proportions. Their presence indicates that the student doesn't know what these formulas are for; they may be trying a "shotgun approach," assuming (again, incorrectly) that the correct formulas will be found and the incorrect ignored. But even if that poor start is ignored, the third line still does not constitute a proper check of assumptions.

Writing " $n<15$, assume normal" does not communicate much. A sentence stating what was being assumed to have a normal distribution (the population of apple weights) would have been an improvement. But with the eight data values given in the problem, the student would be expected to perform some kind of check to see whether the assumption that they came from a normal distribution was at least plausible.

Here is a much better check of assumptions:
"I will construct a t-interval estimate of the mean weight of the apples in the orchard. This requires that the sample be random, which the problem states. It also requires, with such a small sample size, that the population of apple weights is approximately normal. Here's a normal probability plot of the eight data values: [shows picture]. It's not grossly nonlinear, and the data set has no outliers, so the normality of the population is not contradicted by the data, so we'll assume it."

While delightfully complete, the response may seem awfully wordy, especially in the context of a timed exam. The following much shorter check communicates the same ideas:
"Sample is random (given). Assume apple weights in orchard are normally distributed. Check: [boxplot here], no skew or outliers. So assumption is reasonable."

Special Focus: Inference

Conclusion

Students can easily end up thinking that a check of assumptions is merely a pointless routine on the road to "doing the problem." This mindset can get them into trouble both on AP Exam questions and in their thinking about real statistical analyses they perform or read about. Statistics is largely about creating mathematical models to explain observations in the world. These models are never exactly right. Mother Nature is not so simplistic! However, the models can still be useful for understanding the world, so long as they are reasonably good. The "goodness" of the models depends largely upon the reasonableness of the assumptions behind them. Assumption checking isn't something that students do in AP Statistics only and from which statisticians have "graduated," leaving it behind. Rather, checking assumptions is an important part of every statistical endeavor: it is the assumptions that drive the model. Statisticians don't let statisticians drive without the mathematical support provided by assumptions!

AP Statistics teachers should encourage in their students the habit of always checking the assumptions behind the inference procedures they're using. One reason so many students think of checking assumptions as just a pointless routine is that they are rarely exposed to problems in which the assumptions are not met. I would encourage teachers to present problematic data to their students on a fairly regular schedule to keep them on their toes and help them see the point of checking assumptions. Sometimes that will mean concluding that the inference techniques of the AP Statistics curriculum are insufficient for a particular problem, and so it must be left unresolved. That's perfectly fine.

Also, students are far more likely to encounter assumptions that are not met when they design and conduct their own studies than when they read about studies in their textbooks. The examples presented in this section are not true stories but are motivated by actual classroom experience, describing the sorts of problems that students have encountered when they conduct their own studies.

When students conduct their own studies, the most common difficulty is devising a sampling method such that the assumption of a random sample, or "like" a random sample, is reasonable. Following that distantly is the collection of a sufficient amount of data for the limiting distribution assumption (normal, t, or chi-square) to be reasonable. Sometimes students come up with interesting studies for which the data are relatively easy to collect in large numbers. But other times the students realize that although their study's design is good, it will require far more time in data collection than they are able to spend.

Special Focus: Inference

Finally, the habit of thinking about and checking assumptions must not stop as a mental exercise or an oral discussion but must be something students are in the habit of putting in complete sentences on paper. This is part of the broader and very important goal of AP Statistics, that students be able to communicate their ideas clearly in writing. The study of theoretical statistics is a rich and beautiful endeavor, and like theoretical mathematics no context is required. However, AP Statistics is applied statistics, applied statistics does not exist without context, and statistical solutions to problems do not exist if they are not clearly communicated.

Some Reflections on How Inference Questions on the AP Exam Are Scored

Daniel S. Yates
Virginia Commonwealth University
Richmond, Virginia

Introduction

In this section, we get a sense of how AP Exam Readers respond to students' answers to free-response questions on the AP Statistics Exam. We examine the scoring process that has been used for inference-related questions on the AP Statistics Exam in recent years and determine the components of a "complete solution." We then look at alternative solutions that would receive full credit in an inference setting and at the level of response that is required. We turn to some actual student responses that received deductions and learn how to avoid point deductions. Finally, we present the general concerns of the Chief Readers as they report some of the difficulties students encountered in their responses to the free-response questions. These concerns are expressed as the Chief Reader's "Student Performance Q \& A" and are written after consulting with the Readers and Table Leaders at the end of the week's Reading.

How Free-Response Questions Are Scored

Free-response questions typically are presented in multiple parts. Each part is scored E (essentially correct), P (partially correct), or I (incorrect). The scoring guidelines (rubrics) for that particular question states the combination of Es, Ps, and Is that determine the numerical score for that problem. Free-response questions are evaluated on a 0 -to- 4 scale, as follows:

Score	Description
4	A complete solution
3	A substantial solution
2	A developing solution
1	A minimal solution
0	No credit

Note that each score has associated with it a verbal anchoring descriptor: "complete," "substantial," and so forth. These descriptors are helpful when the Reader uses holistic scoring, discussed below. Note further that the top score of 4 does not say "perfect."

Special Focus: Inference

A student could score a 4 on a question even if there is a slight arithmetic error or some other minor error that is not considered important. This should be comforting to students. At the other end of the scale, no credit is given when the question is left blank or when the response is completely off task.

Scoring guidelines are written for the purpose of making the scoring of the responses independent of which Reader happens to score a particular paper. As all teachers and students know, teachers have different sets of expectations in their classrooms. The scoring guidelines exist to override these differences and put all students on an equal footing with respect to having their responses to the free-response questions evaluated. Before the first exam paper is scored, Readers receive careful instruction to familiarize them with the scoring guidelines. Then they practice scoring papers until the highest possible level of consistency is achieved. Only then do Readers begin scoring papers "for real."

While the scoring guideline tries to anticipate a wide variety of responses to the question parts, anticipating all possible responses can't be accomplished due to the "open-ended" nature of free-response questions. Sometimes a student response is not covered in the scoring guideline. Or perhaps the scoring of a problem results in an intermediate score, such as 2.5 or 3.5 . In these circumstances, the Reader utilizes "holistic" scoring. The idea behind holistic scoring is that if the responses to the parts of a question do not result in a clear $0,1,2,3$, or 4 , the Reader should look at the response in total and make a determination of the scores "on the whole." The scoring guidelines for the free-response questions typically provide helpful guidelines and criteria for dealing with half scores.

Identifying Inference Questions

The Course Description states that about 40 percent of the AP Exam is on inference. Inference thus receives more attention on the exam than any other topic. This fact should motivate students to review this topic extensively before they sit for the exam. So exactly what concepts and skills fall under the heading of inference? Most students would quickly identify tests of significance as inference. What they may not realize, however, is that confidence intervals are also included under the category of inference.

There is fairly specific wording that students should look for in identifying inference questions, phrases that should say clearly to the student, "This is an inference question!" If a question introduces some data and a setting and then says, "Is there evidence to conclude that (something is the case)?" or "Give statistical evidence to conclude that..." or a slight variation of this wording, this should ring a bell or raise a flag. What this wording is saying is, "Perform the appropriate statistical procedure, systematically completing all

Special Focus:
 Inference

of the necessary steps, and make your answer culminate in a statement similar to 'There is sufficient/insufficient evidence to conclude that (state a conclusion in the context of the problem)."' The major mistake here is that students believe that constructing side-by-side boxplots, or a histogram or other plot, or comparing percentages is sufficient to show that a new drug, for example, is more effective than the old, established drug.

The confidence interval seems like such a simple idea, but it can cause a surprising amount of potential trouble for students. Confidence interval questions on the exam typically have been in two parts. The first part asks students to use information provided to construct a confidence interval. The second part is to interpret the confidence interval. Typically, students do well on the first part, and this is not surprising. After all, most of them enroll in AP Statistics because they have performed well in previous math classes, many of which involve lots of computation. Where students frequently crash and burn is on the interpretation part. Interpretation requires a sentence or two that explains what the confidence interval is all about.

Interpretations of confidence intervals are sufficiently important that they can raise the points on that question from, say, a 3.5 to a 4 , or if the interpretation is botched, lower the points to a 3 when holistic grading is applied to a student response. Under certain circumstances, a student can employ a confidence interval approach for a question specifically asking for a significance test, and if done correctly, this strategy will receive full credit.

The Inference Steps

Let's begin with a test of significance: inference for a mean or a proportion, comparing two means or proportions, a chi-square test, or inference for regression.

1. State hypotheses. Every inference procedure should begin with a clear statement of the null and alternative hypotheses. The best response here is to state the hypotheses using symbols and then write out statements of the hypotheses in words. If the symbols approach is used alone, and commonly used symbols for the population parameters are used, then this would be considered acceptable. If nonroutine symbols are used, then they must be defined clearly and correctly in order to receive full credit.
2. Identify the inference procedure, and state and check assumptions and conditions. Inference procedures produce valid results only if certain conditions are satisfied (like hypotheses for a theorem in geometry). The failure to check

Special Focus: Inference

assumptions was a glaring omission for many students in the early days of the AP Exam. When this was identified as a failing, students began stating the assumptions, such as " $n p \geq 10, n(1-p) \geq 10$," and left it at that. While this was an improvement over cavalierly ignoring assumptions, such statements alone did not receive credit! Such constructions were regarded as stating the assumptions, not checking them. In order to get credit for this step, students must state the assumptions correctly and then substitute numbers for that problem to actually verify their validity so that the inference procedure could be legitimately performed. Floyd Bullard's article in these materials gives additional insight about the role of assumptions in inference.
3. Mechanics. The next step in the inference procedure is to calculate the test statistic, using the appropriate formula. (Formulas are provided with the exam.) It is best to write the appropriate formula for the test statistic and then show substitution into that formula. The computation can then be performed on a calculator and the test statistic reported. The test statistic value should be used to determine the p-value (the probability of obtaining a result as extreme or more extreme than the value we obtained, by chance alone, if the null hypothesis were true). The p-value is then used to make the decision to reject or fail to reject the null hypothesis.
4. Conclusion. If the p-value is sufficiently small to cause rejection of H_{0}, then a conclusion needs to be made in the context of the problem. In the early days of the AP Statistics Exam, some students believed that a statement of "reject" or "fail to reject" was the moral equivalent of QED, and that nothing else needed to be said. Not so! In statistics, context is critical.

Summarizing, the four required parts in an inference setting are:

1. State hypotheses in words and/or symbols.
2. Identify the correct inference procedure and verify conditions for using it.
3. Calculate the test statistic and the p-value (or rejection region).
4. Draw a conclusion in context that is directly linked to the p-value or rejection region.

Special Focus:
 Inference

Examples of Student Responses and Their Scores

In 1999, free-response question 2 was:

The Colorado Rocky Mountain Rescue Service wishes to study the behavior of lost hikers. If more were known about the direction in which lost hikers tend to walk, then more effective search strategies could be devised. Two hundred hikers selected at random from those applying for hiking permits are asked whether they would head uphill, downhill, or remain in the same place if they became lost while hiking. Each hiker in the sample was also classified according to whether he or she was an experienced or novice hiker. The resulting data are summarized in the following table.

	Direction		
	Uphill	Downhill	Remain in Same Place
Novice	20	50	50
Experienced	10	30	40

Do these data provide convincing evidence of an association between the level of hiking experience and the direction the hiker would head if lost? Give appropriate statistical evidence to support your conclusion.

Note that there are clear signals about the nature of this problem. First, the context and the nature of the data strongly suggest a chi-square test of independence. Second, it is difficult to miss the inferential nature of the problem, which is essentially: "Perform an appropriate inference procedure, with all the important/required steps."

How were students expected to respond for a "complete" score? The scoring guidelines specify four parts to this problem:

Part (a) Stating a correct set of hypotheses
Part (b) Identifying an appropriate test and checking appropriate requirements
Part (c) Providing correct mechanics
Part (d) Stating a correct conclusion in the context of the problem using results of the statistical test

The scoring guidelines go on to include much more detail for each of these parts. Let's consider some actual student responses:

Special Focus: Inference

Student A's response was as follows:
H_{0} : There is no association between experience and hiking direction
H_{a} : There is an association between experience and hiking direction
The expected values are:

Expected	Direction		
	Uphill	Downhill	Remain in Same Place
Novice	18	48	54
Experienced	12	32	36

Since all expected counts are at least 5 , we can use the chi-square procedure.
$\chi^{2}=1.5, \quad p$-value $=0.471, \quad p>0.05, \quad$ Fail to reject H_{0}
There is insufficient evidence to show that there is an association between experience and hiking direction when lost.

It would have been nice if this student had stated the appropriate formula for the χ^{2} statistic and then shown substitution into that formula. Nevertheless, all of the important steps are addressed, and the student has used the calculator to produce the correct value for χ^{2}. The assumptions are credibly shown to be satisfied, and the conclusion is stated in the context of the levels of experience and the direction the hikers would head if lost. This paper scored a 4, a "complete response."

Student B responded by writing this paragraph:
Yes, the data does [sic] provide convincing evidence of an association between the level of hiking expertise and the direction the hiker would take. The statistical evidence for this is found by doing a chi-squared test. The χ^{2} value for this data is 1.5046 and the p-value is 0.4713 . Since the p-value is greater than the 0.05 then it is understood that there is a significant difference between the choices of novice and experienced hikers.

The student then sketched a chi-square curve on a set of axes, shaded the right-tailed region, and marked this region 0.4713 .

Special Focus: Inference

This student's response is more difficult to score because the conclusion is stated first, and the student subsequently tries to support that conclusion. We begin by looking for a pair of hypotheses, but there are none. The χ^{2} statistic is specified, but there is nothing about assumptions. The mechanics are correct (correct test statistic value and p-value). The rejection rule is applied incorrectly. Consulting the scoring guidelines, the Readers assigned a score of 1 for Student B. This is a "minimal" response.

Student C responded as shown:

$$
\mathrm{H}_{0} \text { : observed }=\text { expected }, \quad \mathrm{H}_{\mathrm{a}}: \text { observed } \neq \text { expected } \quad \alpha=.10
$$

	Uphill	Downhill	Remain
Novice	18	42	54
Experienced	12	32	36

χ^{2} test may be used because expected cell counts are all more than 5 and the data is a two-way table.

$$
\chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}=1.505 \quad p=.47
$$

Conclusion: Since our p-value is greater than our level of significance, we fail to reject H_{0}. We have no evidence that the level of hiking expertise is related to the direction a hiker would head if lost.

Student C's hypotheses are a bit too terse and have the appearance of a generic responsethey would work for almost any statistical hypotheses. The remaining parts of the response are correct, and this student earned a 3 for this problem.

Student D wrote:
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}, \mathrm{H}_{\mathrm{a}}: \mu_{1} \neq \mu_{2}$. Using the chi-squared test, it was found that $\chi^{2}=1.5046, p=.471$. The p-value is not what I consider statistically significant ($p<.05$), since it is .471. Because of this, I would have to reject H_{a}, and accept H_{0}, thus meaning that the data does not provide convincing evidence that there is an association between level of hiking expertise and the direction the hiker would go if lost.

Special Focus: Inference

The hypotheses are incorrect, even though this student's conclusion gives us an inkling that s/he may really know what s /he is testing. This part just doesn't rise to a level of partially correct. The student identifies the chi-squared test but neglects to check requirements for the test. S / He provides correct mechanics in the response, but errs when $s /$ he rejects the alternative hypothesis (and accepts the null hypothesis). And then $s / h e$ states a correct conclusion in context, employing the "two wrongs make a right" strategy. The Readers were generous here; they awarded Student D a holistic score of 2.

Here is the scoring commentary for 1999, question 2:
This question required the student to analyze data in a two-way table. The most common approach was to use a chi-square test for independence. Communication continues to be a problem in questions requiring data analysis, and many students had difficulty explaining the approach taken, andclearly communicating the results of the analysis. Although more students mentioned assumptions required in order for the analysis to be valid, few actually checked to see that the assumptions were met. The chi-square test is a topic that is often covered late in the course, and judging from the large numbers of zeros given and blank responses on this question, it appears that many classes may have not covered this topic. Common errors in answering this question were:

- Incorrectly stating the hypotheses for the test.
- Approaching the problem by testing all possible pairs of proportions.
- Poor communication of conclusions, especially in linking the conclusion to the results of the statistical test (i.e., the P-value).
- Failure to mention assumptions, or stating assumptions without checking to see if they are met.
- Failure to use any inferential procedure, reaching a conclusion by just "looking at the data."

In addition to 1999, question 2, very similar chi-square applications are found in 2003, question 5 and 2004, question 5 . One reason we selected 1999, question 2 for illustration was the frequency of seeing this type of question in the recent past.

Now consider the following problem (2001, question 5):

A growing number of employers are trying to hold down the costs that they pay for medical insurance for their employees. As part of this effort, many medical insurance companies are now requiring clients to use generic brand medicines

Special Focus:
 Inference

when filling prescriptions. An independent consumer advocacy group wanted to determine if there was a difference, in milligrams, in the amount of active ingredient between a certain "name" brand drug and its generic counterpart. Pharmacies may store drugs under different conditions. Therefore, the consumer group randomly selected ten different pharmacies in a large city and filled two prescriptions at each of these pharmacies, one for the "name" brand and the other for the generic brand of the drug. The consumer group's laboratory then tested a randomly selected pill from each prescription to determine the amount of active ingredient in the pill. The results are given in the following table.

Pharmacy	1	2	3	4	5	6	7	8	9	10
Name Brand	245	244	240	250	243	246	246	246	247	250
Generic	246	240	235	237	243	239	241	238	238	234

Based on these results, what should the consumer group's laboratory report about the difference in the active ingredient in the two brands of pills? Give appropriate statistical evidence to support your response.

The scoring guidelines identify a "complete" response as the following:

Consider this a matched-pairs experiment (a pair of prescriptions from each pharmacy). Let $\mathrm{X}=$ the difference between the name brand and the generic, and let μ be the mean difference.
$\mathrm{H}_{0}: \mu=0, \quad \mathrm{H}_{\mathrm{a}}: \mu \neq 0$
Assumptions for the test:

We will assume that the pills are stored under similar conditions. We are given that the pills are selected randomly. A boxplot reveals that there are no outliers and only slight skewness, so it is reasonable to proceed with the test. With $\mathrm{df}=10-1=9$, the p-value is $2(.00166)=.00332$.

Special Focus:
 Inference

Conclusion: Since the p-value is so small, there is sufficient evidence to reject H_{0} and conclude that the mean difference is not 0 . There is a difference in the active ingredient between the name brand and the generic brand for these 10 pharmacies.

Student E responded as follows:

Pharmacy	1	2	3	4	5	6	7	8	9	10
Name brand - generic brand	-1	4	5	13	0	7	5	8	9	16

Since $n<15$, a t-test can be used since the distribution of the name brand - generic brand is close to normal and with no outliers.

-0				
-0	1			
0	4	0		
0	5	7	5	8
1	9			
1	3			
1	6			

$\bar{x}=6.6, \quad s_{x}=\sqrt{\frac{1}{n-1}\left(x_{i}-\bar{x}\right)^{2}}=5.2747$.
$\mathrm{H}_{0}: \mu=0, \quad \mathrm{H}_{\mathrm{a}}: \mu \neq 0$,
where $\mu=$ name brand - generic brand. $t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{6.6-0}{\frac{5.2747}{\sqrt{10}}}=3.9568$.
$\mathrm{df}=n-1=9$.
$p=2 \times \operatorname{tcdf}(3.9568, \infty, 9)=.00332$.
There is good evidence to reject the claim that there is no difference in amount of active ingredient in name brand and generic drugs in favor that there is a difference.

While there are a couple of minor quibbles in Student E's solution, it has all the essential ingredients, and it earned a score of 4.

Special Focus: Inference

Student F's response looked like this:

- 2 observations from each pharmacy; pharmacies may affect amount of active ingredient in how they store the medicine.
- I assume that the distribution of (mg for name brand -mg for $\mathrm{e}=$ generic brand) is approx. normal
- I assume that the pharmacies in the city and the pills in the prescriptions were chosen randomly
- Matched pairs t-test is appropriate, $\mu=$ mean difference in mg for (name brand - generic)
$\mathrm{H}_{0}: \mu=0 \mathrm{mg}$
$\mathrm{H}_{0}: \mu \neq 0 \mathrm{mg}$

Pharmacy	1	2	3	4	5	6	7	8	9	10
Name - generic	-1	4	5	13	0	7	5	8	9	16

$$
\begin{aligned}
& \bar{x}=6.6 \mathrm{mg}, \quad s=5.275 \mathrm{mg}, \quad n=10, \quad \mathrm{df}=9 \\
& t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{6.6-0}{\frac{5.2747}{\sqrt{10}}}=3.957 .
\end{aligned}
$$

$$
2 P(\mathrm{t}>3.957)=0.0033
$$

A p-value this small is sufficient evidence that on a pharmacy-by-pharmacy basis, the name brand version of the certain drug contains more of the active ingredient than its generic counterpart.

This is a strong response, but it earned a 3 instead of a 4 because the student didn't check the assumptions.

Student G responded:

Differences: $-1,4,5,13,0,7,5,8,9,16 . \quad \bar{x}=6.6$

The total difference in the active ingredient in the two brands of pills of all 10 pharmacies is 66 . Therefore the mean difference is 6.6 mg . This is a two sample

Special Focus: Inference

difference of sample means, so by using a 2-sample z test on the TI-83:
$P=0.000009, z=4.4387$.
H_{0} : no difference in mg of two brands
H_{a} : is a difference in mg of two brands
Based on the results, the probability that there is a difference between the two brands is statistically significant beyond the 1% level. The probability that the two brands are different in amounts of active ingredient by chance alone is 0.000009 . The consumer group's laboratory should reject the null hypothesis and report that there is a statistically significant difference in the mg between the two brands.

These results are valid based on the assumptions that:

1. These pharmacies and pills were taken from a simple random sample.
2. The active ingredient in mg per bottle is normally distributed.

This student begins well by looking at the differences in active ingredient, appearing to see this as a matched-pairs situation. But the student then uses an incorrect significance test, the hypotheses are not correct, and the assumptions are stated but not checked. The student earned a score of 2 for this response, a "developing" response.

2001, question 5, commentary:
Question \#5 was intended to be a straightforward, matched-pairs hypothesis testing problem, but only a handful of students correctly selected a matched-pairs t test. More students in 2001 seemed to be aware of the necessity of checking conditions or assumptions as part of the hypothesis testing procedure than in previous years. However, a lot of test takers still neglected to actually verify the correct conditions, which are: SRS from population of interest, and normality of the population distribution of differences. Some students referred to a graph on their calculators that was not sketched on the exam paper. Relevant calculator plots need to be transferred to the exam paper. This is part of the student's responsibility for good communication. A few students incorrectly tried to use a chi-square procedure. Some students mixed two-sample condition checking with a matched-pairs procedure. Students interpreted p-values more accurately in 2001 than in previous years. Communication continued to be weak on many papers.

Special Focus:
 Inference

Confidence Intervals

If there is one topic that seems to befuddle students and Readers, it's confidence intervals. Students seem to have much difficulty interpreting confidence intervals. As an example, let's look at 2002, question 6(a) and (b).

A survey given to a random sample of students at a university included a question about which of two well-known comedy shows, S or F , students preferred. The students were asked the question, "Do you prefer S or F?" The responses are shown below.

Preference		
S	F	Total
185	139	324

a) Based on the results of this survey, construct and interpret a 95% confidence interval for the proportion of students in the population who would respond S to the question, "Do you prefer S or F?"
b) What is the meaning of " 95% confidence" in part (a)?
[An aside: Many students and their teachers immediately visualized Seinfeld and Friends as the two comedies.]

Expected Solution

(a) Let $p=$ proportion of students who would respond S to the question, "So you prefer S or F?" A large sample confidence interval for a population proportion takes the form $\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$. Constructing this interval requires that we have a large sample with $n \hat{p}=185 \geq 5$ and $n(1-\hat{p})=139 \geq 5$. We also require that the population be at least 10 times the size of the sample: $10 \mathrm{n}=10(324)=3240$. We assume that the university has at least 3240 students. The interval is calculated as
$0.571 \pm 1.96 \sqrt{\frac{(.571)(.429)}{324}}=0.571 \pm 0.054=(0.517,0.625)$
Interpretation: We have 95% confidence that the interval ($0.517,0.625$) captures the proportion of students who would respond "S" to the question, "Do you prefer S or F?"

Special Focus:
 Inference

[Note that a complete solution would include the formula for a large sample confidence interval, statement and a check of assumptions and conditions, and calculation and interpretation of the confidence interval.]
(b) In repeated sampling, 95 percent of the intervals produced using this method will contain the proportions of students at this university who would respond S to the question, "Do you prefer S or F?"

The rubric specified that part (b) is scored either "Essentially correct (E)" or "Incorrect (I)." It was not possible to score partially correct on this part.

For part (a), Student \mathbf{H} wrote:

```
SRS` 324(.571)>10\checkmark 324(.429) > 10\checkmark
324(.429) > 10\checkmark 324(.571) > 10\checkmark
```

$p_{s}=$ proportion who responded " S " $=185 / 324=571$. Because $\mathrm{n}>30$, we can assume the sample distribution is normal and use a z-interval.

$$
95 \%=0.571 \pm 1.96 \sqrt{\frac{(.571)(.429)}{324}}=(0.517,0.625) .
$$

And for part (b):
This means that if we were to repeat our method over and over, the true mean μ would lie in our confidence interval 95% of the time.

Student H neglects to interpret the confidence interval, but part (b) is correct. Still, because this was the investigative task that touched on a number of concepts from the course, if the remaining parts of this question were very well done, this student probably would have received a holistic 4 , rather than the 3 this response was given.

Student I said for part (a):
By putting the number 185 and 324 in a 1-Prop Zint 95% confidence interval for part (a) would be (.5171, .62488).

Special Focus:
 Inference

Part (b):

A 95% confidence interval says that the sample mean will fall in those bounds 95% of the time if the survey is conducted again.

In part (a) Student I only performed a quick calculator computation. A calculator computation will usually get the student very little in terms of a score. Much more needs to be done, including a correct interpretation of the confidence interval. In (b), the explanation of 95 percent confidence is stated in terms of his calculated interval instead of being in terms of confidence in the method employed and is therefore incorrect.
Student J's response read:
$185 / 324=.5710 \quad 1$ prop z interval
Assumptions:

- To use standard deviation, population is 10 times sample size
- $n p \geq 10, n(1-p) \geq 10$

Check of assumptions

- I assume there are more than 3,240 students in the population
- $n p=185, n(1-p)=139$

$$
\begin{aligned}
& 0.571 \pm 1.96 \sqrt{\frac{(.571)(.429)}{324}} \\
& 0.571 \pm .0539 \\
& (.5171, .6249)
\end{aligned}
$$

(b) It means that we are 95% confident that the true mean lies between .5171 and .6249 , and that 95% of similarly constructed confidence intervals will contain the true mean.

Student J is not completely correct in part (a) because the interpretation of the calculated confidence interval is missing. Part (b) illustrates what is referred to as a "parallel solution." The student offers two independent solutions to the same problem. When parallel solutions are encountered in the AP Statistics scoring process, Readers score both responses, but award points based on the weaker of the two solutions. Student J's first sentence in part (b) is incorrect. The response in (b) should also send a strong signal to all students that parallel solutions should be avoided. Students should carefully consider alternative responses and select the answer that seems most likely to be correct.

Special Focus: Inference

The Chief Reader in 2003 commented on this problem by saying:
Student performance on hypothesis testing questions has been improving over recent years. More students (but still not the majority) are addressing necessary conditions or assumptions and students are doing a better job of stating a correct conclusion in context. However, many students failed to address all of the required conditions or assumptions for the test, and did not provide any link between the computations performed as part of the test procedure and the eventual conclusion.

Postscript

By looking at several inference free-response questions, their scoring guidelines, selected student responses, and how these responses were scored, teachers and students will have a better understanding of the expectations for this type of problem. We hope this better understanding will translate into better performance and higher scores.

Special Focus:
 Inference

Model Responses

Daren Starnes

The Webb Schools
Claremont, California

Statistics in general and AP Statistics in particular are properly focused on effective communication. This section considers what constitutes good communication in projects, speeches, reports, and (of course!) responses to exam questions when explanations about inferences are required.

A former colleague of mine once said, "You can have the greatest ideas in the world, but if you can't get them across to anybody, they're not worth much." He made the remark during one of our team-taught AP Statistics and AP Environmental Science classes, and it has stuck with me ever since. A key question for us as statistics teachers is, how can we help students develop strong communication skills in our courses?

Perhaps the most important thing we can do is provide students with plenty of opportunities to practice statistical communication, both within and outside the classroom. We can ask them to describe and interpret graphical displays, to analyze published statistical studies, and to produce written and oral reports about data they have collected. Along the way we must provide them with regular feedback about not only the accuracy of their statistical methods, but also the clarity of their statistical thinking. And of course, we have to model exemplary statistical practice for them.

Students can also help each other become better communicators. Whether they work together to write out a solution to an inference question or critique each other's written responses, students will gradually learn what it takes to get their ideas across clearly and unambiguously. While they collaborate, you are free to roam about the classroom offering helpful suggestions.

One of the most difficult aspects of the AP Statistics course for many students is mastering the use of technical vocabulary. Students by nature, being human, tend to be informal and colloquial in speaking and writing. AP Statistics, however, requires precise, technical communication. You can really help your students by insisting that they use the terms in the course syllabus frequently and correctly. Some teachers have even suggested posting a list of "restricted" words for their students. If students use a restricted word, they must be prepared to defend the use of that word to the rest of the class. Some examples of possible restricted words include: normal, outlier, bias, random, accept, independent, cause, and of course the ubiquitous pronoun "it."

Special Focus: Inference

Discourage your students from parroting memorized statements like "Randomization reduces bias" or "Blocking reduces unwanted variation." Instead, ask your students to apply statistical principles in unfamiliar contexts. For example, you might bring in a description of an experimental design and pose questions like "What purpose did random assignment serve in this experiment?" or "How might the design of this experiment be improved by incorporating blocking?"

The model questions that follow are intended to mimic the style and substance of the free-response questions involving inference that are asked on the AP Statistics Exam. As do past AP Statistics Exam questions, these questions consist of multiple parts and simultaneously address several topics in the course syllabus. They are a bit longer than typical exam questions, however.

Following the presentation of each question, we have provided a model response. Our solutions mirror the content and format of those found in scoring rubrics from previous AP Exams. Please note, however, that we have crafted responses that are longer and more detailed than what a student could reasonably be expected to generate under exam conditions.

In each model response, we rigidly adhere to the four-step outline for solving inference problems that has evolved over several years at the AP Reading. For reference, those four steps are:

Step 1: Identify the population(s) and parameter(s) of interest. State hypotheses if you are performing a hypothesis test.

Step 2: Select the appropriate inference procedure and verify conditions for using it.

Step 3: Carry out the procedure.

Step 4: Interpret your results in the context of the problem.

We use statistical terminology correctly in the model responses to these questions.

Using this four-step outline for inference in your class will definitely help prepare your students for AP Exam questions. From our experience with the Course Description, we have noted several common pitfalls that students must be careful to avoid. First

Special Focus:
 Inference

and foremost, students must be clear about the distinction between the population of interest and the sample, and along the same lines, the distinction between the parameter they want to draw conclusions about and the appropriate statistic to use for doing so. When stating hypotheses, students must use the symbols for parameters, not statistics. Moreover, they must be certain that they have defined the hypotheses in words that clearly indicate their understanding of the population(s) and parameter(s) of interest in the problem.

To successfully carry out Step 2, students must do more than just list the conditions for using a particular inference procedure. Also, it is not enough to state the conditions and simply put a check mark next to each one. Nor should students simply say, "Let's assume that we have an SRS and that the population distribution is normal." They should always cite information given in the problem as they attempt to verify the required conditions. Students sometimes forget that conditions must be verified for confidence intervals as well as hypothesis tests.

In Step 3, students must be reminded of the value of showing their process clearly. When computing confidence intervals, students should show the substitution of numbers into a formula, such as:

$$
95 \% \text { CI for } \mu \text { : estimate } \pm \text { margin of error }=3.2 \pm 1.96(1 / \sqrt{36})=3.2 \pm 0.33
$$

For hypothesis tests, students must calculate an appropriate test statistic and give a correct p-value or rejection region.

For Step 4, students should keep in mind the "three Cs": conclusion, connection, and context. They must be sure to answer the question that was originally asked, to draw a conclusion in the context of the problem that connects directly with their work in Step 3.

We hope that the model questions and responses provided below will give you and your students valuable insight into the level of communication that is expected on AP Statistics free-response questions.

Model Problem 1: Are people's standing pulse rates higher than their sitting pulse rates? Students in an AP Statistics class collected pulse rate data during a class activity. Initially, each student flipped a coin. Students who obtained "heads" were told to measure their standing pulse rates first, then their sitting pulse rates after a two-minute delay. Students who obtained "tails" were told to measure their sitting pulse rates first, then their
standing pulse rates after a two-minute delay. All pulse rates (in beats per minute) were determined using two fingers on the neck for 60 seconds. The table below displays results from this activity.

Individual	Coin Flip	Sitting	Standing
1	H	65	68
2	H	73	75
3	H	70	70
4	H	70	80
5	T	60	68
6	H	70	74
7	T	57	64
8	T	55	66
9	H	77	80
10	T	98	100
11	T	126	107
12	H	60	78

a) Describe a problem that could occur if no coin flip had been used in this activity and explain how the coin flip can help fix this problem.
b) The students in the class are trying to decide between a matched-pairs t-test and a two-sample t-test to determine whether students' standing pulse rates are higher than their sitting pulse rates. Which would you recommend, and why?
c) Some students in the class notice that the data point for student 11 is probably an outlier. After some discussion, the class decides to remove student 11 from the analysis Using the data from the remaining 11 students, is there sufficient evidence to conclude that students' standing pulse rates are higher than their sitting pulse rates? Carry out an appropriate inference procedure to help you answer this question.
d) The teacher suggests that there is an alternative to removing student 11 from the analysis. She explains her reasoning as follows: "Let's assume that there is no difference between students' standing and sitting pulse rates. Then for any individual student, there should be a 50 percent chance that the standing pulse rate is higher." Assuming that the teacher is correct, calculate the probability of observing 11 or more of the 12 students with higher sitting than standing pulse rates.

Special Focus:
 Inference

Model Response 1

a) Suppose six of the students in this class had been released late from their previous class and so decided to run to class. If all the students in the class measured their sitting pulse rates first, then the sitting pulse rates of these six students would be higher than usual. By the time they measure their standing pulse rates, the effect of the previous jog to class could have worn off. As a result, the difference between their standing and sitting pulse rates might be smaller than if they had walked to class.

By having the students flip a coin to determine the order in which they will measure their pulse rates, it is likely that about half of the students who ran to class would measure sitting pulse rates first and that about half would measure standing pulse rates first. Any increase in pulse rate due to the recent exercise will be split about evenly between standing and sitting pulse rate measurements. This will help prevent the kind of systematic inflation of sitting pulse rates that was described as a problem before.

If we observe a difference in students' sitting and standing pulse rates, we want to ensure that the difference is a direct result of whether they are sitting or standing and not some other factor. Randomly assigning the order of the two measurements (with a coin flip, in this case) should help avoid systematic effects on either the standing or sitting pulse rates.
b) The data are paired by individual student, so a matched-pairs t-test should be used. A two-sample t-test should only be used when the data come from two independent samples.
c) Inference problems should follow the four-step outline described earlier.

Step 1: Identify the population(s) and parameter(s) of interest. State hypotheses if you are performing a hypothesis test.
Our population of interest, according to the problem statement, is "people." Because the data were collected only from high school students, however, it may be problematical to generalize beyond this group. So we'll restrict our attention to the population of high school students. We are interested in performing inference about the mean difference, $\mu_{\text {Diff }}=\mu_{\text {stand-sit }}$, between the standing and sitting pulse rates of high school students. The appropriate hypotheses are:

$$
\begin{aligned}
& H_{0}: \mu_{D i f f}=0 \\
& H_{a}: \mu_{D i f f}>0
\end{aligned}
$$

Special Focus: Inference

The alternative hypothesis is one-sided because we want to determine whether students' standing pulse rates are higher than their sitting pulse rates, in which case $\mu_{\text {Diff }}$ would be positive.

Step 2: Select the appropriate inference procedure and verify conditions for using it. In part (b), we determined that a matched-pairs t-test would be the correct procedure in this case. There are two conditions we should examine before carrying out the procedure:

- Data obtained using an SRS from the population of interest

In this problem, the data come from 12 members of an AP Statistics class. This is clearly a convenience sample. As a result, we may not be able to generalize our findings to the population of all students. However, assignment to treatments was random. So we should be able to determine whether there is evidence of a treatment effect based on sitting or standing.

- Population distribution is normally distributed.

We do not know that the population distribution of differences in students' standing and sitting pulse rates is normally distributed. A boxplot and a normal probability plot of the differences in our reduced sample of 11 students are shown below. We are concerned by the obvious right-skewed shape of the boxplot, because this may suggest that the data did not come from a normal distribution. The normal probability plot shows some evidence of a nonlinear pattern, which again makes us question the normality of the population distribution. The sample size is small, and the t-procedures are not very robust against nonnormality in the population distribution. On the positive side, there are no outliers. We will proceed with the analysis, but exercise appropriate caution when we interpret the results.

Special Focus:
 Inference

Step 3: Carry out the procedure.

- Test statistic: $t=\frac{\bar{x}_{\text {diff }}-\mu_{0}}{\frac{s_{\text {diff }}}{\sqrt{n}}}=\frac{6.182-0}{\frac{5.288}{\sqrt{11}}}=3.877$
- p-value: For a t-distribution with $\mathrm{df}=11-1=10$, the p-value is between 0.0025 and 0.001. (The TI-83 gives a p-value of 0.00154 .)

Step 4: Interpret your results in the context of the problem.

Since the p -value is so small (less than 0.0025), it is highly unlikely that we would observe a value of \bar{x} as large as we did in our sample (6.182) if $H_{0}: \mu_{D i f f}=0$ were true. So we reject H_{0} and conclude that the population mean difference in students' standing and sitting pulse rates is likely to be positive. As pointed out earlier, this gives us statistically significant evidence of a treatment effect. However, we are cautious about generalizing these findings to the population of all students based on data from a convenience sample.
d) Assuming the teacher is correct, we can define the random variable as $X=$ the number of individuals with a higher standing pulse rate. Considering each student's taking of both pulse measurements as a trial, we claim that X is a binomial random variable. When checking the conditions for a binomial setting, we use the "BINS" method:

Binary: "Success" = standing pulse rate higher, "failure" = sitting pulse rate higher.
Independent trials: We hope that one student's pulse rate readings will have no connection to another student's.
Number of trials fixed: $n=12$.
Success probability constant: $p=0.5$.
So we can calculate the probability of observing 11 or more of the 12 students with higher sitting than standing pulse rates:

$$
P(X \geq 11)=\binom{12}{11}(0.5)^{11}(0.5)^{1}+\binom{12}{12}(0.5)^{12}(0.5)^{0}=0.0029+0.00024=0.00314
$$

Special Focus: Inference

Model Problem 2: Do dogs resemble their owners? ${ }^{1}$

Researchers at the University of California, San Diego, designed an experiment to see whether undergraduate psychology students could determine which of two dogs belonged to a dog owner. A total of 45 dogs and their owners were photographed. Of these 45 dogs, 25 were purebreds, and 20 were not purebreds. A dog was classified as resembling its owner if more than half of the 28 undergraduate students matched dog to owner. Here are some results. For the purebred dogs, 16 resembled their owners. For the nonpurebred dogs, only seven resembled their owners.

The researchers believe that people who own purebred dogs would be more likely to resemble their dogs than owners of nonpurebred dogs. Unfortunately, the researchers disagree about what statistical method they should use in this situation.

Researcher 1 begins by constructing the following table to summarize the identifications made by the students.

	Correct	Not Correct
Purebred dogs	16	7
Nonpurebred dogs	9	13

Then, she performs a chi-square test of association/independence using computer software. The results are shown below.

	Correct	Not Cor	Total
Purebred	16	9	25
	12.78	12.22	
Nonpurebred	7	13	20
	10.22	9.78	
Total	23	22	45
Chi-sq = 0.8	$13+0$.	+ 1.01	+ 1.06
DF $=1, \mathrm{p}$-value $=0.053$			

a) State hypotheses and draw a conclusion based on the chi-square test that was performed.
b) Researcher 2 argues that the chi-square test is not appropriate since they believe that the proportion of correct identifications should be higher for purebred dogs than for nonpurebred dogs. He recommends carrying out a two-proportion hypothesis test. Carry out such a test and explain your results.

Special Focus: Inference

c) Researcher 3 constructs a 95 percent confidence interval for the difference in the proportion of correct identifications for purebred and nonpurebred dogs and obtains ($0.00875,0.57125$). Interpret this interval in the context of the problem.

Model Response 2

a) If a chi-square test of association/independence was performed, then the hypotheses would be H_{0} : There is no association between dogs' breeding status and whether they resemble their owners versus H_{a} : There is an association between dogs' breeding status and whether they resemble their owners, or H_{0} : Dogs' breeding status is independent of resemblance to their owners versus H_{a} : Dogs' breeding status is not independent of resemblance to their owners.

With a p-value of 0.053 , we have borderline evidence against the null hypothesis. We could legitimately decide either to reject or fail to reject the null hypothesis. If we reject the null hypothesis, then we could conclude that there is evidence of an association between dogs' breeding status and their resemblance to owners. However, if we reject the null hypothesis, we could conclude that there is insufficient evidence of an association between dogs' breeding status and their resemblance to owners.
b) Following the four-step inference problem outline described earlier:

Step 1: Identify the population(s) and parameter(s) of interest. State hypotheses if you are performing a hypothesis test.
We want to determine whether the proportion of purebred dogs that resemble their owners is greater than the proportion of nonpurebred dogs that resemble their owners. Let $p_{1}=$ the proportion of all purebred dogs that resemble their owners and $p_{2}=$ the proportion of all nonpurebred dogs that resemble their owners. We want to test the hypotheses:

$$
\begin{aligned}
& H_{0}: p_{1}=p_{2} \\
& H_{a}: p_{1}>p_{2}
\end{aligned}
$$

We will use a 0.05 significance level.

Step 2: Select the appropriate inference procedure and verify conditions for using it. Since we are comparing two population proportions, we should use a two-proportion z-test. The two primary conditions for using this procedure are:

- Data obtained using two independent SRSs from the respective populations of interest

Special Focus:
 Inference

We doubt that the researchers obtained any kind of random sample of either purebred or nonpurebred dogs. Therefore the samples of dogs being used in this study may not be representative of their corresponding populations.

This would severely limit our ability to generalize. If the data come from a randomized comparative experiment, then we could test for evidence of a treatment effect. Insufficient information is given in the stem of the problem to determine whether this is the case here. We proceed with caution.

- It is reasonable to use a normal approximation.

When performing a two proportion z-test, we begin by assuming that the null hypothesis is true. In that case, $p_{1}=p_{2}$. We estimate the common value of these two unknown population parameters using $\hat{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}=\frac{16+7}{25+20}=0.511$. We need only check that $n_{1} \hat{p}, n_{1}(1-\hat{p}), n_{2} \hat{p}$ and $n_{2}(1-\hat{p})$ are all at least 5 . Since $25(0.511)=12.775,25(0.489)=12.225$, $20(0.511)=10.22$, and $20(0.489)=9.78$, this condition is satisfied.

Step 3: Carry out the procedure.

- Test statistic: $z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{0.64-0.35}{\sqrt{(0.511)(0.489)\left(\frac{1}{25}+\frac{1}{20}\right)}}=1.93$.
- p-value: A standard normal table yields a p-value of 0.0268 . (Running a two proportion z-test on our calculator, we obtain a p-value of 0.0266 .)

Step 4: Interpret your results in the context of the problem.
Since the p-value is less than our stated cutoff of 0.05 , we reject the null hypothesis in favor of the alternative. We conclude that the proportion of purebred dogs that

Special Focus: Inference

resemble their owners is significantly higher than the proportion of nonpurebred dogs that resemble their owners, provided we can view our samples as representative of their corresponding populations.
c) We are 95 percent confident that the actual difference in the proportion of purebred dogs that resemble their owners and the proportion of nonpurebred dogs that resemble their owners is between 0.00875 and 0.57125 . (Interpretation of confidence level: 95 percent confident means that we are using a method to produce intervals that capture the true difference in population proportions in 95 percent of all possible samples of the same size from the respective populations.)

Model Problem 3: Major League Baseball payrolls and winning percentage ${ }^{2}$
Data were collected on the opening day payrolls (in millions of dollars) and the number of wins during the season for a random sample of Major League Baseball teams in the early 2000s. A scatterplot of the data is displayed below, together with partial computer output from a linear regression calculation.

Predictor	Coef	SE Coef	T	P
Constant	66.901	6.261	10.68	0.000
Payroll	0.19803	0.08221	2.41	0.023
$S=12.38$	R-Sq $=17.2 \%$	R-Sq (adj) $=14.2 \%$		

a) Determine the value of the correlation coefficient and interpret its meaning in the context of the problem.
b) Give the equation of the least squares regression line. Be sure to define any variables that you use in your equation.

Special Focus:
 Inference

c) A residual plot resulting from the linear regression is shown below. Estimate the payroll and the number of wins for the team with the most negative residual.

Residuals Versus the Fitted Values
(response is Wins)

d) Is there statistically significant evidence of a positive linear relationship between payroll and games won for Major League Baseball teams? Justify your answer.

Model Response 3

a) Since $r^{2}=0.172$, and the scatterplot shows that the correlation should be positive, $r=+\sqrt{r^{2}}=+\sqrt{0.172}=0.414$. This tells us that there is a moderate, positive, linear relationship between team payroll and number of wins in a season for these Major League Baseball teams from the early 2000s.
b) The regression equation is: Predicted Wins $=66.9+0.198$ Payroll.
c) The team with the largest negative residual appears to have a fitted value (predicted number of wins) of around 77 . Substituting this value into the regression equation yields

$$
77=66.9+0.198 \text { Payroll } \rightarrow 10.1=0.198 \text { Payroll } \rightarrow \text { Payroll }=51.01 \text { million. }
$$

Since residual $=$ actual y-value - predicted y-value,

$$
-33=\text { actual } y \text {-value }-77 \rightarrow \text { actual } y \text {-value }=44 \text { wins. }
$$

Special Focus:
 Inference

d) Following the four-step inference problem outline:

Step 1: Identify the population(s) and parameter(s) of interest. State hypotheses if you are performing a hypothesis test.
In this problem, we are interested in determining whether there is significant evidence of a positive linear relationship between opening day payroll and number of wins in a season for Major League Baseball teams in the early 2000s. Our hypotheses would be $\begin{aligned} & H_{0}: \beta=0 \\ & H_{a}: \beta>0\end{aligned}$, where β represents the slope of the population regression line relating payroll to wins.

Step 2: Select the appropriate inference procedure and verify conditions for using it. Here, we should perform a linear regression t-test on the slope of the population regression line. The required conditions for using this procedure are:

- Data obtained using an SRS from the population of interest.

We are told that the data come from a random sample of Major League Baseball teams in the early 2000s.

- There is an underlying linear relationship between the variables. The shape of the scatterplot suggests that the variables may be linearly related.
- The standard deviation of the response variable is the same for all x-values in the data set.
From the residual plot, we see a few unusual observations, but for the most part, the spread of the residuals around the zero error line is somewhat similar.
- The response varies normally around the true regression line.

This is not really possible for us to verify with the information provided.

Step 3: Carry out the procedure.

From the computer output, we see that:

- Test statistic: $t=2.41$
- p-value: The two-sided p-value is 0.023 , so the one-tailed p-value for this problem is approximately 0.015 .

Step 4: Interpret your results in the context of the problem.

Due to the low p-value (0.015), it is highly unlikely that we would have obtained a sample regression line with a slope as large as or larger than 0.198 if the null hypothesis, $\beta=0$, was true. So we would decide to reject the null hypothesis and conclude that there is statistically significant evidence of a positive linear relationship between payroll and number of wins for Major League Baseball teams in the early 2000s.

Special Focus:
 Inference

Afterword

Statistical inference is based on subtle logic that sometimes evades students. For instance, students often get mired in trying to understand why we reject or fail to reject the null hypothesis in a hypothesis test. They frequently get confused by the meaning of a p-value. When we introduce the concepts of type I error, type II error, and power, students often spend too much time memorizing the definitions of these terms, rather than making sense of how these three ideas connect to one another. Too often, students find themselves unable to correctly interpret a confidence interval in context, much less the meaning of 95 percent confident.

Between the technical vocabulary involved and the subtle ideas themselves, students can get confused easily when faced with an inference-related free-response question. As with most other challenging learning tasks, however, students can improve with deliberate practice. There is a vast number of free-response exam questions on AP Central for you to use, in addition to the examples provided in this article.

Teaching students to understand statistical practice is a challenging goal. Developing their capability and commitment to think and communicate like statisticians is priceless.

Notes

${ }^{1}$ Michael M. Roy and Nicholas J. S. Christenfeld, "Do Dogs Resemble Their Owners?" Psychological Science, 15 (May 2004): 361-363 (3).
${ }^{2}$ Robin Lock, "The Statistical Sports Fan: Can Major League Baseball Teams Buy Success?" STATS (Winter 2004).

Special Focus:
 Inference

Inferential Problems for Practice

Chris Olsen
Cedar Rapids Community Schools
Cedar Rapids, Iowa
The following problems are provided for practice in writing answers to "typical" inference problems such as might appear on the free-response section of the AP Statistics Exam.

You will notice that "the" answers are not provided-you will have to engage in some discussion with your colleagues to arrive at acceptable, statistically informative, and reasonable methodology, communication, and "correctness."

Inference for a Single Proportion

A recent study investigated the effects of a campaign to increase automobile drivers' awareness of designated bus lanes in a large midwestern city. Investigators observed a random sample of drivers over the course of the morning rush hour one day and found 92 out of 114 drivers were not "poaching" in the bus lanes.
(a) Compute a point estimate of the true proportion of all automobile drivers who stay out of the bus lanes.
(b) Construct and interpret a 95 percent confidence interval for π, the true proportion of all drivers who stay out of the bus lanes.
(c) Before the campaign it was found that 50 percent of drivers were not poaching in the bus lanes. Based on your responses in (a) and (b), is there evidence that the campaign has increased the automobile drivers' avoidance of bus lanes?

Special Focus: Inference

Inference for Two Proportions

When biologists study nesting birds, it is necessary to check the nests periodically to see if the young birds have hatched, are still alive, and so forth. In order to check the nest, the parents must be flushed from the nest, and some biologists are concerned that this human intervention may increase the likelihood of nest failure during the nesting season. In a recent study of nesting mourning doves, nests were randomly assigned to be "disturbed" or left alone for the nesting season. The nesting success of the two groups is presented below:

Mourning Dove Nests		
Treatment	Failure	Success
Disturbed	32	22
Undisturbed	25	25

(a) Construct a 95 percent confidence interval for the difference in the population proportions of nest success. Assume that it is reasonable to regard these samples as representative of the corresponding populations.
(b) Does there appear to be a difference between the proportions of success? Provide statistical justification for your answer.

Special Focus:
 Inference

Inference for a Single Mean

A company manufactures portable music devices-called "mBoxes"-for the listening pleasure of on-the-go teens. The mBox uses batteries that are advertised to provide, on average, 25 hours of continuous use. The students in Mr. Jones's statistics class-looking for any excuse to listen to music while doing their homework-decide to use their statistics to test this advertising claim. To do this, new batteries are installed in eight randomly selected mBoxes, and they are used only in Mr. Jones's class until the batteries run down. Here are the results for the lifetimes of the batteries (in hours):

$$
\begin{array}{llllllll}
15 & 22 & 26 & 25 & 21 & 27 & 18 & 22
\end{array}
$$

(a) Assess graphically the plausibility of any necessary assumptions for your inference procedure.
(b) Do the data provide sufficient evidence that the claim by the battery manufacturer is not justified?

Special Focus: Inference

Inference for Two Independent Means

The perception of danger-i.e., teachers-is an important characteristic for survival of students in math classes. Students are often distracted from working on problems during class, and teachers will sometimes have to individually point out to students that they need to get to work. Usually students will resume working as the teacher approaches their desks. Are boys and girls equally aware of the impending presence of teachers? To help answer this question, a teacher randomly approached students who were talking about nonmath topics during class and observed their behavior. The outcome measure was the distance of the teacher from the student when he or she resumed the assigned tasks. (Only the selected student was counted if two students were off-task.) The teacher believes that boys are less sensitive to the presence of the teacher, and the teacher will have to be closer to boys than girls before they are sufficiently encouraged to resume their work. Data from this experiment appear in the table at right.

Approach Distance (m) to Elicit Work Resumption

Boys	Girls
3.19	2.09
2.34	1.96
2.45	1.85
2.71	2.45
1.90	2.77
2.12	2.55
2.56	2.44
3.41	2.80
2.41	3.27
2.66	2.01
2.86	3.49
2.44	2.75

(a) Using a graphical display of your choosing, assess the assumption that the distributions of approach distances are approximately normal.
State your conclusion in a few sentences.

Special Focus: Inference

(b) Assuming that it is okay to proceed with a two-sample t procedure, determine if there is sufficient evidence to conclude that there is a difference in the mean approach distances for the boys and girls.
(c) In a few sentences, state any concerns you have about your conclusions in part (b), based on your results from part (a). If you have no concerns, write "No concerns."

Special Focus:
 Inference

Inference for Matched Pairs

The diagram at right represents the human knee before a skiing accident. Note the posterior cruciate ligament. An ACL injury, the "scourge of skiers," can result in the displacement of the tibia when the ACL is twisted, angulated, or hyperextended.

The data presented in the table below are from two different measurements of displacement of the tibia relative to the femur in 16 patients suffering from ACL.

Investigators are concerned that anthropometric (i.e., with calipers) measurements, while less expensive than X-rays,
 may give biased results. Your task will be to address this question.
(a) Using the graphical display(s) of your choice, show that the assumptions necessary for the paired t-test are plausible.

Anthro- Metric $(\mathbf{m m})$	Radio- Graphic $(\mathbf{m m})$
13.0	12.5
17.0	16.5
10.5	9.5
8.0	9.0
12.5	11.5
18.0	16.5
14.0	15.5
10.0	7.5
10.0	7.5
11.0	14.5
10.0	6.5
8.5	5.5
8.0	12.5
12.5	8.5
11.5	16.5
16.0	8.5

Special Focus: Inference

(b) Test the hypothesis that there is no difference between the anthropometric and radiographic measures of displacement. For purposes of the statistics, you may assume that these knees are a plausibly random sample of human knees.
(c) Write a short paragraph based on your analysis above, explaining your results for medical technicians. You should specifically advise them whether or not it is necessary to say in their reports which measure of displacement was used-this would be important if the measures give different results.

Special Focus:
 Inference

Inference with Chi-Square

In late May and early June on beaches on the eastern coasts of North America, it is common to see male horseshoe crabs overturned by the waves approaching the beach. Such "stranded" males must right themselves or face death. Researchers are interested in determining if, in the ebb and flow of the surf, older males tend to be stranded more than younger males. The table below includes data on horseshoe crabs brought in during a single tide; the "nonstranded" males include those attached to nesting females and unattached males found crowding around the nesting couples.

Age vs. Stranding in Crabs

Stranding	Young	Intermediate	Old
Stranded	41	125	52
Not stranded	153	364	70

Do the data support the contention that there is an association between stranding and age of the horseshoe crab? Provide statistical justification for your response.

Special Focus: Inference

Inference with Regression

The computer output given at the right shows an analysis of 31 ancient Roman coins. The investigators were interested in the metallic content of the coins as a method for identifying the mint location. Each data point represents the percent by weight of the coin that is gold versus the percent by weight of the coin that is tin.
(a) What is the least squares line for estimating the percent by weight of gold?

Percent by Weight Gold vs. Percent by Weight Tin

Linear Fit
Gold $=0.1682722+0.621629$ Tin

Summary of Fit

RSquare	0.117
RSquare Adj	0.086
Root Mean Square Error	0.084
Observations	$\mathrm{N}=31$

Analysis of Variance

Source	DF	SS	MS	F Ratio
Model	1	0.0273	0.027	3.8339
Error	29	0.206	0.007	Prob $>$ F
Total	30	0.234		0.0599

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob
Intercept	0.168	0.0669	2.52	0.0176
Tin	0.6217	0.3175	1.96	0.0599

Special Focus:
 Inference

(c) Based on your responses in parts (a) and (b), does it appear that there is a linear relationship between the percent by weight of gold and the percent by weight of tin for ancient Roman coins? Provide statistical justification for your response.

Special Focus: Inference

Contributors

Editor

Chris Olsen taught statistics at George Washington High School in Cedar Rapids, Iowa, for 25 years and AP Statistics for eight years. He is currently on "temporary detached assignment" as the high school math/assessment facilitator for Cedar Rapids Community Schools. He is a frequent contributor to the AP Statistics Electronic Discussion Group and has reviewed materials for the Mathematics Teacher, the AP Central Web site, American Statistician, and the Journal of the American Statistical Association. He currently writes a column for Stats magazine and is coauthor of Introduction to Statistics and Data Analysis. He is a past member of the AP Statistics Development Committee and the author of the current AP ${ }^{\otimes}$ Statistics Teacher's Guide. He has been a Table Leader and Question Leader at the AP Statistics Reading and has presented numerous workshops in AP Statistics in the United States and internationally.

Floyd Bullard is on the faculty at the North Carolina School of Science and Mathematics in Durham, North Carolina. He was a 2001 recipient of the Tandy award for excellence in mathematics teaching (now called the RadioShack National Teacher Award). Floyd has been an AP Statistics Exam Reader for three years, and his particular interests in statistics include simulations and Bayesian methods. Floyd is presently on a leave of absence to study statistics in a Ph.D. program at Duke University, after which he plans to return to teaching.

Roxy Peck has been a professor of statistics at Cal Poly since 1979, serving for six years as chair of the Statistics Department, and is currently in her eighth year as associate dean of the College of Science and Mathematics. She was made a fellow of the American Statistical Association in 1998, and in 2003 she received the American Statistical Association's Founders Award in recognition of her contributions to K-12 and undergraduate statistics education. She has authored two leading textbooks in introductory statistics and is currently chair of the ASA/NCTM Joint Committee on Curriculum in Statistics and Probability for grades K-12. She served from 1999 to 2003 as the Chief Reader for the AP Statistics Exam.

Special Focus: Inference

Daren Starnes is director of studies and Mathematics Department chair at the Webb Schools in Claremont, California. He has taught AP Statistics since 1996 and has been a Reader, Table Leader, and workshop consultant ever since. In January 2004, Daren was appointed to the ASA/NCTM Joint Committee on the Curriculum in Statistics and Probability. Daren is a coauthor of The Practice of Statistics, 2nd edition, and Statistics Through Applications, a new text for non-AP high school statistics.

Daniel S. Yates taught AP Statistics in the Electronic Classroom program at Varina High School from 1996 to 2001 and taught statistics at Randolph-Macon College prior to that. He is currently writing and consulting on AP Statistics and has served as a Reader and Table Leader for the annual AP Exam Reading. In November 2000, Dan was selected to receive the Siemens Award for Advanced Placement. He enjoys hearing from users of The Practice of Statistics, 2nd edition, by Yates, Moore, and Starnes, and he will teach statistics at Virginia Commonwealth University in Richmond this fall.

Chapter III

The Course

Excerpt from the 2005, 2006 AP Statistics Course Description

Introduction
Shaded text indicates important new information about this subject. The Advanced Placement Program offers a course description and examination in statistics to secondary school students who wish to complete studies equivalent to a one-semester, introductory, non-calculus-based, college course in statistics.

Statistics and mathematics educators who serve as members of the AP Statistics Development Committee have prepared the course description and examination to reflect the content of a typical introductory college course in statistics. The examination is representative of such a course and therefore is considered appropriate for the measurement of skills and knowledge in the field of introductory statistics.

In colleges and universities, the number of students who take a statistics course is almost as large as the number of students who take a calculus course. A July 2002 article in The Chronicle of Higher Education reports that the enrollment in statistics courses from 1990 to 2000 increased by 45 percent-one testament to the growth of statistics in those institutions. An introductory statistics course, similar to the AP Statistics course, is typically required for majors such as social sciences, health sciences, and business. Every semester about 236,000 college and university students enroll in an introductory statistics course offered by a mathematics or statistics department. In addition, a large number of students enroll in an introductory statistics course offered by other departments. Science, engineering, and mathematics majors usually take an upper-level calculus-based course in statistics, for which the AP Statistics course is effective preparation.

The Course

The purpose of the AP course in statistics is to introduce students to the major concepts and tools for collecting, analyzing, and drawing conclusions from data. Students are exposed to four broad conceptual themes:

1. Exploring Data: Describing patterns and departures from patterns
2. Sampling and Experimentation: Planning and conducting a study
3. Anticipating Patterns: Exploring random phenomena using probability and simulation
4. Statistical Inference: Estimating population parameters and testing hypotheses

Course Description Excerpt

Students who successfully complete the course and examination may receive credit, advanced placement, or both for a one-semester introductory college statistics course. This does not necessarily imply that the high school course should be one semester long. Each high school needs to determine the length of its AP Statistics course to best serve the needs of its students. Statistics, like some other AP courses, could be effectively studied in a one-semester, a two-trimester, or a one-year course. Most schools, however, offer it as a one-year course.

Student Selection

The College Board and the Advanced Placement Program encourage teachers, AP Coordinators, and school administrators to make equitable access a guiding principle for their AP programs. The College Board is committed to the principle that all students deserve an opportunity to participate in rigorous and academically challenging courses and programs. All students who are willing to accept the challenge of a rigorous academic curriculum should be considered for admission to AP courses. The Board encourages the elimination of barriers that restrict access to AP courses for students from ethnic, racial, and socioeconomic groups that have been traditionally underrepresented in the AP Program. Schools should make every effort to ensure that their AP classes reflect the diversity of their student population.

The AP Statistics course is an excellent option for any secondary school student who has successfully completed a second-year course in algebra and who possesses sufficient mathematical maturity and quantitative reasoning ability.

Because second-year algebra is the prerequisite course, AP Statistics usually will be taken in either the junior or senior year. The decisions about whether to take AP Statistics and when to take it depend on a student's plans:

- Students planning to take a science course in their senior year will benefit greatly from taking AP Statistics in their junior year.
- For students who would otherwise take no mathematics in their senior year, AP Statistics allows them to continue to develop their quantitative skills.
- Students who wish to leave open the option of taking calculus in college should include precalculus in their high school program and perhaps take AP Statistics concurrently with precalculus.

Students with the appropriate mathematical background are encouraged to take both AP Statistics and AP Calculus in high school.

Students who take the AP Statistics course are strongly encouraged to take the examination.

Teaching the Course

The AP Statistics course lends itself naturally to a mode of teaching that engages students in constructing their own knowledge. For example, students working individually or in small groups can plan and perform data collection and analyses where the teacher serves in the role of a consultant, rather than a director. This approach gives students ample opportunity to think through problems, make decisions, and share questions and conclusions with other students as well as with the teacher.

Important components of the course should include the use of technology, projects and laboratories, cooperative group problem-solving, and writing, as a part of concept-oriented instruction and assessment. This approach to teaching AP Statistics will allow students to build interdisciplinary connections with other subjects and with their world outside school.

The AP Statistics course depends heavily on the availability of technology suitable for the interactive, investigative aspects of data analysis. Therefore, schools should make every effort to provide students and teachers easy access to computers to facilitate the teaching and learning of statistics.

Providing instructional information and educational opportunities for teachers is an important component of the Advanced Placement Program. The College Board offers workshops and summer courses and institutes for teachers in all AP courses. Further information about these and other training opportunities may be obtained at AP Central ${ }^{\circledR}$ (apcentral.collegeboard.com) and from your College Board regional office (contact information is on the inside back cover). The Teachers' Resources section of AP Central offers reviews of textbooks, articles, Web sites, and other teaching resources. The electronic discussion groups (EDGs) accessible through AP Central also provide a moderated forum for exchanging ideas, insights, and practices among members of the AP professional community.

Additionally, the following publications provide some insight into the philosophy of the AP Statistics course.

Principles and Standards for School Mathematics, The National Council of Teachers of Mathematics, Reston, Virginia, 2000.

Statistics for the Twenty-First Century, Florence and Sheldon Gordon, The Mathematical Association of America, Washington, D.C., 1992
(800) 331-1622.

Course Description Excerpt

Teaching Statistics: More Data, Less Lecturing, a paper by George Cobb in Heeding the Call for Change: Suggestions for Curricular Action, Lynn Arthur Steen, Ed., The Mathematical Association of America, Washington, D.C., 1992 (pp. 3-43).

Teaching Statistics: Resources for Undergraduate Instructors, Tom Moore (editor), The Mathematical Association of America, 2000. MAA Notes Volume 52.

Course Content Overview

The topics for AP Statistics are divided into four major themes: exploratory analysis ($20 \%-30 \%$ of the examination), planning and conducting a study ($10 \%-15 \%$ of the examination), probability ($20 \%-30 \%$ of the examination), and statistical inference ($30 \%-40 \%$ of the examination).
I. Exploratory analysis of data makes use of graphical and numerical techniques to study patterns and departures from patterns. In examining distributions of data, students should be able to detect important characteristics, such as shape, location, variability, and unusual values. From careful observations of patterns in data, students can generate conjectures about relationships among variables. The notion of how one variable may be associated with another permeates almost all of statistics, from simple comparisons of proportions through linear regression. The difference between association and causation must accompany this conceptual development throughout.
II. Data must be collected according to a well-developed plan if valid information is to be obtained. If data are to be collected to provide an answer to a question of interest, a careful plan must be developed. Both the type of analysis that is appropriate and the nature of conclusions that can be drawn from that analysis depend in a critical way on how the data was collected. Collecting data in a reasonable way, through either sampling or experimentation, is an essential step in the data analysis process.
III. Probability is the tool used for anticipating what the distribution of data should look like under a given model. Random phenomena are not haphazard: they display an order that emerges only in the long run and is described by a distribution. The mathematical description of variation is central to statistics. The probability required for statistical inference is not primarily axiomatic or combinatorial, but is oriented toward using probability distributions to describe data.
IV. Statistical inference guides the selection of appropriate models.

Models and data interact in statistical work: models are used to draw conclusions from data, while the data are allowed to criticize and even falsify the model through inferential and diagnostic methods. Inference from data can be thought of as the process of selecting a reasonable model, including a statement in probability language, of how confident one can be about the selection.

Topic Outline

Following is an outline of the major topics covered by the AP Statistics Examination. The ordering here is intended to define the scope of the course but not necessarily the sequence. The percentages in parentheses for each content area indicate the coverage for that content area in the examination.
I. Exploring Data: Describing patterns and departures from patterns (20\%-30\%)

Exploratory analysis of data makes use of graphical and numerical techniques to study patterns and departures from patterns. Emphasis should be placed on interpreting information from graphical and numerical displays and summaries.
A. Constructing and interpreting graphical displays of distributions of univariate data (dotplot, stemplot, histogram, cumulative frequency plot)

1. Center and spread
2. Clusters and gaps
3. Outliers and other unusual features
4. Shape
B. Summarizing distributions of univariate data
5. Measuring center: median, mean
6. Measuring spread: range, interquartile range, standard deviation
7. Measuring position: quartiles, percentiles, standardized scores (z-scores)
8. Using boxplots
9. The effect of changing units on summary measures
C. Comparing distributions of univariate data (dotplots, back-toback stemplots, parallel boxplots)
10. Comparing center and spread: within group, between group variation

The Course

2. Comparing clusters and gaps
3. Comparing outliers and other unusual features
4. Comparing shapes
D. Exploring bivariate data
5. Analyzing patterns in scatterplots
6. Correlation and linearity
7. Least-squares regression line
8. Residual plots, outliers, and influential points
9. Transformations to achieve linearity: logarithmic and power transformations
E. Exploring categorical data
10. Frequency tables and bar charts
11. Marginal and joint frequencies for two-way tables
12. Conditional relative frequencies and association
13. Comparing distributions using bar charts
II. Sampling and Experimentation: Planning and conducting a study (10\%-15\%)

Data must be collected according to a well-developed plan if valid information on a conjecture is to be obtained. This plan includes clarifying the question and deciding upon a method of data collection and analysis.
A. Overview of methods of data collection

1. Census
2. Sample survey
3. Experiment
4. Observational study
B. Planning and conducting surveys
5. Characteristics of a well-designed and well-conducted survey
6. Populations, samples, and random selection
7. Sources of bias in sampling and surveys
8. Sampling methods, including simple random sampling, stratified random sampling, and cluster sampling
C. Planning and conducting experiments
9. Characteristics of a well-designed and well-conducted experiment
10. Treatments, control groups, experimental units, random assignments, and replication
11. Sources of bias and confounding, including placebo effect and blinding
12. Completely randomized design
13. Randomized block design, including matched pairs design
D. Generalizability of results and types of conclusions that can be drawn from observational studies, experiments, and surveys
III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20\%-30\%)

Probability is the tool used for anticipating what the distribution of data should look like under a given model.
A. Probability

1. Interpreting probability, including long-run relative frequency interpretation
2. 'Law of Large Numbers' concept
3. Addition rule, multiplication rule, conditional probability, and independence
4. Discrete random variables and their probability distributions, including binomial and geometric
5. Simulation of random behavior and probability distributions
6. Mean (expected value) and standard deviation of a random variable, and linear transformation of a random variable
B. Combining independent random variables
7. Notion of independence versus dependence
8. Mean and standard deviation for sums and differences of independent random variables
C. The normal distribution
9. Properties of the normal distribution
10. Using tables of the normal distribution
11. The normal distribution as a model for measurements
D. Sampling distributions
12. Sampling distribution of a sample proportion
13. Sampling distribution of a sample mean
14. Central Limit Theorem
15. Sampling distribution of a difference between two independent sample proportions
16. Sampling distribution of a difference between two independent sample means
17. Simulation of sampling distributions
18. t-distribution
19. Chi-square distribution
IV. Statistical Inference: Estimating population parameters and testing hypotheses ($30 \%-40 \%$)

Statistical inference guides the selection of appropriate models.

The Course

A. Estimation (point estimators and confidence intervals)

1. Estimating population parameters and margins of error
2. Properties of point estimators, including unbiasedness and variability
3. Logic of confidence intervals, meaning of confidence level and confidence intervals, and properties of confidence intervals
4. Large sample confidence interval for a proportion
5. Large sample confidence interval for a difference between two proportions
6. Confidence interval for a mean
7. Confidence interval for a difference between two means (unpaired and paired)
8. Confidence interval for the slope of a least-squares regression line
B. Tests of significance
9. Logic of significance testing, null and alternative hypotheses; p-values; one- and two-sided tests; concepts of Type I and Type II errors; concept of power
10. Large sample test for a proportion
11. Large sample test for a difference between two proportions
12. Test for a mean
13. Test for a difference between two means (unpaired and paired)
14. Chi-square test for goodness of fit, homogeneity of proportions, and independence (one- and two-way tables)
15. Test for the slope of a least-squares regression line

The Use of Technology

The AP Statistics course adheres to the philosophy and methods of modern data analysis. Although the distinction between graphing calculators and computers is becoming blurred as technology advances, at present the fundamental tool of data analysis is the computer. The computer does more than eliminate the drudgery of hand computation and graphing - it is an essential tool for structured inquiry.

Data analysis is a journey of discovery. It is an iterative process that involves a dialogue between the data and a mathematical model. As more is learned about the data, the model is refined and new questions are formed. The computer aids in this journey in some essential ways. First, it produces graphs that are specifically designed for data analysis. These graphical displays make it easier to observe patterns in data, to identify important subgroups of the data, and to locate any unusual data points. Second, the computer allows the student to fit complex mathematical models to the data and to assess how well the model fits the data by examining the residuals. Finally, the computer is helpful in identifying an observation that has an undue influence on the analysis and in isolating its effects.

In addition to its use in data analysis, the computer facilitates the simulation approach to probability that is emphasized in the AP Statistics course. Probabilities of random events, probability distributions of random variables, and sampling distributions of statistics can be studied conceptually, using simulation. This frees the student and teacher from a narrow approach that depends on a few simple probabilistic models.

Because the computer is central to what statisticians do, it is considered essential for teaching the AP Statistics course. However, it is not yet possible for students to have access to a computer during the AP Statistics Exam. Without a computer and under the conditions of a timed exam, students cannot be asked to perform the amount of computation that is needed for many statistical investigations. Consequently, standard computer output will be provided as necessary and students will be expected to interpret it. (See two examples of computer output in the MultipleChoice Questions section on pages 23 and 26.)

A graphing calculator is a useful computational aid, particularly in analyzing small data sets, but should not be considered equivalent to a computer in the teaching of statistics. If a graphing calculator is used in the course, its computational capabilities should include descriptive statistics such as the standard deviation, the correlation coefficient, and the equation of the least-squares linear regression line. Its graphical capabilities should include the ability to make a scatterplot and to graph the leastsquares linear regression line. Students find calculators where data are

```
The Course
Course Description Excerpt
```

entered into a spreadsheet format particularly easy to use. Ideally, students in an AP Statistics course should have access to both computers and calculators for work in and outside the classroom.

Formulas and Tables

Students enrolled in the AP Statistics course should concentrate their time and effort on developing a thorough understanding of the fundamental concepts of statistics. They do not need to memorize formulas.

The following list of formulas and tables will be furnished to students taking the AP Statistics Examination. Teachers are encouraged to familiarize their students with the form and notation of these formulas by making them accessible at the appropriate times during the course.

I. Descriptive Statistics

$$
\begin{aligned}
& \bar{x}=\frac{\sum x_{i}}{n} \\
& s_{x}=\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}} \\
& s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}} \\
& \hat{y}=b_{0}+b_{1} x \\
& b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& b_{0}=\bar{y}-b_{1} \bar{x} \\
& r=\frac{1}{n-1} \sum\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) \\
& b_{1}=r \frac{s_{y}}{s_{x}} \\
& s_{b_{1}}=\frac{\sqrt{\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}
\end{aligned}
$$

The Course
 Course Description Excerpt

II. Probability

$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$E(X)=\mu_{x}=\sum x_{i} p_{i}$
$\operatorname{Var}(X)=\sigma_{x}^{2}=\sum\left(x_{i}-\mu_{x}\right)^{2} p_{i}$

If X has a binomial distribution with parameters n and p, then:
$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
$\mu_{x}=n p$
$\sigma_{x}=\sqrt{n p(1-p)}$
$\mu_{\hat{p}}=p$
$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$

If \bar{x} is the mean of a random sample of size n from an infinite population with mean μ and standard deviation σ, then:
$\mu_{\bar{x}}=\mu$
$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$

III. Inferential Statistics

Standardized test statistic: $\frac{\text { statistic - parameter }}{\text { standard deviation of statistic }}$
Confidence interval: statistic \pm (critical value) $\cdot($ standard deviation of statistic)

Single-Sample

Statistic	Standard Deviation of Statistic
Sample Mean	$\frac{\sigma}{\sqrt{n}}$
Sample Proportion	$\sqrt{\frac{p(1-p)}{n}}$

Two-Sample
\(\left.$$
\begin{array}{|c|c|}\hline \text { Statistic } & \begin{array}{c}\text { Standard Deviation } \\
\text { of Statistic }\end{array} \\
\hline \begin{array}{c}\text { Difference of } \\
\text { sample means }\end{array}
$$ \& \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}

Special case when

\sigma_{1}=\sigma_{2}\end{array}\right]\)| $\frac{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}{}$ |
| :---: |
| Difference of
 sample proportions |
| $\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}$
 Special case when
 $p_{1}=p_{2}$ |

Chi-square test statistic $=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$

The Course

Course Description Excerpt

Table entry for z is the probability lying below z.

Table A

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 0007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	. 0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	. 1131	. 1112	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	. 1271	. 1251	. 1230	. 1210	. 1190	. 1170
-1.0	. 1587	. 1562	. 1539	. 1515	. 1492	. 1469	. 1446	. 1423	. 1401	. 1379
-0.9	. 1841	. 1814	. 1788	. 1762	. 1736	. 1711	. 1685	. 1660	. 1635	. 1611
-0.8	. 2119	. 2090	. 2061	. 2033	. 2005	. 1977	. 1949	. 1922	. 1894	. 1867
-0.7	. 2420	. 2389	. 2358	. 2327	. 2296	. 2266	. 2236	. 2206	. 2177	. 2148
-0.6	. 2743	. 2709	. 2676	. 2643	. 2611	. 2578	. 2546	. 2514	. 2483	. 2451
-0.5	. 3085	. 3050	. 3015	. 2981	. 2946	. 2912	. 2877	. 2843	. 2810	. 2776
-0.4	. 3446	. 3409	. 3372	. 3336	. 3300	. 3264	. 3228	. 3192	. 3156	. 3121
-0.3	. 3821	. 3783	. 3745	. 3707	. 3669	. 3632	. 3594	. 3557	. 3520	. 3483
-0.2	. 4207	. 4168	. 4129	. 4090	. 4052	. 4013	. 3974	. 3936	. 3897	. 3859
-0.1	. 4602	. 4562	. 4522	. 4483	. 4443	. 4404	. 4364	. 4325	. 4286	. 4247
-0.0	. 5000	. 4960	. 4920	. 4880	. 4840	. 4801	. 4761	. 4721	. 4681	. 4641

Table entry for z is the probability lying below z.

Table A (Continued)

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

The Course

Course Description Excerpt

Table entry for p and C is the point t^{*} with probability p lying above it and probability C lying between $-t^{*}$ and t^{*}.

Table B
t distribution critical values

	Tail probability p											
df	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001	. 0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	. 816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	. 765	. 978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	. 741	. 941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	. 727	. 920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	. 718	. 906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	. 711	. 896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	. 706	. 889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	. 703	. 883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	. 700	. 879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	. 697	. 876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	. 695	. 873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	. 694	. 870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	. 692	. 868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	. 691	. 866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	. 690	. 865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	. 689	. 863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	. 688	. 862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	. 688	. 861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	. 687	. 860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	. 686	. 859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	. 686	. 858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	. 685	. 858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	. 685	. 857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	. 684	. 856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	. 684	. 856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	. 684	. 855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	. 683	. 855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	. 683	. 854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	. 683	. 854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	. 681	. 851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	. 679	. 849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	. 679	. 848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	. 678	. 846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	. 677	. 845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	. 675	. 842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
∞	. 674	. 841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50\%	60\%	70\%	80\%	90\%	95\%	96\%	98\%	99\%	99.5\%	99.8\%	99.9\%
					Conf	nce l	el C					

The Course
Course Description Excerpt

Table entry for p is the point (χ^{2}) with probability p lying above it.

Table C

	Tail probability p										
df	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4

The Examination

The AP Statistics Examination is three hours long and seeks to determine how well a student has mastered the concepts and techniques of the subject matter of the course. This paper-and-pencil examination consists of (1) a 90 -minute multiple-choice section testing proficiency in a wide variety of topics, and (2) a 90 -minute free-response section requiring the student to answer open-ended questions and to complete an investigative task involving more extended reasoning. In the determination of the grade for the examination, the two sections will be given equal weight. Each student will be expected to bring a graphing calculator with statistical capabilities to the examination. The expected computational and graphic features for these calculators are described in an earlier section. Minicomputers, pocket organizers, electronic writing pads (e.g., Newton), and calculators with Qwerty (i.e., typewriter) keyboards will not be allowed. Calculator memories will not be cleared. However, calculator memories may be used only for storing programs, not for storing notes. During the exam, students are not permitted to have access to any information in their graphing calculators or elsewhere that is not directly related to upgrading the statistical functionality of older graphing calculators to make them comparable to statistical features found on newer models. Acceptable upgrades include improving the calculator's computational functionalities and/or graphical functionalities for data that students key into the calculator while taking the examination. Unacceptable enhancements include, but are not limited to, keying or scanning text or response templates into the calculator. Students attempting to augment the capabilities of their graphing calculators in any way other than for the purpose of upgrading features as described above will be considered to be cheating on the examination. A student may bring up to two calculators to the examination.

Multiple-Choice Questions

The following are examples of the kinds of multiple-choice questions found on the AP Statistics Examination; the answers to these questions follow Question 18. The distribution of topics and the levels of difficulty are illustrative of the composition of the examination; however, this group of questions does not constitute a complete examination, nor does it show the complete range of questions that appear in an examination.

Students often ask whether they should guess on the multiple-choice section. Haphazard or random guessing is unlikely to improve scores, because one-fourth of the number of questions answered incorrectly will be subtracted from the number of questions answered correctly. However, students who have some knowledge of a question and can eliminate one or more answer choices will usually find it advantageous to guess from among the remaining choices.

1. In the scatterplot of y versus x shown above, the least squares regression line is superimposed on the plot. Which of the following points has the largest residual?
(A) A
(B) B
(c) C
(D) D
(E) E

The Course

2. Under which of the following conditions is it preferable to use stratified random sampling rather than simple random sampling?
(A) The population can be divided into a large number of strata so that each stratum contains only a few individuals.
(в) The population can be divided into a small number of strata so that each stratum contains a large number of individuals.
(c) The population can be divided into strata so that the individuals in each stratum are as much alike as possible.
(D) The population can be divided into strata so that the individuals in each stratum are as different as possible.
(E) The population can be divided into strata of equal sizes so that each individual in the population still has the same chance of being selected.
3. All bags entering a research facility are screened. Ninety-seven percent of the bags that contain forbidden material trigger an alarm. Fifteen percent of the bags that do not contain forbidden material also trigger the alarm. If 1 out of every 1,000 bags entering the building contains forbidden material, what is the probability that a bag that triggers the alarm will actually contain forbidden material?
(A) 0.00097
(B) 0.00640
(C) 0.03000
(D) 0.14550
(E) 0.97000
4. A candy company claims that 10 percent of its candies are blue. A random sample of 200 of these candies is taken, and 16 are found to be blue. Which of the following tests would be most appropriate for establishing whether the candy company needs to change its claim?
(A) Matched pairs t-test
(B) One-sample proportion z-test
(C) Two-sample t-test
(D) Two-sample proportion z-test
(E) Chi-square test of association
The Course
Course Description Excerpt

DESCRIPTIVE STATISTICS

Variable	N	Mean	Median	TrMean	StDev	SE Mean
score	50	1045.7	1024.7	1041.9	221.9	31.4
Variable	Minimum	Maximum	Q1	Q3		
score	628.9	1577.1	877.7	1219.5		

5. Some descriptive statistics for a set of test scores are shown above. For this test, a certain student has a standardized score of $z=-1.2$. What score did this student receive on the test?
(A) 266.28
(в) 779.42
(C) 1008.02
(D) 1083.38
(E) 1311.98
6. In a test of $\mathrm{H}_{0}: \mu=8$ versus $\mathrm{H}_{\mathrm{a}}: \mu \neq 8$, a sample of size 220 leads to a p-value of 0.034 . Which of the following must be true?
(A) A 95% confidence interval for μ calculated from these data will not include $\mu=8$.
(в) At the 5% level if H_{0} is rejected, the probability of a Type II error is 0.034 .
(c) The 95% confidence interval for μ calculated from these data will be centered at $\mu=8$.
(D) The null hypothesis should not be rejected at the 5% level.
(E) The sample size is insufficient to draw a conclusion with 95% confidence.
```
The Course
Course Description Excerpt
```

7. A summer resort rents rowboats to customers but does not allow more than four people to a boat. Each boat is designed to hold no more than 800 pounds. Suppose the distribution of adult males who rent boats, including their clothes and gear, is normal with a mean of 190 pounds and standard deviation of 10 pounds. If the weights of individual passengers are independent, what is the probability that a group of four adult male passengers will exceed the acceptable weight limit of 800 pounds?
(A) 0.023
(в) 0.046
(C) 0.159
(D) 0.317
(E) 0.977
8. Consider a data set of positive values, at least two of which are not equal. Which of the following sample statistics will be changed when each value in this data set is multiplied by a constant whose absolute value is greater than 1 ?
I. The mean
II. The median
III. The standard deviation
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
9. Each person in a simple random sample of 2,000 received a survey, and 317 people returned their survey. How could nonresponse cause the results of the survey to be biased?
(A) Those who did not respond reduced the sample size, and small samples have more bias than large samples.
(в) Those who did not respond caused a violation of the assumption of independence.
(c) Those who did not respond were indistinguishable from those who did not receive the survey.
(D) Those who did not respond represent a stratum, changing the simple random sample into a stratified random sample.
(E) Those who did respond may differ in some important way from those who did not respond.
10. In a certain game, a fair die is rolled and a player gains 20 points if the die shows a " 6 ." If the die does not show a " 6 ," the player loses 3 points. If the die were to be rolled 100 times, what would be the expected total gain or loss for the player?
(A) A gain of about 1,700 points
(в) A gain of about 583 points
(C) A gain of about 83 points
(D) A loss of about 250 points
(E) A loss of about 300 points
11. The Attila Barbell Company makes bars for weight lifting. The weights of the bars are independent and are normally distributed with a mean of 720 ounces (45 pounds) and a standard deviation of 4 ounces. The bars are shipped 10 in a box to the retailers. The weights of the empty boxes are normally distributed with a mean of 320 ounces and a standard deviation of 8 ounces. The weights of the boxes filled with 10 bars are expected to be normally distributed with a mean of 7,520 ounces and a standard deviation of
(A) $\sqrt{12}$ ounces
(B) $\sqrt{80}$ ounces
(C) $\sqrt{224}$ ounces
(D) 48 ounces
(E) $\sqrt{1,664}$ ounces
```
The Course
Course Description Excerpt
```

12. Exercise physiologists are investigating the relationship between lean body mass (in kilograms) and the resting metabolic rate (in calories per day) in sedentary males.

Predictor	Coef	StDev	T	P
Constant	264.0	276.9	0.95	0.363
Mass	22.563	6.360	3.55	0.005
S $=144.9$	R-Sq $=55.7 \%$	R-Sq(adj) $)=51.3 \%$		

Based on the computer output above, which of the following is the best interpretation of the value of the slope of the regression line?
(A) For each additional kilogram of lean body mass, the resting metabolic rate increases on average by 22.563 calories per day.
(в) For each additional kilogram of lean body mass, the resting metabolic rate increases on average by 264.0 calories per day.
(c) For each additional kilogram of lean body mass, the resting metabolic rate increases on average by 144.9 calories per day.
(D) For each additional calorie per day for the resting metabolic rate, the lean body mass increases on average by 22.563 kilograms.
(E) For each additional calorie per day for the resting metabolic rate, the lean body mass increases on average by 264.0 kilograms.
13. An investigator was studying a territorial species of Central American termites, Nasutitermes corniger. Forty-nine termite pairs were randomly selected; both members of each of these pairs were from the same colony. Fifty-five additional termite pairs were randomly selected; the two members in each of these pairs were from different colonies. The pairs were placed in petri dishes and observed to see whether they exhibited aggressive behavior. The results are shown in the table below.

	Aggressive	Nonaggressive	Total
Same colony	$40(33.5)$	$9(15.5)$	49
Different colonies	$31(37.5)$	$24(17.5)$	55
Total	71	33	104

A Chi-square test for homogeneity was conducted, resulting in $\chi^{2}=7.638$. The expected counts are shown in parentheses in the table. Which of the following sets of statements follows from these results?
(A) χ^{2} is not significant at the 0.05 level.
(в) χ^{2} is significant, $0.01<p<0.05$; the counts in the table suggest that termite pairs from the same colony are less likely to be aggressive than termite pairs from different colonies.
(c) χ^{2} is significant, $0.01<p<0.05$; the counts in the table suggest that termite pairs from different colonies are less likely to be aggressive than termite pairs from the same colony.
(D) χ^{2} is significant, $p<0.01$; the counts in the table suggest that termite pairs from the same colony are less likely to be aggressive than termite pairs from different colonies.
(E) χ^{2} is significant, $p<0.01$; the counts in the table suggest that termite pairs from different colonies are less likely to be aggressive than termite pairs from the same colony.

The Course
 Course Description Excerpt

14. Consider n pairs of numbers $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, and $\left(x_{n}, y_{n}\right)$. The mean and standard deviation of the x-values are $\bar{x}=5$ and $s_{x}=4$, respectively. The mean and standard deviation of the y-values are $\bar{y}=10$ and $s_{y}=10$, respectively. Of the following, which could be the least squares regression line?
(A) $\hat{y}=-5.0+3.0 x$
(B) $\hat{y}=3.0 x$
(C) $\hat{y}=5.0+2.5 x$
(D) $\hat{y}=8.5+0.3 x$
(E) $\hat{y}=10.0+0.4 x$
15. The mayor of a large city will run for governor if he believes that more than 30 percent of the voters in the state already support him. He will have a survey firm ask a random sample of n voters whether or not they support him. He will use a large sample test for proportions to test the null hypothesis that the proportion of all voters who support him is 30 percent or less against the alternative that the percentage is higher than 30 percent. Suppose that 35 percent of all voters in the state actually support him. In which of the following situations would the power for this test be highest?
(A) The mayor uses a significance level of 0.01 and $n=250$ voters.
(в) The mayor uses a significance level of 0.01 and $n=500$ voters.
(C) The mayor uses a significance level of 0.01 and $n=1,000$ voters.
(D) The mayor uses a significance level of 0.05 and $n=500$ voters.
(E) The mayor uses a significance level of 0.05 and $n=1,000$ voters.
16. George and Michelle each claimed to have the better recipe for chocolate chip cookies. They decided to conduct a study to determine whose cookies were really better. They each baked a batch of cookies using their own recipe. George asked a random sample of his friends to taste his cookies and to complete a questionnaire on their quality. Michelle asked a random sample of her friends to complete the same questionnaire for her cookies. They then compared the results. Which of the following statements about this study is false?
(A) Because George and Michelle have a different population of friends, their sampling procedure makes it difficult to compare the recipes.
(в) Because George and Michelle each used only their own respective recipes, their cooking ability is confounded with the recipe quality.
(c) Because George and Michelle each used only the ovens in their houses, the recipe quality is confounded with the characteristics of the oven.
(D) Because George and Michelle used the same questionnaire, their results will generalize to the combined population of their friends.
(e) Because George and Michelle each baked one batch, there is no replication of the cookie recipes.
17. A large company is considering opening a franchise in St. Louis and wants to estimate the mean household income for the area using a simple random sample of households. Based on information from a pilot study, the company assumes that the standard deviation of household incomes is $\sigma=\$ 7,200$. Of the following, which is the least number of households that should be surveyed to obtain an estimate that is within $\$ 200$ of the true mean household income with 95 percent confidence?
(A) 75
(B) 1,300
(C) 5,200
(D) 5,500
(E) 7,700

The Course

18. Courtney has constructed a cricket out of paper and rubber bands. According to the instructions for making the cricket, when it jumps it will land on its feet half of the time and on its back the other half of the time. In the first 50 jumps, Courtney's cricket landed on its feet 35 times. In the next 10 jumps, it landed on its feet only twice. Based on this experience, Courtney can conclude that
(A) the cricket was due to land on its feet less than half the time during the final 10 jumps, since it had landed too often on its feet during the first 50 jumps
(в) a confidence interval for estimating the cricket's true probability of landing on its feet is wider after the final 10 jumps than it was before the final 10 jumps
(c) a confidence interval for estimating the cricket's true probability of landing on its feet after the final 10 jumps is exactly the same as it was before the final 10 jumps
(D) a confidence interval for estimating the cricket's true probability of landing on its feet is more narrow after the final 10 jumps than it was before the final 10 jumps
(E) a confidence interval for estimating the cricket's true probability of landing on its feet based on the initial 50 jumps does not include 0.2 , so there must be a defect in the cricket's construction to account for the poor showing in the final 10 jumps

Answers to Multiple-Choice Questions					
$1 .-\mathrm{A}$	$4 .-\mathrm{B}$	$7 .-\mathrm{A}$	$10 .-\mathrm{C}$	$13 .-\mathrm{E}$	$16 .-\mathrm{D}$
$2 .-\mathrm{C}$	$5 .-\mathrm{B}$	$8 .-\mathrm{E}$	$11 .-\mathrm{C}$	$14 .-\mathrm{D}$	$17 .-\mathrm{C}$
$3 .-\mathrm{B}$	$6 .-\mathrm{A}$	$9 .-\mathrm{E}$	$12 .-\mathrm{A}$	$15 .-\mathrm{E}$	$18 .-\mathrm{D}$

The Course
Course Description Excerpt

Free-Response Questions

In the free-response section of the AP Statistics Examination, students are asked to answer five questions and complete an investigative task. Each question is designed to be answered in approximately 12 minutes. The longer investigative task is designed to be answered in approximately 30 minutes.

Statistics is a discipline in which clear and complete communication is an essential skill. The free-response questions on the AP Statistics Examination require students to use their analytical, organizational, and communication skills to formulate cogent answers and provide students with an opportunity to:

- Relate two or more different content areas (i.e., elementary data analysis, experimental design and sampling, probability, and statistical inference) as they formulate a complete response or solution to a statistics or probability problem, and
- Demonstrate their mastery of statistics in a response format that permits the students to determine how they will organize and present each response.

The purpose of the investigative task is not only to evaluate the student's understanding in several content areas, but also to assess his or her ability to integrate statistical ideas and apply them in a new context or in a nonroutine way.

Scoring of Free-Response Questions

The evaluation of student responses on the free-response section of the AP Statistics Examination reflects the dual importance of statistical knowledge and good communication. The free-response questions and the investigative task are scored "holistically"; that is, each question's response is evaluated as 'a complete package'. With holistic scoring, after reading through the details of a student's response, a judgment is made about the overall quality of the response, as opposed to "analytic" scoring, wherein the individual components to be evaluated in a student's response are specified in advance, and each component is given a value counting toward the overall score.

Holistic scoring is well suited for questions wherein the student is required to synthesize information and respond at least partially in written paragraphs, and for questions that could potentially generate multiple, and diverse, but equally correct, responses. For example, an open-ended question may present data from a real life study and ask the student not only to analyze the data, but also to comment on how the study's protocol might be improved. Comments on improving the protocol might focus on improving the sampling method, controlling confounding variables, or seeking more power by increasing the sample size. In this context, holistic scoring represents a recognition not only of the existence of multiple reasonable approaches to a statistical analysis, but a realization of the existence of a statistical synergy - i.e., that a quality student response is more than just the sum of its parts.

The AP Statistics scoring rubric for each free response question has five categories, numerically scored on a 0 to 4 scale. Each of these categories represents a level of quality in the student response. These levels of quality are defined on two dimensions: statistical knowledge and communication. The specific rubrics for each question are tied to a general template, which represents the descriptions of the quality levels as envisioned by the Development Committee. This general template is given in the following table, "A Guide to Scoring Free Response Statistics Questions."

A GUIDE TO SCORING FREE-RESPONSE
 STATISTICS QUESTIONS: THE CATEGORY DESCRIPTORS

Score Descriptors	Statistical Knowledge	Communication
	Identification of the important components of the problem Demonstration of the statistical concepts and techniques that result in a correct solution of the problem	Explanation of what was done and why, along with a statement of conclusions drawn
4 Complete	- shows complete understanding of the problem's statistical components - synthesizes a correct relationship among these components, perhaps with novelty and creativity - uses appropriate and correctly executed statistical techniques - May have minor arithmetic errors, but answers are still reasonable	- provides a clear, organized, and complete explanation, using correct terminology, of what was done and why - states appropriate assumptions and caveats - uses diagrams or plots when appropriate to aid in describing the solution - states an appropriate and complete conclusion

The Course

Course Description Excerpt

3 Substantial	- shows substantial understanding of the problem's statistical components - synthesizes a relationship among these components, perhaps with minor gaps - uses appropriate statistical techniques - may have arithmetic errors, but answers are still reasonable	- provides a clear but not perfectly organized explanation, using correct terminology, of what was done and why, but explanation may be slightly incomplete - may miss necessary assumptions or caveats - uses diagrams or plots when appropriate to aid in describing the solution - states a conclusion that follows from the analysis but may be somewhat incomplete
2 Developing	- shows some understanding of the problem's statistical components - shows little in the way of a relationship among these components - uses some appropriate statistical techniques, but misses or misuses others - may have arithmetic errors that result in unreasonable answers	- provides some explanation of what was done, but explanation may be vague and difficult to interpret and terminology may be somewhat inappropriate - uses diagrams in an incomplete or ineffective way, or diagrams may be missing - states a conclusion that is incomplete

The Course
Course Description Excerpt

1	- shows limited under- standing of the problem's statistical components by failing to identify im- portant components - shows little ability to organize a solution and may use irrelevant in- formation - misuses or fails to use appropriate statistical techniques has arithmetic errors that result in unreasonable answers	•provides minimal or unclear explanation of what was done or why it was done, and explan- ation may not match the presented solution fails to use diagrams or plots, or uses them incorrectly states an incorrect con- clusion or fails to state a conclusion
0	- shows little to no under- standing of statistical components	• provides no explanation of a legitimate strategy

```
The Course
Course Description Excerpt
```

Some important points that students should remember when answering free-response questions on the AP Statistics Examination are given below.

1. Read the questions carefully and answer them in context; for example, the results of a hypothesis test should always be followed by a conclusion in context and a confidence interval should always be followed by an interpretation of the interval in context. Explanations and conclusions in context are always required for a complete answer.
2. Know the vocabulary of statistics, and use that vocabulary correctly in all written responses.
3. Remember to define all symbols. Specifically, remember to distinguish between population parameters and sample statistics.
4. Remember to state and check all necessary assumptions when performing hypothesis tests and constructing interval estimates.
5. Be able to interpret data displayed in a variety of ways, including graphical and in computer outputs. Be able to represent data in a variety of forms and base sound statistical arguments on these representations.

AP Central contains free-response questions, rubrics, and selected student responses from past AP Statistics exams. This is an excellent place to become more familiar with the content of past free-response questions and how they were scored.

The following questions are examples of free-response questions. These questions were administered as part of a previous year's exam.

1. The summary statistics for the number of inches of rainfall in Los Angeles for 117 years, beginning in 1877, are shown below.

N	MEAN	MEDIAN	TRMEAN	STDEV	SE MEAN
117	14.941	13.070	14.416	6.747	0.624

MIN	MAX	Q1	Q3
4.850	38.180	9.680	19.250

(a) Describe a procedure that uses these summary statistics to determine whether there are outliers.
(b) Are there outliers in these data?

Justify your answer based on the procedure that you described in part (a).
(c) The news media reported that in a particular year, there were only 10 inches of rainfall. Use the information provided to comment on this reported statement.
2. A department supervisor is considering purchasing one of two comparable photocopy machines, A or B. Machine A costs $\$ 10,000$ and machine B costs $\$ 10,500$. This department replaces photocopy machines every three years. The repair contract for machine A costs $\$ 50$ per month and covers an unlimited number of repairs. The repair contract for machine B costs $\$ 200$ per repair. Based on past performance, the distribution of the number of repairs needed over any one-year period for machine B is shown below.

Number of Repairs	0	1	2	3
Probability	0.50	0.25	0.15	0.10

You are asked to give a recommendation based on overall cost as to which machine, A or B, along with its repair contract, should be purchased. What would your recommendation be? Give a statistical justification to support your recommendation.

The Course

3. Every Monday a local radio station gives coupons away to 50 people who correctly answer a question about a news fact from the previous day's newspaper. The coupons given away are numbered from 1 to 50 , with the first person receiving coupon 1 , the second person receiving coupon 2 , and so on, until all 50 coupons are given away. On the following Saturday, the radio station randomly draws numbers from 1 to 50 and awards cash prizes to the holders of the coupons with these numbers. Numbers continue to be drawn without replacement until the total amount awarded first equals or exceeds $\$ 300$. If selected, coupons 1 through 5 each have a cash value of $\$ 200$, coupons 6 through 20 each have a cash value of $\$ 100$, and coupons 21 through 50 each have a cash value of $\$ 50$.
(a) Explain how you would conduct a simulation using the random number table provided below to estimate the distribution of the number of prize winners each week.
(b) Perform your simulation three times. (That is, run three trials of your simulation.) Start at the leftmost digit in the first row of the table and move across. Make your procedure clear so that someone can follow what you did. You must do this by marking directly on or above the table. Report the number of winners in each of your three trials.

72749	13347	65030	26128	49067	02904	49953	74674	94617	13317
81638	36566	42709	33717	59943	12027	46547	61303	46699	76423
38449	46438	91579	01907	72146	05764	22400	94490	49833	09258

The Course
Course Description Excerpt
4. Students are designing an experiment to compare the productivity of two varieties of dwarf fruit trees. The site for the experiment is a field that is bordered by a densely forested area on the west (left) side. The field has been divided into eight plots of approximately the same area. The students have decided that the test plots should be blocked. Four trees, two of each of the two varieties, will be assigned at random to the four plots within each block, with one tree planted in each plot.

The two blocking schemes shown below are under consideration. For each scheme, one block is indicated by the white region and the other block is indicated by the gray region in the figures.

(a) Which of the blocking schemes, A or B , is better for this experiment? Explain your answer.
(b) Even though the students have decided to block, they must randomly assign the varieties of trees to the plots within each block. What is the purpose of this randomization in the context of this experiment?

The Course

5. A growing number of employers are trying to hold down the costs that they pay for medical insurance for their employees. As part of this effort, many medical insurance companies are now requiring clients to use generic brand medicines when filling prescriptions. An independent consumer advocacy group wanted to determine if there was a difference, in milligrams, in the amount of active ingredient between a certain "name" brand drug and its generic counterpart. Pharmacies may store drugs under different conditions. Therefore, the consumer group randomly selected ten different pharmacies in a large city and filled two prescriptions at each of these pharmacies, one for the "name" brand and the other for the generic brand of the drug. The consumer group's laboratory then tested a randomly selected pill from each prescription to determine the amount of active ingredient in the pill. The results are given in the following table.

ACTIVE INGREDIENT

(in milligrams)

Pharmacy	1	2	3	4	5	6	7	8	9	10
Name brand	245	244	240	250	243	246	246	246	247	250
Generic brand	246	240	235	237	243	239	241	238	238	234

Based on these results, what should the consumer group's laboratory report about the difference in the active ingredient in the two brands of pills? Give appropriate statistical evidence to support your response.
6. The statistics department at a large university is trying to determine if it is possible to predict whether an applicant will successfully complete the Ph.D. program or will leave before completing the program. The department is considering whether GPA (grade point average) in undergraduate statistics and mathematics courses (a measure of performance) and mean number of credit hours per semester (a measure of workload) would be helpful measures. To gather data, a random sample of 20 entering students from the past 5 years is taken. The data are given below.

Successfully Completed Ph.D. Program

Student	A	B	C	D	E	F	G	H	I	J	K	L	M
GPA	3.8	3.5	4.0	3.9	2.9	3.5	3.5	4.0	3.9	3.0	3.4	3.7	3.6
Credit hours	12.7	13.1	12.5	13.0	15.0	14.7	14.5	12.0	13.1	15.3	14.6	12.5	14.0

Did Not Complete Ph.D. Program

Student	N	O	P	Q	R	S	T
GPA	3.6	2.9	3.1	3.5	3.9	3.6	3.3
Credit hours	11.1	14.5	14.0	10.9	11.5	12.1	12.0

The regression output below resulted from fitting a line to the data in each group. The residual plots (not shown) indicated no unusual patterns, and the assumptions necessary for inference were judged to be reasonable.

Successfully Completed Ph.D. Program

Predictor	Coef	StDev	T	P
Constant	23.514	1.684	13.95	0.000
GPA	-2.7555	0.4668	-5.90	0.000
$\mathrm{~S}=0.5658$	$\mathrm{R}-\mathrm{Sq}=76.0 \%$			

Did Not Complete Ph.D. Program

Predictor	Coef	StDev	T	P
Constant	24.200	3.474	6.97	0.001
GPA	-3.485	1.013	-3.44	0.018
$\mathrm{~S}=0.8408$	$\mathrm{R}-\mathrm{Sq}=70.3 \%$			

(a) Use an appropriate graphical display to compare the GPA's for the two groups. Write a few sentences commenting on your display.

```
The Course
Course Description Excerpt
```

(b) For the students who successfully completed the Ph.D. program, is there a significant relationship between GPA and mean number of credit hours per semester? Give a statistical justification to support your response.
(c) If a new applicant has a GPA of 3.5 and a mean number of credit hours per semester of 14.0, do you think this applicant will successfully complete the Ph.D. program? Give a statistical justification to support your response.

The Course

2005-2006 AP Statistics Development Committee

Committee Chair

Kenneth J. Koehler, Iowa State University; Ames, Iowa

Committee Members

Gloria Barrett, Deerfield Academy; Deerfield, Massachusetts
Beth Chance, California Polytechnic State University; San Luis Obispo, California
Kathy Fritz, Plano West Senior High School; Plano, Texas
Josh Tabor, Wilson High School; Hacienda Heights, California
Calvin Williams, Clemson University; Clemson, South Carolina

Chief Reader

Brad Hartlaub, Kenyon College; Gambier, Ohio

ETS Consultants

Jeff Haberstroh
Tim Jacobbe

Chapter IV

The Examination

Exam Format: AP Statistics

The exam consists of two sections and is three hours long. In Section I, students are given 90 minutes to answer 40 multiple-choice questions; in Section II, they must answer six free-response questions in 90 minutes.

	\% of Grade	Number of Questions	Minutes Allotted
Section I	50	40	90
Section II	50	6	90

Multiple-Choice Questions and Answers from the 2002 AP Statistics Released Exam

STATISTICS
 \section*{SECTION I}

Time- 1 hour and 30 minutes
Number of questions-40
Percent of total grade- 50
Directions: Solve each of the following problems, using the available space for scratchwork. Decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the test book. Do not spend too much time on any one problem.

1. Which of the following is a key distinction between well designed experiments and observational studies?
(A) More subjects are available for experiments than for observational studies.
(B) Ethical constraints prevent large-scale observational studies.
(C) Experiments are less costly to conduct than observational studies.
(D) An experiment can show a direct cause-and-effect relationship, whereas an observational study cannot.
(E) Tests of significance cannot be used on data collected from an observational study.
2. A manufacturer of balloons claims that p, the proportion of its balloons that burst when inflated to a diameter of up to 12 inches, is no more than 0.05 . Some customers have complained that the balloons are bursting more frequently. If the customers want to conduct an experiment to test the manufacturer's claim, which of the following hypotheses would be appropriate?
(A) $\mathrm{H}_{0}: p \neq 0.05, \mathrm{H}_{\mathrm{a}}: p=0.05$
(B) $\mathrm{H}_{0}: p=0.05, \mathrm{H}_{\mathrm{a}}: p>0.05$
(C) $\mathrm{H}_{0}: p=0.05, \mathrm{H}_{\mathrm{a}}: p \neq 0.05$
(D) $\mathrm{H}_{0}: p=0.05, \mathrm{H}_{\mathrm{a}}: p<0.05$
(E) $\mathrm{H}_{0}: p<0.05, \mathrm{H}_{\mathrm{a}}: p=0.05$
3. Lauren is enrolled in a very large college calculus class. On the first exam, the class mean was 75 and the standard deviation was 10 . On the second exam, the class mean was 70 and the standard deviation was 15 . Lauren scored 85 on both exams. Assuming the scores on each exam were approximately normally distributed, on which exam did Lauren score better relative to the rest of the class?
(A) She scored much better on the first exam.
(B) She scored much better on the second exam.
(C) She scored about equally well on both exams.
(D) It is impossible to tell because the class size is not given.
(E) It is impossible to tell because the correlation between the two sets of exam scores is not given.
4. Suppose that 30 percent of the subscribers to a cable television service watch the shopping channel at least once a week. You are to design a simulation to estimate the probability that none of five randomly selected subscribers watches the shopping channel at least once a week. Which of the following assignments of the digits 0 through 9 would be appropriate for modeling an individual subscriber's behavior in this simulation?
(A) Assign " $0,1,2$ " as watching the shopping channel at least once a week and " $3,4,5,6,7,8$, and 9 " as not watching.
(B) Assign "0, 1, 2, 3" as watching the shopping channel at least once a week and " $4,5,6,7,8$, and 9 " as not watching.
(C) Assign " $1,2,3,4,5$ " as watching the shopping channel at least once a week and " $6,7,8,9$, and 0 " as not watching.
(D) Assign " 0 " as watching the shopping channel at least once a week and " $1,2,3,4$, and 5 " as not watching; ignore digits " $6,7,8$, and 9 ."
(E) Assign " 3 " as watching the shopping channel at least once a week and " $0,1,2,4,5,6,7,8$, and 9 " as not watching.

The Examination
 2002 Released Exam Excerpt

5. The number of sweatshirts a vendor sells daily has the following probability distribution.

Number of Sweatshirts x	0	1	2	3	4	5
$\mathrm{P}(x)$	0.3	0.2	0.3	0.1	0.08	0.02

If each sweatshirt sells for $\$ 25$, what is the expected daily total dollar amount taken in by the vendor from the sale of sweatshirts?
(A) $\$ 5.00$
(B) $\$ 7.60$
(C) $\$ 35.50$
(D) $\$ 38.00$
(E) $\$ 75.00$
6. The correlation between two scores X and Y equals 0.8 . If both the X scores and the Y scores are converted to z-scores, then the correlation between the z-scores for X and the z-scores for Y would be
(A) -0.8
(B) -0.2
(C) 0.0
(D) 0.2
(E) 0.8
7. Suppose that the distribution of a set of scores has a mean of 47 and a standard deviation of 14 . If 4 is added to each score, what will be the mean and the standard deviation of the distribution of new scores?

Mean Standard Deviation
(A) $51 \quad 14$
(B) $51 \quad 18$
(C) $47 \quad 14$
(D) $47 \quad 16$
(E) $47 \quad 18$
8. A test engineer wants to estimate the mean gas mileage μ (in miles per gallon) for a particular model of automobile. Eleven of these cars are subjected to a road test, and the gas mileage is computed for each car.
A dotplot of the 11 gas-mileage values is roughly symmetrical and has no outliers. The mean and standard deviation of these values are 25.5 and 3.01 , respectively. Assuming that these 11 automobiles can be considered a simple random sample of cars of this model, which of the following is a correct statement?
(A) A 95% confidence interval for μ is $25.5 \pm 2.228 \times \frac{3.01}{\sqrt{11}}$.
(B) A 95% confidence interval for μ is $25.5 \pm 2.201 \times \frac{3.01}{\sqrt{11}}$.
(C) A 95% confidence interval for μ is $25.5 \pm 2.228 \times \frac{3.01}{\sqrt{10}}$.
(D) A 95% confidence interval for μ is $25.5 \pm 2.201 \times \frac{3.01}{\sqrt{10}}$.
(E) The results cannot be trusted; the sample is too small.

The Examination
 2002 Released Exam Excerpt

9. A volunteer for a mayoral candidate's campaign periodically conducts polls to estimate the proportion of people in the city who are planning to vote for this candidate in the upcoming election. Two weeks before the election, the volunteer plans to double the sample size in the polls. The main purpose of this is to
(A) reduce nonresponse bias
(B) reduce the effects of confounding variables
(C) reduce bias due to the interviewer effect
(D) decrease the variability in the population
(E) decrease the standard deviation of the sampling distribution of the sample proportion
10. The lengths of individual shellfish in a population of 10,000 shellfish are approximately normally distributed with mean 10 centimeters and standard deviation 0.2 centimeter. Which of the following is the shortest interval that contains approximately 4,000 shellfish lengths?
(A) 0 cm to 9.949 cm
(B) 9.744 cm to 10 cm
(C) 9.744 cm to 10.256 cm
(D) 9.895 cm to 10.105 cm
(E) 9.9280 cm to 10.080 cm
11. The following two-way table resulted from classifying each individual in a random sample of residents of a small city according to level of education (with categories "earned at least a high school diploma" and "did not earn a high school diploma") and employment status (with categories "employed full time" and "not employed full time").

	Employed full time	Not employed full time	Total
Earned at least a high school diploma	52	40	92
Did not earn a high school diploma	30	35	65
Total	82	75	157

If the null hypothesis of no association between level of education and employment status is true, which of the following expressions gives the expected number who earned at least a high school diploma and who are employed full time?
(A) $\frac{92 \cdot 52}{157}$
(B) $\frac{92 \cdot 82}{157}$
(C) $\frac{82 \cdot 52}{92}$
(D) $\frac{65 \cdot 52}{92}$
(E) $\frac{92 \cdot 52}{82}$

The Examination

2002 Released Exam Excerpt
12. The manager of a factory wants to compare the mean number of units assembled per employee in a week for two new assembly techniques. Two hundred employees from the factory are randomly selected and each is randomly assigned to one of the two techniques. After teaching 100 employees one technique and 100 employees the other technique, the manager records the number of units each of the employees assembles in one week. Which of the following would be the most appropriate inferential statistical test in this situation?
(A) One-sample z-test
(B) Two-sample t-test
(C) Paired t-test
(D) Chi-square goodness-of-fit test
(E) One-sample t-test
13. A random sample has been taken from a population. A statistician, using this sample, needs to decide whether to construct a 90 percent confidence interval for the population mean or a 95 percent confidence interval for the population mean. How will these intervals differ?
(A) The 90 percent confidence interval will not be as wide as the 95 percent confidence interval.
(B) The 90 percent confidence interval will be wider than the 95 percent confidence interval.
(C) Which interval is wider will depend on how large the sample is.
(D) Which interval is wider will depend on whether the sample is unbiased.
(E) Which interval is wider will depend on whether a z-statistic or a t-statistic is used.

14. The boxplots shown above summarize two data sets, I and II. Based on the boxplots, which of the following statements about these two data sets CANNOT be justified?
(A) The range of data set I is equal to the range of data set II.
(B) The interquartile range of data set I is equal to the interquartile range of data set II.
(C) The median of data set I is less than the median of data set II.
(D) Data set I and data set II have the same number of data points.
(E) About 75% of the values in data set II are greater than or equal to about 50% of the values in data set I.

The Examination

2002 Released Exam Excerpt
15. A high school statistics class wants to conduct a survey to determine what percentage of students in the school would be willing to pay a fee for participating in after-school activities. Twenty students are randomly selected from each of the freshman, sophomore, junior, and senior classes to complete the survey. This plan is an example of which type of sampling?
(A) Cluster
(B) Convenience
(C) Simple random
(D) Stratified random
(E) Systematic
16. Jason wants to determine how age and gender are related to political party preference in his town. Voter registration lists are stratified by gender and age-group. Jason selects a simple random sample of 50 men from the 20 to 29 age-group and records their age, gender, and party registration (Democratic, Republican, neither). He also selects an independent simple random sample of 60 women from the 40 to 49 age-group and records the same information. Of the following, which is the most important observation about Jason's plan?
(A) The plan is well conceived and should serve the intended purpose.
(B) His samples are too small.
(C) He should have used equal sample sizes.
(D) He should have randomly selected the two age groups instead of choosing them nonrandomly.
(E) He will be unable to tell whether a difference in party affiliation is related to differences in age or to the difference in gender.
17. A least squares regression line was fitted to the weights (in pounds) versus age (in months) of a group of many young children. The equation of the line is

$$
\hat{y}=16.6+0.65 t
$$

where \hat{y} is the predicted weight and t is the age of the child. A 20 -month-old child in this group has an actual weight of 25 pounds. Which of the following is the residual weight, in pounds, for this child?
(A) -7.85
(B) -4.60
(C) 4.60
(D) 5.00
(E) 7.85
18. Which of the following statements is (are) true about the t-distribution with k degrees of freedom?
I. The t-distribution is symmetric.
II. The t-distribution with k degrees of freedom has a smaller variance than the t-distribution with $k+1$ degrees of freedom.
III. The t-distribution has a larger variance than the standard normal (z) distribution.
(A) I only
(B) II only
(C) III only
(D) I and II
(E) I and III

The Examination
 2002 Released Exam Excerpt

Brown Eyes	Green Eyes	Blue Eyes
34	15	11

19. A geneticist hypothesizes that half of a given population will have brown eyes and the remaining half will be split evenly between blue- and green-eyed people. In a random sample of 60 people from this population, the individuals are distributed as shown in the table above. What is the value of the χ^{2} statistic for the goodness of fit test on these data?
(A) Less than 1
(B) At least 1, but less than 10
(C) At least 10 , but less than 20
(D) At least 20, but less than 50
(E) At least 50
20. A small town employs 34 salaried, nonunion employees. Each employee receives an annual salary increase of between $\$ 500$ and $\$ 2,000$ based on a performance review by the mayor's staff. Some employees are members of the mayor's political party, and the rest are not.
Students at the local high school form two lists, A and B, one for the raises granted to employees who are in the mayor's party, and the other for raises granted to employees who are not. They want to display a graph (or graphs) of the salary increases in the student newspaper that readers can use to judge whether the two groups of employees have been treated in a reasonably equitable manner.

Which of the following displays is least likely to be useful to readers for this purpose?
(A) Back-to-back stemplots of A and B
(B) Scatterplot of B versus A
(C) Parallel boxplots of A and B
(D) Histograms of A and B that are drawn to the same scale
(E) Dotplots of A and B that are drawn to the same scale
21. In a study of the performance of a computer printer, the size (in kilobytes) and the printing time (in seconds) for each of 22 small text files were recorded. A regression line was a satisfactory description of the relationship between size and printing time. The results of the regression analysis are shown below.

Dependent variable: Printing Time				
Source	Sum of Squares	df	Mean Square	F-ratio
Regression	53.3315	1	53.3315	140
Residual	7.62381	20	0.38115	
Variable	Coefficient	s.e. of Coeff	t-ratio	prob
Constant	11.6559	0.3153	37	≤ 0.0001
Size	3.47812	0.294	11.8	≤ 0.0001
R squared $=87.5 \%$	R squared (adjusted) $=86.9 \%$			
$s=0.6174$ with $22-2=20$ degrees of freedom				

Which of the following should be used to compute a 95 percent confidence interval for the slope of the regression line?
(A) $3.47812 \pm 2.086 \times 0.294$
(B) $3.47812 \pm 1.96 \times 0.6174$
(C) $3.47812 \pm 1.725 \times 0.294$
(D) $11.6559 \pm 2.086 \times 0.3153$
(E) $11.6559 \pm 1.725 \times 0.3153$

The Examination
 2002 Released Exam Excerpt

22. A study of existing records of 27,000 automobile accidents involving children in Michigan found that about 10 percent of children who were wearing a seatbelt (group SB) were injured and that about 15 percent of children who were not wearing a seatbelt (group NSB) were injured. Which of the following statements should NOT be included in a summary report about this study?
(A) Driver behavior may be a potential confounding factor.
(B) The child's location in the car may be a potential confounding factor.
(C) This study was not an experiment, and cause-and-effect inferences are not warranted.
(D) This study demonstrates clearly that seat belts save children from injury.
(E) Concluding that seatbelts save children from injury is risky, at least until the study is independently replicated.
23. Which of the following statements is true for two events, each with probability greater than 0 ?
(A) If the events are mutually exclusive, they must be independent.
(B) If the events are independent, they must be mutually exclusive.
(C) If the events are not mutually exclusive, they must be independent.
(D) If the events are not independent, they must be mutually exclusive.
(E) If the events are mutually exclusive, they cannot be independent.
24. A consulting statistician reported the results from a learning experiment to a psychologist. The report stated that on one particular phase of the experiment a statistical test result yielded a p-value of 0.24 . Based on this p-value, which of the following conclusions should the psychologist make?
(A) The test was statistically significant because a p-value of 0.24 is greater than a significance level of 0.05 .
(B) The test was statistically significant because $p=1-0.24=0.76$ and this is greater than a significance level of 0.05 .
(C) The test was not statistically significant because 2 times $0.24=0.48$ and that is less than 0.5 .
(D) The test was not statistically significant because, if the null hypothesis is true, one could expect to get a test statistic at least as extreme as that observed 24% of the time.
(E) The test was not statistically significant because, if the null hypothesis is true, one could expect to get a test statistic at least as extreme as that observed 76% of the time.
25. A new medication has been developed to treat sleep-onset insomnia (difficulty in falling asleep). Researchers want to compare this drug to a drug that has been used in the past by comparing the length of time it takes subjects to fall asleep. Of the following, which is the best method for obtaining this information?
(A) Have subjects choose which drug they are willing to use, then compare the results.
(B) Assign the two drugs to the subjects on the basis of their past sleep history without randomization, then compare the results.
(C) Give the new drug to all subjects on the first night. Give the old drug to all subjects on the second night. Compare the results.
(D) Randomly assign the subjects to two groups, giving the new drug to one group and no drug to the other group, then compare the results.
(E) Randomly assign the subjects to two groups, giving the new drug to one group and the old drug to the other group, then compare the results.

The Examination
 2002 Released Exam Excerpt

26. A quality control inspector must verify whether a machine that packages snack foods is working correctly. The inspector will randomly select a sample of packages and weigh the amount of snack food in each. Assume that the weights of food in packages filled by this machine have a standard deviation of 0.30 ounce. An estimate of the mean amount of snack food in each package must be reported with 99.6 percent confidence and a margin of error of no more than 0.12 ounce. What would be the minimum sample size for the number of packages the inspector must select?
(A) 8
(B) 15
(C) 25
(D) 52
(E) 60

27. The figure above shows a cumulative relative frequency histogram of 40 scores on a test given in an AP Statistics class. Which of the following conclusions can be made from the graph?
(A) There is greater variability in the lower 20 test scores than in the higher 20 test scores.
(B) The median test score is less than 50.
(C) Sixty percent of the students had test scores above 80.
(D) If the passing score is 70 , most students did not pass the test.
(E) The horizontal nature of the graph for test scores of 60 and below indicates that those scores occurred most frequently.
28. Two measures x and y were taken on 18 subjects. The first of two regressions, Regression I, yielded $\hat{y}=24.5+16.1 x$ and had the following residual plot.

The second regression, Regression II, yielded $\widehat{\log (y)}=1.6+0.51 \log (x)$ and had the following residual plot.

Which of the following conclusions is best supported by the evidence above?
(A) There is a linear relationship between x and y, and Regression I yields a better fit.
(B) There is a linear relationship between x and y, and Regression II yields a better fit.
(C) There is a negative correlation between x and y.
(D) There is a nonlinear relationship between x and y, and Regression I yields a better fit.
(E) There is a nonlinear relationship between x and y, and Regression II yields a better fit.

The Examination

2002 Released Exam Excerpt
29. The analysis of a random sample of 500 households in a suburb of a large city indicates that a 98 percent confidence interval for the mean family income is $(\$ 41,300, \$ 58,630)$. Could this information be used to conduct a test of the null hypothesis $\mathrm{H}_{0}: \mu=40,000$ against the alternative hypothesis $\mathrm{H}_{\mathrm{a}}: \mu \neq 40,000$ at the $\alpha=0.02$ level of significance?
(A) No, because the value of σ is not known.
(B) No, because it is not known whether the data are normally distributed.
(C) No, because the entire data set is needed to do this test.
(D) Yes, since $\$ 40,000$ is not contained in the 98 percent confidence interval, the null hypothesis would be rejected in favor of the alternative, and it could be concluded that the mean family income is significantly different from $\$ 40,000$ at the $\alpha=0.02$ level.
(E) Yes, since $\$ 40,000$ is not contained in the 98 percent confidence interval, the null hypothesis would not be rejected, and it could be concluded that the mean family income is not significantly different from $\$ 40,000$ at the $\alpha=0.02$ level.
30. The population $\{2,3,5,7\}$ has mean $\mu=4.25$ and standard deviation $\sigma=1.92$. When sampling with replacement, there are 16 different possible ordered samples of size 2 that can be selected from this population. The mean of each of these 16 samples is computed. For example, 1 of the 16 samples is $(2,5)$, which has a mean of 3.5. The distribution of the 16 sample means has its own mean $\mu_{\bar{x}}$ and its own standard deviation $\sigma_{\bar{x}}$. Which of the following statements is true?
(A) $\mu_{\bar{x}}=4.25$ and $\sigma_{\bar{x}}=1.92$
(B) $\mu_{\bar{x}}=4.25$ and $\sigma_{\bar{x}}>1.92$
(C) $\mu_{\bar{x}}=4.25$ and $\sigma_{\bar{x}}<1.92$
(D) $\mu_{\bar{x}}>4.25$
(E) $\mu_{\bar{x}}<4.25$

The Examination 2002 Released Exam Excerpt

31. A wildlife biologist is interested in the relationship between the number of chirps per minute for crickets (y) and temperature. Based on the collected data, the least squares regression line is $\hat{y}=10.53+3.41 x$, where x is the number of degrees Fahrenheit by which the temperature exceeds 50°. Which of the following best describes the meaning of the slope of the least squares regression line?
(A) For each increase in temperature of $1^{\circ} \mathrm{F}$, the estimated number of chirps per minute increases by 10.53 .
(B) For each increase in temperature of $1^{\circ} \mathrm{F}$, the estimated number of chirps per minute increases by 3.41 .
(C) For each increase of one chirp per minute, there is an estimated increase in temperature of $10.53^{\circ} \mathrm{F}$.
(D) For each increase of one chirp per minute, there is an estimated increase in temperature of $3.41^{\circ} \mathrm{F}$.
(E) The slope has no meaning because the units of measure for x and y are not the same.
32. In a carnival game, a person can win a prize by guessing which one of 5 identical boxes contains the prize. After each guess, if the prize has been won, a new prize is randomly placed in one of the 5 boxes. If the prize has not been won, then the prize is again randomly placed in one of the 5 boxes. If a person makes 4 guesses, what is the probability that the person wins a prize exactly 2 times?
(A) $\frac{2!}{5!}$
(B) $\frac{(0.2)^{2}}{(0.8)^{2}}$
(C) $2(0.2)(0.8)$
(D) $(0.2)^{2}(0.8)^{2}$
(E) $\binom{4}{2}(0.2)^{2}(0.8)^{2}$

The Examination

2002 Released Exam Excerpt
33. An engineer for the Allied Steel Company has the responsibility of estimating the mean carbon content of a particular day's steel output, using a random sample of 15 rods from that day's output. The actual population distribution of carbon content is not known to be normal, but graphic displays of the engineer's sample results indicate that the assumption of normality is not unreasonable. The process is newly developed, and there are no historical data on the variability of the process. In estimating this day's mean carbon content, the primary reason the engineer should use a t-confidence interval rather than a z-confidence interval is because the engineer
(A) is estimating the population mean using the sample mean
(B) is using the sample variance as an estimate of the population variance
(C) is using data, rather than theory, to judge that the carbon content is normal
(D) is using data from a specific day only
(E) has a small sample, and a z-confidence interval should never be used with a small sample
34. Each of 100 laboratory rats has available both plain water and a mixture of water and caffeine in their cages. After 24 hours, two measures were recorded for each rat: the amount of caffeine the rat consumed, X, and the rat's blood pressure, Y. The correlation between X and Y was 0.428 . Which of the following conclusions is justified on the basis of this study?
(A) The correlation between X and Y in the population of rats is also 0.428 .
(B) If the rats stop drinking the water/caffeine mixture, this would cause a reduction in their blood pressure.
(C) About 18 percent of the variation in blood pressure can be explained by a linear relationship between blood pressure and caffeine consumed.
(D) Rats with lower blood pressure do not like the water/caffeine mixture as much as do rats with higher blood pressure.
(E) Since the correlation is not very high, the relationship between the amount of caffeine consumed and blood pressure is not linear.
35. In a test of the hypothesis $\mathrm{H}_{0}: \mu=100$ versus $\mathrm{H}_{\mathrm{a}}: \mu>100$, the power of the test when $\mu=101$ would be greatest for which of the following choices of sample size n and significance level α ?
(A) $n=10, \alpha=0.05$
(B) $n=10, \alpha=0.01$
(C) $n=20, \alpha=0.05$
(D) $n=20, \alpha=0.01$
(E) It cannot be determined from the information given.
36. An urn contains exactly three balls numbered 1,2 , and 3 , respectively. Random samples of two balls are drawn from the urn with replacement. The average, $\bar{X}=\frac{X_{1}+X_{2}}{2}$, where X_{1} and X_{2} are the numbers on the selected balls, is recorded after each drawing. Which of the following describes the sampling distribution of \bar{X} ?
(A)

\bar{X}	1	1.5	2	2.5	3
Probability	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

(B)

\bar{X}	1	1.5	2	2.5	3
Probability	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{2}{9}$	$\frac{1}{9}$

(C)

\bar{X}	1	1.5	2	2.5	3
Probability	0	0	1	0	0

(D)

\bar{X}	1	1.5	2	2.5	3
Probability	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{3}{5}$	$\frac{1}{10}$	$\frac{1}{10}$

(E) It cannot be determined from the information given.
37. A simple random sample produces a sample mean, \bar{x}, of 15 . A 95 percent confidence interval for the corresponding population mean is 15 ± 3. Which of the following statements must be true?
(A) Ninety-five percent of the population measurements fall between 12 and 18 .
(B) Ninety-five percent of the sample measurements fall between 12 and 18.
(C) If 100 samples were taken, 95 of the sample means would fall between 12 and 18 .
(D) $\mathrm{P}(12 \leq \bar{x} \leq 18)=0.95$
(E) If $\mu=19$, this \bar{x} of 15 would be unlikely to occur.

The Examination
 2002 Released Exam Excerpt

38. Suppose that public opinion in a large city is 65 percent in favor of increasing taxes to support the public school system and 35 percent against such an increase. If a random sample of 500 people from this city are interviewed, what is the approximate probability that more than 200 of these people will be against increasing taxes?
(A) $\binom{500}{200}(0.65)^{200}(0.35)^{300}$
(B) $\binom{500}{200}(0.35)^{200}(0.65)^{300}$
(C) $\mathrm{P}\left(z>\frac{0.40-0.65}{\sqrt{\frac{(0.65)(0.35)}{500}}}\right)$
(D) $\mathrm{P}\left(z>\frac{0.40-0.35}{\sqrt{\frac{(0.4)(0.6)}{500}}}\right)$
(E) $\mathrm{P}\left(z>\frac{0.40-0.35}{\sqrt{\frac{(0.35)(0.65)}{500}}}\right)$
39. As lab partners, Sally and Betty collected data for a significance test. Both calculated the same z-test statistic, but Sally found the results were significant at the $\alpha=0.05$ level while Betty found that the results were not. When checking their results, the women found that the only difference in their work was that Sally had used a two-sided test, while Betty used a one-sided test. Which of the following could have been their test statistic?
(A) -1.980
(B) -1.690
(C) 1.340
(D) 1.690
(E) 1.780
40. A student working on a history project decided to find a 95 percent confidence interval for the difference in mean age at the time of election to office for former American Presidents versus former British Prime Ministers. The student found the ages at the time of election to office for the members of both groups, which included all of the American Presidents and all of the British Prime Ministers, and used a calculator to find the 95 percent confidence interval based on the t-distribution. This procedure is not appropriate in this context because
(A) the sample sizes for the two groups are not equal
(B) the entire population was measured in both cases, so the actual difference in means can be computed and a confidence interval should not be used
(C) elections to office take place at different intervals in the two countries, so the distribution of ages cannot be the same
(D) ages at the time of election to office are likely to be skewed rather than bell-shaped, so the assumptions for using this confidence interval formula are not valid
(E) ages at the time of election to office are likely to have a few large outliers, so the assumptions for using this confidence interval formula are not valid

The Examination
 2002 Released Exam Excerpt

Section I Answer Key and Percent Answering Correctly

Item No.	Correct Answer	5	Percent Correct by Grade				Total Percent Correct
			4	3	2	1	
1	D	97	93	90	86	78	88
2	B	97	92	86	79	62	81
3	C	97	91	85	76	56	79
4	A	99	97	92	83	59	84
5	D	99	97	90	79	53	81
6	E	89	76	66	55	37	62
7	A	99	96	91	83	62	84
8	A	88	73	59	46	33	56
9	E	77	54	37	27	20	39
10	D	76	51	35	26	19	37
11	B	95	86	73	59	41	68
12	B	85	73	67	63	58	67
13	A	94	85	75	64	46	70
14	D	99	96	89	79	51	80
15	D	97	94	88	79	56	81
16	E	98	95	91	86	65	85
17	B	88	78	64	50	28	58
18	E	66	40	26	19	15	29
19	B	91	78	63	48	31	59
20	B	91	76	59	46	30	57

Item	Correct		Percent Correct by Grade		Total Percent		
No.	Answer	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	Correct

Formulas

(I) Descriptive Statistics
$\bar{x}=\frac{\sum x_{i}}{n}$
$s_{x}=\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}$
$s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}}$
$\hat{y}=b_{0}+b_{1} x$
$b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$b_{0}=\bar{y}-b_{1} \bar{x}$
$r=\frac{1}{n-1} \sum\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)$
$b_{1}=r \frac{s_{y}}{s_{x}}$
$s_{b_{1}}=\frac{\sqrt{\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}$

The Examination

2005 AP ${ }^{\oplus}$ STATISTICS FREE-RESPONSE OUESTIONS

(II) Probability
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$E(X)=\mu_{x}=\sum x_{i} p_{i}$
$\operatorname{Var}(X)=\sigma_{x}^{2}=\Sigma\left(x_{i}-\mu_{x}\right)^{2} p_{i}$

If X has a binomial distribution with parameters n and p, then:
$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
$\mu_{x}=n p$
$\sigma_{x}=\sqrt{n p(1-p)}$
$\mu_{\hat{p}}=p$
$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$

If \bar{x} is the mean of a random sample of size n from an infinite population with mean μ and standard deviation σ, then:
$\mu_{\bar{x}}=\mu$
$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$

2005 AP $^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

(III) Inferential Statistics

Standardized test statistic: $\frac{\text { statistic - parameter }}{\text { standard deviation of statistic }}$
Confidence interval: statistic \pm (critical value) • (standard deviation of statistic)
Single-Sample

Statistic	Standard Deviation of Statistic
Sample Mean	$\frac{\sigma}{\sqrt{n}}$
Sample Proportion	$\sqrt{\frac{p(1-p)}{n}}$

Two-Sample

Statistic	Standard Deviation of Statistic
Difference of sample means	$\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
	Special case when $\sigma_{1}$$=\sigma_{2}$
Difference of sample proportions	$\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}$
	Special case when $p_{1}=p_{2}$
	$\sqrt{p(1-p)} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$

Chi-square test statistic $=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$

The Examination

2005 AP $^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

STATISTICS
SECTION II
\section*{Part A}
\section*{Questions 1-5}
> Spend about 65 minutes on this part of the exam. > Percent of Section II grade-75

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.

1. The goal of a nutritional study was to compare the caloric intake of adolescents living in rural areas of the United States with the caloric intake of adolescents living in urban areas of the United States. A random sample of ninth-grade students from one high school in a rural area was selected. Another random sample of ninth graders from one high school in an urban area was also selected. Each student in each sample kept records of all the food he or she consumed in one day.
The back-to-back stemplot below displays the number of calories of food consumed per kilogram of body weight for each student on that day.

Urban	Rural		
99998876	2		
44310	3	2334	
97665	3	56667	
20	4	02224	
	4	56889	
	5	1	

Stem: tens
Leaf: ones
(a) Write a few sentences comparing the distribution of the daily caloric intake of ninth-grade students in the rural high school with the distribution of the daily caloric intake of ninth-grade students in the urban high school.
(b) Is it reasonable to generalize the findings of this study to all rural and urban ninth-grade students in the United States? Explain.
(c) Researchers who want to conduct a similar study are debating which of the following two plans to use.

Plan I: Have each student in the study record all the food he or she consumed in one day. Then researchers would compute the number of calories of food consumed per kilogram of body weight for each student for that day.
Plan II: Have each student in the study record all the food he or she consumed over the same 7-day period. Then researchers would compute the average daily number of calories of food consumed per kilogram of body weight for each student during that 7-day period.

Assuming that the students keep accurate records, which plan, I or II, would better meet the goal of the study? Justify your answer.

The Examination

2005 AP $^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

2. Let the random variable X represent the number of telephone lines in use by the technical support center of a software manufacturer at noon each day. The probability distribution of X is shown in the table below.

x	0	1	2	3	4	5
$p(x)$	0.35	0.20	0.15	0.15	0.10	0.05

(a) Calculate the expected value (the mean) of X.
(b) Using past records, the staff at the technical support center randomly selected 20 days and found that an average of 1.25 telephone lines were in use at noon on those days. The staff proposes to select another random sample of 1,000 days and compute the average number of telephone lines that were in use at noon on those days. How do you expect the average from this new sample to compare to that of the first sample? Justify your response.
(c) The median of a random variable is defined as any value x such that $P(X \leq x) \geq 0.5$ and $P(X \geq x) \geq 0.5$. For the probability distribution shown in the table above, determine the median of X.
(d) In a sentence or two, comment on the relationship between the mean and the median relative to the shape of this distribution.

The Examination

2005 AP $^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

3. The Great Plains Railroad is interested in studying how fuel consumption is related to the number of railcars for its trains on a certain route between Oklahoma City and Omaha.

A random sample of 10 trains on this route has yielded the data in the table below.

Number of Railcars	Fuel Consumption (units/mile)
20	58
20	52
37	91
31	80
47	114
43	98
39	87
50	122
40	100
29	70

A scatterplot, a residual plot, and the output from the regression analysis for these data are shown below.

RESIDUALS VERSUS THE FITTED VALUES

2005 AP $^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

The regression equation is				
Fuel Consumption $=10.7+2.15$ Railcars				
Predictor	Coef	StDev	T	P
Constant	10.677	5.157	2.07	0.072
Railcar	2.1495	0.1396	15.40	0.000
$\mathrm{S}=4.361$	$-\mathrm{Sq}=96$	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=96.3 \%$		

(a) Is a linear model appropriate for modeling these data? Clearly explain your reasoning.
(b) Suppose the fuel consumption cost is $\$ 25$ per unit. Give a point estimate (single value) for the change in the average cost of fuel per mile for each additional railcar attached to a train. Show your work.
(c) Interpret the value of r^{2} in the context of this problem.
(d) Would it be reasonable to use the fitted regression equation to predict the fuel consumption for a train on this route if the train had 65 railcars? Explain.
4. Some boxes of a certain brand of breakfast cereal include a voucher for a free video rental inside the box. The company that makes the cereal claims that a voucher can be found in 20 percent of the boxes. However, based on their experiences eating this cereal at home, a group of students believes that the proportion of boxes with vouchers is less than 0.2 . This group of students purchased 65 boxes of the cereal to investigate the company's claim. The students found a total of 11 vouchers for free video rentals in the 65 boxes.

Suppose it is reasonable to assume that the 65 boxes purchased by the students are a random sample of all boxes of this cereal. Based on this sample, is there support for the students' belief that the proportion of boxes with vouchers is less than 0.2 ? Provide statistical evidence to support your answer.
5. A survey will be conducted to examine the educational level of adult heads of households in the United States. Each respondent in the survey will be placed into one of the following two categories:

- Does not have a high school diploma
- Has a high school diploma

The survey will be conducted using a telephone interview. Random-digit dialing will be used to select the sample.
(a) For this survey, state one potential source of bias and describe how it might affect the estimate of the proportion of adult heads of households in the United States who do not have a high school diploma.
(b) A pilot survey indicated that about 22 percent of the population of adult heads of households do not have a high school diploma. Using this information, how many respondents should be obtained if the goal of the survey is to estimate the proportion of the population who do not have a high school diploma to within 0.03 with 95 percent confidence? Justify your answer.
(c) Since education is largely the responsibility of each state, the agency wants to be sure that estimates are available for each state as well as for the nation. Identify a sampling method that will achieve this additional goal and briefly describe a way to select the survey sample using this method.

The Examination

2005 AP $^{\oplus}$ STATISTICS FREE-RESPONSE OUESTIONS

Part B
Question 6
Spend about 25 minutes on this part of the exam. Percent of Section II grade- 25

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.
6. Lead, found in some paints, is a neurotoxin that can be especially harmful to the developing brain and nervous system of children. Children frequently put their hands in their mouth after touching painted surfaces, and this is the most common type of exposure to lead.
A study was conducted to investigate whether there were differences in children's exposure to lead between suburban day-care centers and urban day-care centers in one large city. For this study, researchers used a random sample of 20 children in suburban day-care centers. Ten of these 20 children were randomly selected to play outside; the remaining 10 children played inside. All children had their hands wiped clean before beginning their assigned one-hour play period either outside or inside. After the play period ended, the amount of lead in micrograms (mcg) on each child's dominant hand was recorded.
The mean amount of lead on the dominant hand for the children playing inside was 3.75 mcg , and the mean amount of lead for the children playing outside was 5.65 mcg . A 95 percent confidence interval for the difference in the mean amount of lead after one hour inside versus one hour outside was calculated to be ($-2.46,-1.34$).

A random sample of 18 children in urban day-care centers in the same large city was selected. For this sample, the same process was used, including randomly assigning children to play inside or outside. The data for the amount (in mcg) of lead on each child's dominant hand are shown in the table below.

Urban Day-Care Centers

Inside	6	5	4	4	4.5	5	4.5	3	5
Outside	15	25	18	14	20	13	11	22	20

(a) Use a 95 percent confidence interval to estimate the difference in the mean amount of lead on a child's dominant hand after an hour of play inside versus an hour of play outside at urban day-care centers in this city. Be sure to interpret your interval.

The Examination

2005 AP $^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

(b) On the figure below,

- Using the vertical axis for the mean amount of lead, plot the mean for the amounts of lead on the dominant hand of children who played inside at the suburban day-care center and then plot the mean for the amounts of lead on the dominant hand of children who played inside at the urban day-care center.
- Connect these two points with a line segment.
- Plot the two means (suburban and urban) for the children who played outside at the two types of day-care centers.
- Connect these two points with a second line segment.

(c) From the study, what conclusions can be drawn about the impact of setting (inside, outside), environment (suburban, urban), and the relationship between the two on the amount of lead on the dominant hand of children after play in this city? Justify your answer.

END OF EXAM

The Examination

2005 AP $^{\oplus}$ STATISTICS FREE-RESPONSE OUESTIONS

Table entry for z is the probability lying below z.

Table A Standard normal probabilities

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 0007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	. 0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	. 1131	. 1112	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	. 1271	. 1251	. 1230	. 1210	. 1190	. 1170
-1.0	. 1587	. 1562	. 1539	. 1515	. 1492	. 1469	. 1446	. 1423	. 1401	. 1379
-0.9	. 1841	. 1814	. 1788	. 1762	. 1736	. 1711	. 1685	. 1660	. 1635	. 1611
-0.8	. 2119	. 2090	. 2061	. 2033	. 2005	. 1977	. 1949	. 1922	. 1894	. 1867
-0.7	. 2420	. 2389	. 2358	. 2327	. 2296	. 2266	. 2236	. 2206	. 2177	. 2148
-0.6	. 2743	. 2709	. 2676	. 2643	. 2611	. 2578	. 2546	. 2514	. 2483	. 2451
-0.5	. 3085	. 3050	. 3015	. 2981	. 2946	. 2912	. 2877	. 2843	. 2810	. 2776
-0.4	. 3446	. 3409	. 3372	. 3336	. 3300	. 3264	. 3228	. 3192	. 3156	. 3121
-0.3	. 3821	. 3783	. 3745	. 3707	. 3669	. 3632	. 3594	. 3557	. 3520	. 3483
-0.2	. 4207	. 4168	. 4129	. 4090	. 4052	. 4013	. 3974	. 3936	. 3897	. 3859
-0.1	. 4602	. 4562	. 4522	. 4483	. 4443	. 4404	. 4364	. 4325	. 4286	. 4247
-0.0	. 5000	. 4960	. 4920	. 4880	. 4840	. 4801	. 4761	. 4721	. 4681	. 4641

2005 AP ${ }^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

Table entry for z is the probability lying below z.

Table A (Continued)

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

The Examination

2005 AP ${ }^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

Table B t distribution critical values

df	Tail probability p											
	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001	. 0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	. 816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	. 765	. 978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	. 741	. 941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	. 727	. 920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	. 718	. 906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	. 711	. 896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	. 706	. 889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	. 703	. 883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	. 700	. 879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	. 697	. 876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	. 695	. 873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	. 694	. 870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	. 692	. 868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	. 691	. 866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	. 690	. 865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	. 689	. 863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	. 688	. 862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	. 688	. 861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	. 687	. 860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	. 686	. 859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	. 686	. 858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	. 685	. 858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	. 685	. 857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	. 684	. 856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	. 684	. 856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	. 684	. 855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	. 683	. 855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	. 683	. 854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	. 683	. 854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	. 681	. 851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	. 679	. 849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	. 679	. 848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	. 678	. 846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	. 677	. 845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	. 675	. 842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
∞	. 674	. 841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50\%	60\%	70\%	80\%	90\%	95\%	96\%	98\%	99\%	99.5\%	99.8\%	99.9\%
Confidence level C												

2005 AP ${ }^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS

Table entry for p is the point (χ^{2}) with probability p lying above it.

Table C $\quad \chi^{2}$ critical values

df	Tail probability p											
	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001	. 0005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	12.12
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	15.20
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	20.00
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51	22.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	26.02
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	27.87
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	29.67
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	31.42
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	34.82
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	36.48
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.11
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25	41.31
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79	42.88
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31	44.43
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82	45.97
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31	47.50
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73	52.00
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	54.95
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48	57.86
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89	59.30
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40	76.09
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66	89.56
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61	102.7
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8	128.3
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4	153.2

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 1

Solution

Part (a):

The mean ($40.45 \mathrm{cal} / \mathrm{kg}$) and median ($41 \mathrm{cal} / \mathrm{kg}$) daily caloric intake of ninth-grade students in the rural school are higher than the corresponding measures of center, mean ($32.6 \mathrm{cal} / \mathrm{kg}$) and median ($32 \mathrm{cal} / \mathrm{kg}$), for ninth-graders in the urban school. There is also more variability or spread in the daily caloric intake for students in the rural school (Range $=19, \mathrm{SD}=6.04, \mathrm{IQR}=10$) than in the daily caloric intake for students in the urban school (Range=16, $\mathrm{SD}=4.67, \mathrm{IQR}=7$). The shapes of the two distributions are also different. The distribution of daily caloric intake for rural students is more uniformly distributed (symmetric) between 32 $\mathrm{cal} / \mathrm{kg}$ and $51 \mathrm{cal} / \mathrm{kg}$ while the distribution of daily caloric intake for urban students appears to be skewed toward the larger values.

Part (b):

No, the samples include students from only one rural and one urban high school so it is not reasonable to generalize the findings from these two schools to all rural and urban ninth-grade students in the United States.

Part (c):

Since we are assuming that students keep accurate records, Plan II will do a better job of comparing the daily caloric intake of adolescents living in rural areas with the daily caloric intake of adolescents living in urban areas. Both plans take body weight into account by converting to food consumed per kilogram of body weight. Plan II includes a 7-day period (possibly days in school and days at home on the weekend), and there are differences in caloric intake among days. It would therefore be better to average over the 7 -day period rather than considering only the food consumed in one day, as is the case with Plan I. Plan II would provide a more precise estimate of the average daily intake.

Scoring

Parts (a) and (c) are scored as essentially correct (E), partially correct (P), or incorrect (I). Part (b) is scored as essentially correct (E) or incorrect (I).

Part (a) is essentially correct (E) if the student correctly compares center, shape, and spread of the two distributions. Specific numerical values are not required.

Part (a) is partially correct (P) if the student correctly compares any two of the three characteristics (center, shape, or spread) of the two distributions.

Part (a) is incorrect (I) if the student correctly compares no more than one characteristic.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 1 (continued)

Part (b) is essentially correct (E) if the student realizes that these findings cannot be generalized because the students were selected from only one rural and one urban high school.

Part (b) is incorrect (I) if the student argues that these findings:

- cannot be generalized with no explanation given; OR
- cannot be generalized with an invalid explanation (e.g., the response indicates that the student sample size ($\mathrm{n}=20$) is not big enough); OR
- can be generalized because the randomly selected students from these two schools may represent all urban and rural ninth-grade students in the United States.

Part (c) is essentially correct (E) if Plan II is chosen and a correct justification involving day-to-day variability is provided.

Part (c) is partially correct (P) if Plan II is chosen, but a weak statistical justification that includes a discussion of day-to-day variability is provided.

Part (c) is incorrect (I) if:

- Plan I is chosen; OR
- Plan II is chosen and a correct justification is not provided.

4 Complete Response (3E)

All three parts essentially correct
3 Substantial Response (2E 1P)
Two parts essentially correct and one part partially correct

2 Developing Response (2E 0P or 1E 2P)

Two parts essentially correct and zero parts partially correct
OR
One part essentially correct and two parts partially correct
1 Minimal Response (1E 1P or 1E 0P or 0E 2P)
One part essentially correct and either zero parts or one part partially correct
OR
Zero parts essentially correct and two parts partially correct

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 2

Solution

Part (a):

The expected number of telephone lines in use by the technical support center at noon is:

$$
\begin{aligned}
E(X) & =0 \times 0.35+1 \times 0.2+2 \times 0.15+3 \times 0.15+4 \times 0.1+5 \times 0.05 \\
& =1.6
\end{aligned}
$$

Part (b):

We would expect the average based on 1,000 days to be closer to 1.6 than the first average based on 20 days. Both averages have the same expected value (1.6), but the variability for sample averages based on 1,000 days is smaller than the variability for sample averages based on 20 days.

Part (c):

The median of X is 1 .

x	$P(X \leq x)$	$P(X \geq x)$
0	0.35	1.0
1	0.55	0.65
2	0.70	0.45
3	0.85	0.30
4	0.95	0.15
5	1.0	0.05

OR
The median of X is 1 because $P(X \leq 1)=0.55 \geq 0.50$ and $P(X \geq 1)=0.65 \geq 0.50$.

Part (d):

The probability histogram is clearly skewed to the right (or toward the larger values) so the mean (1.6) is larger than the median (1), as is typical for a right-skewed distribution.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 2 (continued)

Scoring

Parts (a) and (c) are combined as one computational part. Each part is scored as essentially correct (E), partially correct (P), or incorrect (I).

Collectively parts (a) and (c) are essentially correct (E) if both parts are calculated correctly, with the exception of minor arithmetic errors.

Collectively parts (a) and (c) are partially correct (P) if one of the two parts is calculated correctly, with the exception of minor arithmetic errors.

Collectively parts (a) and (c) are incorrect (I) if both parts are calculated incorrectly.
Note: Unsupported answers in parts (a) and (c) are scored as incorrect.
Part (b) is essentially correct (E) if the student:

1. States the new estimate based on 1,000 days should be closer to the expected value of 1.6 ; OR the new estimate will increase, or decrease if the answer in part (a) is less than 1.25.
AND
2. Provides justification by stating the variability for sample averages based on 1,000 days will be smaller than the variability for sample averages based on 20 days; OR as the sample size increases the sample average approaches the expected value of X.

Part (b) is partially correct (P) if the student provides one of the two items above.
Part (d) is essentially correct (E) if the student states that since the distribution is skewed to the right, the mean is greater than the median; OR since the mean is greater than the median, the distribution is skewed to the right.

Note: There must be evidence that the student looked at the given distribution.
Part (d) is partially correct (P) if the student:

- States that since the mean is greater than the median, the distribution is skewed to the right (with no evidence that the student looked at the given distribution); OR
- Compares the two measures of center by referring to the inappropriate or incomplete shape of the distribution (e.g., "skewed to the left" or "skewed"); OR
- Makes a correct statement about the measures of center and the shape without connecting the two.

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES

Question 2 (continued)

Part (d) is incorrect (I) if the student:

- Compares the two measures of center without mentioning the shape of the distribution; OR
- Correctly describes the shape without correct conclusions about the relative location of the mean and median; OR
- Makes multiple "generic" statements about the relationship of mean, median, and shape with no reference to the given distribution.

4 Complete Response (3E)
All three parts essentially correct
3 Substantial Response (2E 1P)
Two parts essentially correct and one part partially correct
2 Developing Response (2E 0P or 1E 2P)
Two parts essentially correct and zero parts partially correct
OR
One part essentially correct and two parts partially correct
1 Minimal Response (1E 1P or 1E 0P or 0E 2P)
One part essentially correct and either zero parts or one part partially correct OR
Zero parts essentially correct and two parts partially correct

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 3

Solution

Part (a):

Yes, the linear model is appropriate for these data. The scatterplot shows a strong, positive, linear association between the number of railcars and fuel consumption, and the residual plot shows a reasonably random scatter of points above and below zero.

Part (b):

According to the regression output, fuel consumption will increase by 2.15 units for each additional railcar. Since the fuel consumption cost is $\$ 25$ per unit, the average cost of fuel per mile will increase by approximately $\$ 25 \times 2.15=\$ 53.75$ for each railcar that is added to the train.

Part (c):

The regression output indicates that $r^{2}=96.7 \%$ or 0.967 . Thus, 96.7% of the variation in the fuel consumption values is explained by using the linear regression model with number of railcars as the explanatory variable.

Part (d):

No, the data set does not contain any information about fuel consumption for any trains with more than 50 cars. Using the regression model to predict the fuel consumption for a train with 65 railcars, known as extrapolation, is not reasonable.

Scoring

Each part is scored as essentially correct (E), partially correct (P), or incorrect (I).
Part (a) is essentially correct (E) if the model is deemed appropriate AND the explanation clearly indicates:

- There is a linear pattern in the scatterplot; OR
- There is no pattern in the residual plot.

Part (a) is partially correct (P) if the:

- Model is deemed appropriate AND the student refers to the scatterplot or residual plot but fails to state the relevant characteristic of the plot; OR
- Student refers to the relevant characteristic of the scatterplot or residual plot without deeming model appropriate.

Part (a) is incorrect (I) if the student:

- States that the model is appropriate without an explanation; OR
- States that the model is inappropriate; OR
- Makes a decision based only on numeric values from the computer output.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 3 (continued)

Part (b) is essentially correct (E) if the point estimate for the slope (2.15 or 2.1495) and the fuel consumption cost per unit (\$25) are used to calculate the correct point estimate (\$53.75 or \$53.7375 $\approx \$ 53.74$).

Part (b) is partially correct (P) if only the point estimate for the slope (2.15 or 2.1495) is stated with a supporting calculation or interpretation.

Part (c) is essentially correct (E) if the student states:

- 96.7% of the variation in fuel consumption is explained by the linear regression model; OR
- 96.7% of the variation in fuel consumption is explained by the number of railcars.

Part (c) is partially correct (P) if the student makes one of the above statements using $\mathrm{R}-\mathrm{Sq}(\operatorname{adj})=96.3 \%$.
Part (d) is essentially correct (E) if the student states that this is unreasonable due to extrapolation.
Part (d) is partially correct (P) if the student states this is:

- Unreasonable but provides a weak explanation; OR
- Reasonable even though it is considered a slight extrapolation.

Note: Any answer appearing without supporting work is scored as incorrect (I).

Each essentially correct (E) response counts as 1 point, each partially correct (P) response counts as $1 / 2$ point.

4 Complete Response

3 Substantial Response
2 Developing Response

1 Minimal Response

Note: If a response is in between two scores (for example, $21 / 2$ points), use a holistic approach to determine whether to score up or down depending on the strength of the response and communication.

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 4

Solution

This question is divided into four parts.
Part (a): State a correct pair of hypotheses.
Let $p=$ the proportion of boxes of this brand of breakfast cereal that include a voucher for a free video rental.

$$
\begin{aligned}
& H_{0}: p=0.2 \\
& H_{a}: p<0.2
\end{aligned}
$$

Part (b): Identify a correct test (by name or by formula) and check appropriate conditions.
One-sample z-test for a proportion $\quad O R \quad z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$
Conditions:

1. $n p_{0}=65 \times 0.2=13>10$ and $n\left(1-p_{0}\right)=65 \times 0.8=52>10$.
2. It is reasonable to assume that the company produces more than $65 \times 10=650$ boxes of this cereal ($N>10 n$).
3. The observations are independent because it is reasonable to assume that the 65 boxes are a random sample of all boxes of this cereal.

Part (c): Use correct mechanics and calculations, and provide the p-value (or rejection region).
The sample proportion is $\hat{p}=\frac{11}{65}=0.169$. The test statistic is $z=\frac{0.169-0.2}{\sqrt{\frac{0.2(1-0.2)}{65}}}=-0.62$ and the p-value is
$P(Z<-0.62)=0.2676$.

Part (d): State a correct conclusion, using the result of the statistical test, in the context of the problem.
Since the p-value $=0.2676$ is larger than any reasonable significance level (e.g., $\alpha=0.05$), we cannot reject the company's claim. That is, we do not have statistically significant evidence to support the student's belief that the proportion of cereal boxes with vouchers is less than 20 percent.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 4 (continued)

Scoring

The question is divided into four parts. Each part is scored as essentially correct (E) or incorrect (I).
Part (a) is essentially correct (E) if the student states a correct pair of hypotheses.
Notes:

1. Since the proportion was defined in the stem, standard notation for the proportion (p or π) need not be defined in the hypotheses.
2. Nonstandard notation must be defined correctly.
3. A two-sided alternative is incorrect for this part.

Part (b) is essentially correct (E) if the student identifies a correct test (by name or by formula) and checks for appropriate conditions.

Notes:

1. $n p_{0}>5$ and $n\left(1-p_{0}\right)>5$ are OK as long as appropriate values are used for n and p_{0}.
2. Since students cannot check the actual population size, they do not need to mention it.
3. The stem of the problem indicates this is a random sample so it (or a discussion of independence) does not need to be repeated in the solution.

Part (c) is essentially correct (E) if no more than one of the following errors is present in the student's work:

- Undefined, nonstandard notation is used; OR
- The correct z-value $=-0.62$ is given with no setup for the calculation; OR
- The incorrect z-value $=-0.67$ is given because \hat{p} was used in the calculation of the standard error. For this incorrect z-value, the p-value $=0.2514$.; OR
- The incorrect z-value is calculated because of a minor arithmetic error.

Part (c) is incorrect (I) if:

- Inference for a lower tail alternative is based on either two-tails p-value $=0.535$ or the upper tail p-value $=0.734$; OR
- An unsupported z-value other than -0.62 or -0.67 is given; OR
- The correct z-value $=-0.62$ is given but equated to an incorrect formula.

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES

Question 4 (continued)

Notes:

1. Students using a rejection region approach should have critical values appropriate for a lower tail test, e.g., for $\alpha=0.05$ the rejection region is $z<-1.645$.
2. Other possible correct mechanics include:

- Exact Binomial
$\mathrm{X} \sim \operatorname{Binomial}(\mathrm{n}=65, \mathrm{p}=0.2)$. The exact p-value is $P(X \leq 11)=0.33$.
- Normal Approximation to Binomial (with or without a continuity correction)

X is approximately $\operatorname{Normal}(13,3.225)$. The approximate p-value using the continuity correction is $P\left(Z \leq \frac{11+0.5-13}{3.225}\right)=P(Z \leq-0.4651)=0.3209$.

- Confidence interval approach - provided there is a reasonable interpretation tied to a significance level. For example if $\alpha=0.05$, and $p=0.20$ is within a 95% upper confidence bound $(0,0.2457)$ or a two-tailed 90% confidence interval ($0.0927,0.2457$).

Part (d) is essentially correct (E) if the student states a correct conclusion in the context of the problem, using the result of the statistical test.

Notes:

1. If both an α and a p-value (or critical value) are given, the linkage is implied.
2. If no α is given, the solution must be explicit about the linkage by giving a correct interpretation of the p-value or explaining how the conclusion follows from the p-value.
3. If the p-value in part (c) is incorrect but the conclusion is consistent with the computed p-value, part (d) can be considered as essentially correct (E).
4. If a student accepts the null hypothesis and concludes the proportion really is 0.20 , this part is incorrect (I).

Each essentially correct (E) response counts as 1 point, each partially correct (P) response counts as $1 / 2$ point.

4 Complete Response

3 Substantial Response
2 Developing Response

1 Minimal Response

Note: If a response is in between two scores (for example, $21 / 2$ points), use a holistic approach to determine whether to score up or down depending on the strength of the response and communication.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 5

Solution

Part (a):

Since random-digit dialing will be used, individuals without phones will not be included in the sample. People without a high school diploma are more likely to have lower-paying jobs and therefore may not be able to afford a telephone. Thus, the estimated proportion of adult heads of households in the United States without a high school diploma may be less than the true population proportion.

Part (b):

The sample size necessary to estimate the proportion of the population that does not have a high school diploma, p, within 0.03 with 95% confidence is:

$$
\begin{aligned}
& 0.03=z^{*}\left(\sqrt{\frac{p^{*}\left(1-p^{*}\right)}{n}}\right), \text { or } \\
& 0.03=1.96\left(\sqrt{\frac{0.22(1-0.22)}{n}}\right), \text { so } \\
& n=0.22(0.78)\left[\left.\frac{1.96}{0.03}\right|^{-2}=732.4651\right.
\end{aligned}
$$

Thus, 733 respondents would be needed.

Part (c):

To achieve this additional goal, the agency should use stratified random sampling by taking samples within each state. Each state would be a stratum. Within each state, a random sample of adult heads of households would be selected and surveyed. The sample size within each state will be based on the desired precision. Data from the individual states should be combined to obtain the national estimate.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 5 (continued)

Scoring

Each part is scored as essentially correct (E), partially correct (P), or incorrect (I).

Part (a) is essentially correct (E) if the student:

- Provides a possible source of sampling or nonsampling bias is provided and linked to whether or not a person has a high school diploma; AND
- Describes the impact on the survey correctly.

Note:
Other potential sources of bias:

1. Wording of the questions or the tone of the interviewers may make callers less likely to reveal that they do not have a high school diploma (nonsampling bias), forcing the estimate to be too low.
2. Calls may be made during the day when individuals with diplomas will be at work, leading to an overreporting of individuals without a high school diploma (sampling bias). Thus, the estimate will be too high.
3. Higher-educated people may be more likely to have Caller ID and not answer the phone when they see the call is from a survey firm. Thus, the estimate will be too high.
4. Since people do not like responding to cold calling (consider the size of the national Do Not Call list), the response rates might be so low that the survey results are not useful at all. The impact of this bias on the estimate is not clear.

Part (a) is partially correct (P) if the student:

- Provides a possible source of sampling or nonsampling bias linked to whether or not a person has a high school diploma, with an unreasonable description of the impact of the survey; OR
- Provides a possible source of bias but the bias is improperly named; however, the impact on the survey is consistent with the description.

Part (a) is incorrect (I) if the source of bias is not reasonable for this survey.
Part (b) is essentially correct (E) if:

- The appropriate critical value, margin of error, and a standard deviation based on a value of p (0.22 or 5) are used to calculate the number of necessary respondents; AND
- Work is shown; AND
- The numeric response is rounded up.

Note:
Other possible essentially correct (E) solutions for part (b):

- The sample size necessary to estimate the proportion of the population that does not have a high school diploma, p, within 0.03 with 95% confidence is:
$n=p^{*}\left(1-p^{*}\right)\left[\left.\frac{z^{*-2}}{m}\right|_{-}=0.22(0.78)\left[\frac{1.96}{0.03}\right]^{-2}=732.4651\right.$. So, we would need 733 respondents.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 5 (continued)

- Conservative approximation $\left(p^{*}=0.5\right)$:
$n=\left[\left.\frac{z^{*}}{2 m}\right|_{-} ^{-2}=\left[\frac{1.96}{2 \times 0.03}\right]^{-2}=1067.1111\right.$, so we need 1,068 respondents.
- Wilson estimate:
$n+4=p^{*}\left(1-p^{*}\right)\left[\frac{z^{*}}{m}\right]^{2}=0.22(0.78)\left[\frac{1.96}{0.03}\right]^{2}=732.4651$, so we need 729 respondents.
- Wilson estimate with conservative approach ($p^{*}=0.5$):

$$
n+4=\left[\frac{z^{*}}{2 m}\right]^{2}=\left[\frac{1.96}{2 \times 0.03}\right]^{-2}=1067.1111, \text { so we need } 1,064 \text { respondents. }
$$

Part (b) is partially correct (P) if work is shown and no more than one of the following occur:

- An incorrect critical value is used in the calculation; OR
- An incorrect margin of error is used in the calculation; OR
- An incorrect standard deviation is used in the calculation; OR
- Numeric response is rounded down or is not an integer.

Part (b) is incorrect (I) if a solution is provided with no justification or an incorrect formula is used to justify the calculation.

Part (c) is essentially correct (E) if stratified random sampling is used to select a random sample from each state. The student must indicate that:

- The states are the strata. (The student must use the phrase "strata" or "stratified"); AND
- A random sample is taken in each state.

Part (c) is partially correct (P) if only one of the two items necessary for an essentially correct score is provided.
Part (c) is incorrect (I) if the student suggests that random digit dialing is continued until large enough samples are obtained for all 50 states.

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES

Question 5 (continued)

4 Complete Response (3E)
All three parts essentially correct
3 Substantial Response (2E 1P)
Two parts essentially correct and one part partially correct
2 Developing Response (2E 0P or 1E 2P)
Two parts essentially correct and zero parts partially correct OR
One part essentially correct and two parts partially correct
1 Minimal Response (1E 1P or 1E 0P or 0E 2P)
One part essentially correct and either zero parts or one part partially correct OR
Zero parts essentially correct and two parts partially correct

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES

Question 6

Solution

Part (a):

Step 1: State and check appropriate conditions for two-sample t-confidence interval.
State conditions: The two samples are selected randomly and independently from the two populations. The population distributions of the amount of lead on the dominant hand for both groups of children (those who could be sent to play inside and those who could be sent to play outside) are normal.

Check conditions: The procedure described in the stem is equivalent to taking a random sample from the population of children in urban day-care centers who could be assigned to play inside and an independent random sample from the population of children in urban day-care centers who could be assigned to play outside. The symmetry and lack of outliers in the dotplots below indicate that the normal assumption is reasonable for both populations of children.

Step 2: Identify the two-sample t-interval (by name or formula) and provide correct mechanics
Identification: Two-sample t-confidence interval for the difference of two means
OR

$$
\bar{x}_{\text {in }}-\bar{x}_{\text {out }} \pm t^{*} \sqrt{\frac{s_{\text {in }}^{2}}{n_{\text {in }}}+\frac{s_{\text {out }}^{2}}{n_{\text {out }}}}
$$

Mechanics: Using the summary statistics

	N	Mean	StDev
Inside	9	4.56	0.846
Outside	9	17.56	4.61

and the conservative $d f=\min \left(n_{1}-1, n_{2}-1\right)=8$, the 95% confidence interval for the difference of the two means is:

$$
(4.56-17.56) \pm 2.306 \sqrt{\frac{(0.846)^{2}}{9}+\frac{(4.61)^{2}}{9}} \text { or }(-16.60,-9.40) \mathrm{mcgs} .
$$

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 6 (continued)

OR

Using fractional $d f=8.537$, the 95% C.I. for $\left(\mu_{\text {in }}-\mu_{\text {out }}\right)$ is $(-16.57,-9.43)$ mcgs.

Step 3: Interpret the confidence interval in context.
We are 95 percent confident that the difference between the mean amount of lead on the dominant hands of the population of urban day-care children after an hour of play inside and the mean amount of lead on the dominant hands of the population of urban day-care children after an hour of play outside at an urban day-care center is between -16.60 and -9.40 mcgs .

OR

Because this interval does not include zero, we can conclude that there is a significant difference in the mean amount of lead on the hands of the two different groups of urban day-care children after one hour of play. On average, urban day-care children who play outside have higher amounts of lead on their hands.

Part (b)

Table of Means

	Suburban	Urban
Inside	3.75	4.56
Outside	5.65	17.56

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 6 (continued)

Part (c)
Inside/Outside: For both environments (urban and suburban), the mean amount of lead on the dominant hands of children who play outside is higher than the mean amount of lead on the dominant hands of children who play inside. This can be justified by comparing means OR confidence intervals OR interpreting the graph. All four endpoints of the two confidence intervals (inside minus outside) are negative. The graph clearly shows that the line connecting the two "outside" means for the different environments is above the line that connects the "inside" means.
Suburban/Urban: For both settings (inside and outside), the amount of lead on the dominant hand of urban children is higher on average than the amount of lead on the dominant hand of suburban children. This can be justified by comparing means or interpreting the graph: both lines slant upward to the right, which indicates an increase from suburban to urban both for children who played inside and for children who played outside.
Relationship: The magnitude of the difference in the mean amount of lead between children playing inside and children playing outside depends on the environment. Equivalently, the graph shows that the means for the urban environment are much farther apart than the means for the suburban environment.

OR
Whether the children play inside or outside makes a bigger difference in the urban environment than in the suburban environment. This is shown by the graph or the fact that the endpoints for the urban confidence interval are farther away from zero than the corresponding endpoints of the suburban confidence interval (and the intervals do not overlap), indicating that the difference is larger for the urban environment.

Scoring

Parts (a) and (b) are scored as essentially correct (E), partially correct (P), or incorrect (I). Part (c) is divided into two subparts. Each of these subparts is scored as essentially correct (E), partially correct (P), or incorrect (I).

Each of the three steps in part (a) is scored as acceptable or unacceptable.
Part (a) is essentially correct (E) if all three steps are acceptable. A step may be scored as acceptable even if it contains a minor error.

Part (a) is partially correct (P) if two steps are acceptable.
Part (a) is incorrect (I) if at most one step is acceptable.
Notes:
Step 1: Conditions

- A pair of dotplots, stemplots, histograms, normal probability plots, or boxplots may be provided to check the normality assumption.
- If the response uses an unacceptable procedure in Step 2, credit may be given in Step 1 if the check of conditions is consistent with the specified procedure.

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES

Question 6 (continued)

Step 2: Identification of interval and computations
If one of the following procedures is used, Step 2 is scored as unacceptable:

- Paired t-procedure; OR
- Separate confidence intervals for inside and outside; OR
- Large-sample z-procedure: $n_{\text {in }}$ and $n_{\text {out }}$ are not large enough to assume normality; OR
- Pooled t-confidence interval. The assumption that $\sigma_{i n}=\sigma_{\text {out }}$ is not reasonable; OR
- Concluding that the sample sizes are too small for inference.

Step 3: Conclusion

- Just interpreting the 95% confidence level is scored as unacceptable.
- If the response uses an unacceptable procedure in Step 2, credit may be given in Step 3 if the conclusion is acceptable for the specified procedure.

Part (b) is scored as essentially correct (E) if:

- The four points and two lines are placed correctly with a correct scale (either a numerical scale on a vertical line or the four means written next to the four points); AND
- The vertical axis is labeled ("lead" or "mcg" is sufficient) OR the two lines are labeled "inside" and "outside."

Part (b) is partially correct (P) if the four points and two lines are placed correctly but either:

- The vertical axis AND the two lines are not labeled but the numerical scale is correct; OR
- At least one label is included AND the numerical scale is incorrect.

Part (b) is incorrect (I) if the four points and two lines are not placed correctly OR there is no numerical scale.
Part (c) contains two parts. Each part is scored as essentially correct (E), partially correct (P), or incorrect (I). The first part (c1) deals with direct comparisons between environments (suburban versus urban) and settings (inside versus outside), where the comparisons must be supported using the data. The second part (c2) deals with the nature of the relationship between the means as setting and environment change.

Part (c1) is scored as essentially correct (E) if the student:

- Makes it clear that outside is greater than inside in both suburban and urban environments; AND
- Makes it clear that urban is greater than suburban in both inside and outside settings; AND
- Justifies one or both comparisons by referencing the graph, the means given in part (b), or the two confidence intervals.

Part (c1) is partially correct (P) if two of the above are included.
Part (c1) is incorrect (I) if at most one of the above is included.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES

Question 6 (continued)

Part (c2) is scored as essentially correct (E) if the fact that the effect of the setting depends on the environment (or the effect of the environment depends on the setting) is correctly described:

- The suburban to urban difference in means is small for children who played inside, but the urban mean is much bigger than the suburban mean for children who played outside; OR
- The outside mean is similar to the inside mean in the suburban environment, but the outside mean is much bigger than the inside mean in the urban environment.

Note: The first response also correctly compares suburban and urban. The second response also correctly compares inside and outside.

Part (c2) is partially correct (P) if the response is out of context OR communication is poor.
Part (c2) is incorrect (I) if the relationship is not described.
Note: The statement would fit if the lines had been parallel does not describe the relationship here.

Each essentially correct (E) response counts as 1 point, each partially correct $(\mathrm{P}$) response counts as $1 / 2$ point.

4 Complete Response

3 Substantial Response

2 Developing Response

1 Minimal Response

Note: If a response is in between two scores (for example, $21 / 2$ points), use a holistic approach to determine whether to score up or down depending on the strength of the response and communication.

Workshop Exam Materials Question Overview 2005 AP $^{\circledR}$ Statistics

Question 1

This question described a study comparing the caloric intake for a random sample of 20 students from one rural high school to a random sample of 20 students from one urban high school. The variable measured was the number of calories of food per kilogram of body weight consumed in one day by a student. A back-to-back stemplot displayed the number of calories consumed for each student on that day. Part (a) of the question asked students to use the stemplot to compare the data distributions from both schools. The response should have included a clear, correct comparison statement for each of the three characteristics: shape, center (position), and spread. It was not sufficient simply to list and describe those characteristics separately for each distribution. Part (b) asked whether it was reasonable to generalize the findings of the study to all rural and urban ninth-grade students in the United States. The response should have clearly indicated that generalizing was not appropriate, since only one urban school and one rural school were used. The sampling unit was the school, not the students chosen for the study or the area from which those students were selected. Part (c) presented two plans for consideration in conducting a similar study. Plan I used only one day; Plan II used the same 7-day period with a 7-day average computed for the number of calories consumed by each student. Plan II better met the goal of the study because it accounted for the effect of day-to-day variability. A correct justification should have indicated an understanding of what might cause systematic day-to-day variability in the difference between rural and urban students in the number of calories consumed on different days of the week (different amounts of calories consumed on a weekday versus weekend day), not just the advantage of a 7-day average.

Question 2

This problem presented students with a discrete probability distribution for the number of telephone lines in use by a technical support center at noon each day. In part (a) of the question, students were asked to find the expected value of the random variable. In part (b) they had to compare the behavior of the mean of a random sample of size 1,000 from the given distribution to the mean of a random sample of size 20 from that distribution. Part (c) gave a definition for the median of a discrete random variable and asked students to compute the median of this random variable. In part (d) students had to comment on the relationship between the skewness in the given distribution and the mean and median calculated in parts (a) and (c).

Question 3

In this question, students were presented with a data table, scatterplot, residual plot, and computer output from a linear regression analysis. Part (a) of the question asked students to evaluate the appropriateness of a linear model. They were expected to use graphical evidence to make this determination. Some students argued that a value of r^{2} close to 1 or a value of r close to ± 1 indicated that a linear model was appropriate, but this was not correct. There are numerous examples of relationships between two quantitative variables in which r^{2} is close to 1 and r is close to ± 1, but that is where the scatterplot shows

Workshop Exam Materials Question Overview 2005 AP $^{\circledR}$ Statistics

a nonlinear relationship and the residual plot shows a clear pattern. In part (b) students had to recognize that the estimated slope from the computer output was needed and then use the estimated slope to compute a point estimate of the change in average cost of fuel per mile for each additional railcar. Part (c) required students to identify the value of r^{2} from the computer output and to interpret this value in context. Ideally, students would have described the r^{2}-value as the proportion (percent) of variation in the fuel consumption that was accounted for by the linear model relating fuel consumption and number of railcars. In part (d) students were asked whether it was reasonable to use the linear model to make a prediction for a value of the explanatory variable that is far beyond the range of the data.

Question 4

Question 4 involved a hypothesis test of the proportion of boxes of a breakfast cereal that contained a voucher. The hypotheses should have been stated using standard notation for a proportion (p or π) and with a lower tail alternative, since the students' claim was that the proportion of boxes with vouchers was less than 20 percent. Since the problem stated that the sample of boxes could be considered a random sample of the population, students needed to determine whether the sample size was adequate to allow a normal approximation by showing a computation to check that $n p_{o}>10$ and $n\left(1-p_{o}\right)>10$. They should have identified the one sample z-test for a proportion (or an acceptable alternative such as an exact binomial calculation) as the appropriate procedure to apply, and included a calculation to find the value of the test statistic and either a p-value or a critical value for a rejection region. Finally they should have properly interpreted the results in the context of the problem. The conclusion should have included justification linking the decision (do not reject the null hypothesis) to the p-value (or rejection region) by comparing to a specific significance level (e.g., $\alpha=0.05$) or including a general comment such as "Since this p-value is so large" When interpreting the conclusion, students should not have indicated that they were "accepting" the null hypothesis or stated that the company's claim that $p=0.2$ was correct. Rather, the conclusion should have indicated that the data did not provide sufficient evidence to refute the company's claim that 20 percent of the cereal boxes contained vouchers.

Question 5

In this question, students were given information on an upcoming survey. The goal was to estimate the proportion of heads of households in the United States with (or without) a high school diploma. Random-digit dialing was to be used to select heads of households for inclusion in the sample. In part (a) of the question, students had to identify a potential source of bias for this survey, explain how that source of bias would be related to whether or not the head of household had a high school diploma, and describe the impact of the bias on the estimated proportion. Part (b) assessed whether students could determine the sample size that would be needed to obtain an estimate of the proportion with a desired level of precision. In part (c) students had to recognize that stratified random sampling should be used with states as strata, and random sampling should be done within each state. This process would yield both state and national estimates of the proportion of heads of households without a high school diploma.

The Examination

Workshop Exam Materials Question Overview 2005 AP $^{\circledR}$ Statistics

Question 6

This question described an experiment in which a random sample of children from suburban day-care centers was randomly divided into a group that played outside and a group that played inside. The experiment was duplicated for children randomly selected from urban day-care centers. The response variable was the amount of lead on the child's dominant hand after an hour of play. A 95 percent two-sample t-confidence interval was given for the difference in the mean amount of lead for children playing inside and the mean amount of lead for children playing outside at the suburban day-care centers. In part (a) of the question, students were asked to construct the confidence interval for the two samples of children at the urban day-care centers. The response should have included identification of the procedure used, a check of the necessary conditions for the validity of the procedure, the computation of the interval, and an interpretation in context. Omitting a check of conditions or giving a list of "assumptions" with no work done to check them were common errors. Another common error was to compute a confidence interval for the mean difference as if the samples were paired. In part (b) students constructed a plot of the four means (inside suburban, outside suburban, inside urban, outside urban), which should have included a scale and labels. Part (c) assessed whether students could describe the effect of setting (mean lead level inside was lower than outside, for both suburban and urban children), environment (mean lead level for suburban children was lower than for urban children, both inside and outside), and the combined effect (relationship) of the two on the response (the mean lead level was not much different between inside and outside for suburban children, but the mean level was very different between inside and outside for urban children). Justification of the conclusions in part (c) could have included reference to the means, the plot in part (b), and, preferably, the confidence intervals given in the stem of the problem and constructed in part (a). Note that analysis of variance is not a topic on the AP Statistics syllabus, so this question was most students' first experience with describing main effects (inside/outside and suburban/urban comparisons) and interaction (the compounded relationship between environment and setting).

The Examination

Workshop Exam Materials
 Score Legend
 2005 AP $^{\circledR}$ Statistics

Question \#/Prompt	Sample Identifier	Score Point
1	1 A	4
1	1 B	2
1	1 C	1
2	2 A	4
2	2 B	3
2	2 C	2
3	3 A	4
3	3 B	3
3	3 C	2
4	4 A	4
4	4 B	3
4	4 C	2
5	5 A	4
5	5 B	3
5	5 C	2
6	6 A	4
6	6 B	3
6	6 C	2

Workshop Exam Materials Scoring Commentary 2005 AP ${ }^{\circledR}$ Statistics

Question 1

Sample: 1A

Score: 4
Each part of this response is complete and clearly communicated. In part (a) the distribution shapes are described as approximately symmetric for rural and skewed left for urban. Although the skew is actually toward higher values (skewed right), this is considered a minor error since, visually, turning the paper to make the urban stemplot horizontal appears to make the graph skewed left. The median is correctly used to illustrate that urban has on average fewer calories than rural (a correct comparison for center). The median should be 32, rather than 33.5, but since specific values are not required, the student was not penalized for this minor error. Using IRQs, the rural distribution is compared to urban as being "more spread out," a correct comparison for spread. In part (b) it is clear that generalization is not possible since "data was obtained from only one high school of each type." The first sentence is adequate, but the response is further strengthened by the two sentences that follow it. In part (c) the student selects Plan II. The last sentence, although minimal, is enough to indicate an understanding of what might cause day-to-day variability.

Sample: 1B

Score: 2

This is an example of a developing response. In part (a) only the shapes of the distributions are correctly compared. The student describes the rural distribution as symmetric and the urban distribution as skewed. Although values are given and the rural is described as "more spread out," this information is in support of the comparison of the distribution shapes. Center and spread are not addressed. Only one out of three characteristics is correctly compared. In part (b) the first sentence adequately answers the question by stating: "the random sample of students were [sic] simply taken from one high school in a rural and one in a [sic] urban high school." The last sentence addresses precision with respect to the number of students, which was considered extraneous. In part (c) the student selects Plan II. While the first part of the response wanders a bit, the last sentence provides the necessary justification for the day-to-day variability. Some responses reflect a tendency to personalize the day-to-day variability by discussing an individual student. This is not ideal, but this response includes enough of the idea of day-to-day variability.

Sample: 1C Score: 1

This response describes center and spread for each distribution separately in part (a) but makes no attempt to compare the two distributions by saying which summary statistic is larger or smaller. Simply placing the description of each characteristic sequentially is not sufficient to receive credit. A correct comparison is made for shape. In part (b) the first sentence does not clearly indicate that the schools are the sampling unit of interest for generalizing. The comment on confounding variables is true but not connected explicitly to the question. In part (c) the student selects Plan II and provides an adequate description and possible cause of day-to-day variability.

The Examination

Workshop Exam Materials
 Scoring Commentary 2005 AP ${ }^{\circledR}$ Statistics

Question 2

Sample: 2A

Score: 4

This response shows a clear comprehension of all concepts covered in the question. The responses to parts (a) and (c) indicate understanding of how to compute the mean and median of a discrete random variable when given a probability distribution. While the median is not computed according to the definition stated in part (c), the student demonstrates an understanding of the median and accurately computes the value. In part (b) the response includes a statement that the larger sample would likely produce a sample mean closer to the expected value and supports that statement by both of the acceptable reasons: as sample size increases, the sample mean approaches the expected value; and the increased sample size reduces variability in the sample mean. The response to part (d) includes a statement that the given distribution is skewed right, provides a supporting graph, and correctly explains why the computed mean would be greater than the median for a right-skewed distribution. The communication of ideas is very good throughout the response.

Sample: 2B

Score: 3

Parts (a) and (c) are excellent, with correct application of the definition of median that is given in the statement of the problem. Part (b) is also well done. The response correctly states the effect of increased sample size on the sample mean and supports that statement by noting the decrease in the variability of the sample mean. Part (d) contains a conceptual error. While it is true that in such a right-skewed distribution the mean will be greater than the median, the converse is not necessarily true; this response states that because the mean is larger than the median, the distribution is skewed right.

Sample: 2C

Score: 2

Parts (a) and (c) are outstanding, with correct application of the given definition of median and additional support of the computed value by a probability histogram. In part (b) the response does not communicate understanding of the effect of the increased sample size on the sample mean relative to the expected value. The last sentence of the response hints at what is being tested, but not sufficiently to consider this a correct response. Part (d) is well done. The influence of the right-skewed distribution on the relationship between the mean and the median is expressed clearly and supported by the values computed earlier in the response.

The Examination

Workshop Exam Materials
 Scoring Commentary 2005 AP $^{\circledR}$ Statistics

Question 3

Sample: 3A

Score: 4

In part (a) the student does a nice job supporting the appropriateness of the linear model with graphical evidence, stating that there is a linear pattern in the scatterplot and a lack of pattern in the residual plot. However, the student incorrectly cites numerical evidence-the high values of r and r^{2}. A high value of r or r^{2} does not necessarily imply a linear relationship. The student correctly calculates and interprets the required point estimate in part (b). In part (c) the response conveys a strong understanding of the meaning of r^{2} in a linear regression setting. The student recognizes that part (d) is about extrapolation and explains clearly why extrapolation is not appropriate.

Sample: 3B

Score: 3
Although the student refers to "the residual line plot" in part (a), the relevant characteristic of the plot (no pattern) is identified. In part (b) the student recognizes that the slope is connected to the requested point estimate but does not multiply the estimated slope by the cost per unit (\$25). In part (c) the student uses R-sq(adj) from the computer output instead of R-sq. The use of "change" as a synonym for "variation" in the interpretation of r^{2} is awkward, and the student makes no reference to the linear relationship. The response explains why the prediction suggested in part (d) is inappropriate.

Sample: 3C

Score: 2

In part (a) the description of the residual plot as "spread out" is not adequate. The student uses an interesting (but correct) method to calculate the point estimate in part (b). The discussion in part (c) is an interpretation of the correlation coefficient r rather than of r^{2}. In part (d) the response provides a minimal amount of justification.

The Examination

Workshop Exam Materials
 Scoring Commentary 2005 AP $^{\circledR}$ Statistics

Question 4

Sample: 4A

Score: 4

This response identifies an appropriate test and states and verifies the necessary conditions. Hypotheses are written using standard notation for the population proportion with a lower tail alternative. The student uses a proper formula and correct substitution to calculate the test statistic and p-value. The conclusion is written with justification (linkage), and the student provides the correct interpretation in the context of the question.

Sample: 4B

Score: 3

This response shows hypotheses using standard notation for the population proportion with a lower tail alternative. The student identifies an appropriate test and states and verifies the necessary conditions. Proper formula and correct substitution are used to calculate the correct test statistic and p-value. Although the conclusion contains a correct decision, it is missing an interpretation in the context of the problem. The interpretation of the p-value should say it is the chance of finding a sample proportion of 0.169 or less and indicate that this is a large p-value.

Sample: 4C
 Score: 2

Hypotheses are written using standard notation for population proportion with a lower tail alternative. This response verifies conditions but fails to identify the test. Although a correct test statistic value and p-value are provided, no formula or calculation is shown for the test statistic. The correct decision is stated in context but is missing linkage (no a stated or indication that the p-value is large), and the student incorrectly concludes that the null hypothesis is true.

The Examination

Workshop Exam Materials
 Scoring Commentary 2005 AP $^{\circledR}$ Statistics

Question 5

Sample: 5A

Score: 4

In part (a) one source of nonresponse bias is correctly identified as not being at home and therefore not answering the phone. In addition, not being at home is linked to not having a high school diploma. The direction of the impact on the survey is correctly described. In part (b) the z^{*} value is reported as 1.959 (incorrectly rounded from the calculator value) rather than 1.96 , resulting in a value of 731.718 . The student then rounds appropriately. The response correctly specifies the need for stratified random sampling in part (c). States are clearly used as strata. It would have been better if the student had used a method other than random-digit dialing because of the problems (identified in part [a]) with this method. The response indicates that both state and national estimates could be made using the survey. It could have been noted that proper weighting of the state estimates is needed to obtain the national estimate.

Sample: 5B
 Score: 3

The student correctly identifies households not having a telephone as a source of bias (selection or undercoverage) in part (a). The lack of telephone service is linked to not having a high school diploma. The response should indicate the effect on the estimate derived from this survey due to the source of bias, but this requirement is not addressed. In part (b) the response provides the correct formula, substitution, and computation of the sample size. The decimal answer is not required since 733 is the correct solution if 0.22 is used for the proportion. In part (c) the student identifies "a stratified random sample" in each state as the desired method.

Sample: 5C

Score: 2

The student's response in part (a) correctly explains the source of bias (nonresponse), links having a high school diploma to not being home to respond to the phone survey, and indicates the impact of the source of bias on the estimate produced by the survey. This response refers to the "convenience bias," which is not correct. Additionally, the student incorrectly substitutes the variance for the standard deviation in part (b). The computed decimal answer is indicated and is correctly rounded up. In part (c) the student uses the word "strata," identifies the states as the strata, and provides a method of random selection.

The Examination

Workshop Exam Materials Scoring Commentary 2005 AP ${ }^{\oplus}$ Statistics

Question 6

Sample: 6A

Score: 4
Each part of this response is complete and well organized. In part (a) the necessary conditions for a two-sample t-procedure (two independent random samples or random assignment of subjects to treatments and no reason to suspect that the populations are not approximately normal) are checked. The response is vague as to why a boxplot should be roughly symmetric with no outliers (because then it can be reasonably assumed that the population from which the sample was drawn is approximately normal). The confidence interval is computed on the calculator, which uses fractional degrees of freedom. The interpretation should say that the confidence interval is meant to capture the parameter of the difference in the population means rather than "the true mean of the difference." The three conclusions asked for in part (c) are given out of order (relationship, setting, and environment) along with the justification for each conclusion. The justification for the conclusion about setting is excellent. The two confidence intervals do not overlap zero, so in both environments there is a statistically significant difference between the mean lead levels of children who play inside and children who play outside. The student refers to the graph for the other conclusions. While there is not enough information to construct confidence intervals to justify the conclusion about the difference in environments, the response might instead have justified the conclusion about the relationship using the confidence intervals. Because the two confidence intervals do not overlap and the interval for urban children is farther away from zero, the difference between playing inside and playing outside is larger for urban children than for suburban.

Sample: 6B

Score: 3
This substantial response makes several errors in part (a). It does not include a check of the conditions listed; the critical value of 1.96 is shown for a t-interval (although the correct interval from the calculator is given); and the interpretation should say that the confidence interval is meant to capture the parameter of the difference in the population means rather than "the mean difference." Part (c) describes all conclusions requested in the order of setting, relationship, and then environment. The conclusions for setting and relationship are nicely justified using the confidence intervals.

Sample: 6C
 Score: 2

In part (a) this developing response does not consider the crucial condition of normality for constructing a twosample t-interval. Check marks are not a sufficient "check" of conditions. Unless requested, an interpretation of a confidence interval does not have to include an interpretation of confidence level, but if it is included, the statement must be correct. It is expected that the parameter will be captured in 95 percent of the different

The Examination

Workshop Exam Materials Scoring Commentary 2005 AP ${ }^{\circledR}$ Statistics

intervals generated by repeated random samples. It is not expected that the parameter would be captured in this particular interval in 95 percent of repeated random samples. In part (c) the response clearly describes the effect of setting and then environment, giving good justifications (confidence intervals for setting and the graph for environment). No conclusion about the relationship between the two is stated.

The Examination

STATISTICS

SECTION II

Part A

Questions 1-5
Spend about 65 minutes on this part of the exam.
Percent of Section II grade-75
Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.

1. The goal of a nutritional study was to compare the caloric intake of adolescents living in rural areas of the United States with the caloric intake of adolescents living in urban areas of the United States. A random sample of ninth-grade students from one high school in a rural area was selected. Another random sample of ninth graders from one high school in an urban area was also selected. Each student in each sample kept records of all the food he or she consumed in one day.
The back-to-back stemplot below displays the number of calories of food consumed per kilogram of body weight for each student on that day.

(a) Write a few sentences comparing the distribution of the daily caloric intake of ninth-grade students in the rural high school with the distribution of the daily caloric intake of ninth-grade students in the urban high school.
The distribution of daily caloric intake of uinthiginde studeross in the urban high school is much more skewed left than that of the rural high school, which appears to . be approscimately symmetrical. The average urban high shool strident takes in fewer calories when (median $=33,5$) than the average rural Lift school student at (media n=41). The distribution of caloric intake for rural high school students is more spread out. (IQR-10) than that of urban high school students ($I Q R=7$).

The Examination

B) Is it reasonable to generalize the findings of this study to all rural and urban ninth-grade students in the United States? Explain
It is not reasonable to generalize the findings of this stay to all rural and urban ninth-grade students in the United states, because the data was obtained from only one high school of each type. We would be able to make conclusions about the entire population of 9 th graders if we selected multiple high schools of each type (Rural and Urban) using an SRS. We cold que an SR S of light stools by belling all high shows seat thiticeally, then using the random digit table to select high shoos to be used in she study.
2) Researchers who want to conduct a similar study are debating which of the following two plans to use.

Plan I: Have each student in the study record all the food he or she consumed in one day. Then researchers would compute the number of calories of food consumed per kilogram of body weight for each student for that day.
Plan II: Have each student in the study record all the food he or she consumed over the same 7-day period. Then researchers would compute the average daily number of calories of food consumed per kilogram of body weight for each student during that 7-day period.

Assuming that the students keep accurate records, which plan, I or II, would better meet the goal of the study? Justify your answer.

Flan II would better meet the grail of the study, because the students would have recorded their fad intake over a 7-day period, so their daily caloric intake over a luger period of time woald be recorded. pedate variation the This is beneficial, because chaletum might vary in what they eat on certain days.

The Examination

STATISTICS

SECTION II

Part A

Questions 1-5

Spend about 65 minutes on this part of the exam.

Percent of Section II grade-75

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.

1. The goal of a nutritional study was to compare the caloric intake of adolescents living in rural areas of the United States with the caloric intake of adolescents living in urban areas of the United States. A random sample of ninth-grade students from one high school in a rural area was selected. Another random sample of ninth graders from one high school in an urban area was also selected. Each student in each sample kept records of all the food he or she consumed in one day.
The back-to-back stemplot below displays the number of calories of food consumed per kilogram of body weight for each student on that day.

\left.| Urban | Rural | |
| ---: | ---: | ---: |
| 99998876 | 2 | |
| 44310 | 3 | 2334 |
| 97665 | 3 | 56667 |
| 20 | 4 | 02224 |
| | 4 | 56889 |
| | 5 | 1 |$\right)$

Stem: tens Leaf: ones
(a) Write a few sentences comparing the distribution of the daily caloric intake of ninth-grade students in the rural high school with the distribution of the daily caloric intake of ninth-grade students in the urban high school.

The daily caloric intake of ninth grade students in the urban high school seem to have data mostly in the 20 's and less and less into the 30 's and 40's. Unlike the rural who's data is more spread out making it look symmetric, the urban daily calonc intake is skewed, not having iata in the high 40's and 50's.

The Examination

(b) Is it reasonable to generalize the findings of this study to all rural and urban ninth-grade students in the United States? Explain.

No, it is not reasonable to generalize the findings of this study to all rural and urban ninth grade students in the united states, because the random sample of students were simply taken from ONE high school in a rural and ONE in a urban high school. One cannot generalize all high schous in rural and urban areas based on one high school in each region. Not only that, the number of students surveyed from each high scroll was not high. The central limit theorem states the higher the sample the closer the theoretical comes to the actual.
(c) Researchers who want to conduct a similar study are debating which of the following two plans to use.

Plan I: Have each student in the study record all the food he or she consumed in one day. Then researchers would compute the number of calories of food consumed per kilogram of body weight for each student for that day.
Plan II: Have each student in the study record all the food he or she consumed over the same 7-day period. Then researchers would compute the average daily number of calories of food consumed per kilogram of body weight for each student during that 7-day period.

Assuming that the students keep accurate records, which plan, I or II, would better meet the goal of the study? Justify your answer.

Plan II would better meet the goal of the study because in this plan, students are recording data over a longer period of time. One cannot tace one day and generalize it. By taking the average, the data will come closer than one day. One can eat more calories of food in one day than the next. If a student que a day where he ate either more or less than usual, the data will be biased. If scientists take the average of a 7 day span, they would be calculating both the days the student ate more and less.

The Examination

STATISTICS

SECTION II

Part A

Questions $1-5$
Spend about 65 minutes on this part of the exam.
Percent of Section II grade- 75
irections: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.
.. The goal of a nutritional study was to compare the caloric intake of adolescents living in rural areas of the United States with the caloric intake of adolescents living in urban areas of the United States. A random sample of ninth-grade students from one high school in a rural area was selected. Another random sample of ninth graders from one high school in an urban area was also selected. Each student in each sample kept records of all the food he or she consumed in one day.
The back-to-back stemplot below displays the number of calories of food consumed per kilogram of body weight for each student on that day.

Stem: tens
Leaf: ones
(a) Write a few sentences comparing the distribution of the daily caloric intake of ninth-grade students in the rural high school with the distribution of the daily caloric intake of ninth-grade students in the urban high school.

She caloric intake of ninth grade students in urban areas has some signs of right seeuness While the caloric intalee of ninth graders in rural areas appears moderately symmetric. The span of results in the urban hid extends from 26 to 42 for a range of 16 . She rural
high school results span from 32 to 51 , for a range of 19. She center of the urban results lies between 31 and 33 with a median of 32 and mean of 32.6 . The rural center lies between 40 and 42 with a median of 41 and mean of 40.45 .

The Examination

10

(b) Is it reasonable to generalize the findings of this study to all rural and urban ninth-grade students in the United States? Explain.

Ut us mat acceptable to
 cenenalie

 one sample of one set of ninth nader students (set meaning a group from urban and a group from rural) to the entire population of hick school students (in the ninth). Confounding variables such as region, gender, ethnic badeground, and pouring sages all play a part.(c) Researchers who want to conduct a similar study are debating which of the following two plans to use.

Plan I: Have each student in the study record all the food he or she consumed in one day. Then researchers would compute the number of calories of food consumed per kilogram of body weight for each student for that day.
Plan II: Have each student in the study record all the food he or she consumed over the same 7-day period. Then researchers would compute the average daily number of calories of food consumed per kilogram of body weight for each student during that 7-day period.

Assuming that the students keep accurate records, which plan, I or II, would better meet the goal of the study? Justify your answer.
Plan II world better meet the goal of the study. Hawing udentsi record their food. consumption oven a period of time helps eliminate (or reduce) the extreme values created by eating nothing but sink food on a rough day.

The Examination

2. Let the random variable X represent the number of telephone lines in use by the technical support center of a software manufacturer at noon each day. The probability distribution of X is shown in the table below.

x	0	1	2	3	4	5
$p(x)$	0.35	0.20	0.15	0.15	0.10	0.05

(a) Calculate the expected value (the mean) of X.

$$
\begin{gathered}
0(.35)+1(.20)+2(.15)+3(.15)+4(.10)+5(.05) \\
=1.6
\end{gathered}
$$

(b) Using past records, the staff at the technical support center randomly selected 20 days and found that an average of 1.25 telephone lines were in use at noon on those days. The staff proposes to select another random sample of 1,000 days and compute the average number of telephone lines that were in use at noon on those days. How do you expect the average from this new sample to compare to that of the first sample? Justify your response.

I expect the average of the new sample to be higher than that of the first sample. As the umber of observations increase, the closer conc clever the mean will get to the expected vive. There vil 'be les variability and it will get close to 1.6 .
(c) The median of a random variable is defined as any value x such that $P(X \leq x) \geq 0.5$ and $P(X \geq x) \geq 0.5$.

For the probability distribution shown in the table above, determine the median of X.
Assume a sample of 100 daces.
The expected outcome mules be $35015,20115,15$ as, 15 3's, 10 4's, and 55 s. If these values were all hid ouch the middle to value. (d) In a sentence or two, comment on the relationship between the mean and the median relative to the shape of this distribution.

By putting this data into a higtogrami it is clear that it is stewed to the right. If the data were symmetrical, the mean wand equal the median. However the higher values pull the mean twwork the right. Thea is why the median is 1 but the mean is slightly ingher at 1.6. \square

The Examination

2. Let the random variable X represent the number of telephone lines in use by the technical support center of a software manufacturer at noon each day. The probability distribution of X is shown in the table below.

x	0	1	2	3	4	5
$p(x)$	0.35	0.20	0.15	0.15	0.10	0.05

(a) Calculate the expected value (the mean) of X.

$$
\begin{aligned}
& E(x)=\sum \psi, P_{1}=0 \times .35+1 x .2+.2 y .15+3 x .15+4 x .1+5.05, \\
& \longrightarrow=E(x)=1.6 \text { (telephoultheinesenday) }
\end{aligned}
$$

(b) Using past records, the staff at the technical support center randomly selected 20 days and found that an average of 1.25 telephone lines were in use at noon on those days. The staff proposes to select another random sample of 1,000 days and compute the average number of telephone lines that were in use at noon on those days. How do you expect the average from this new sample to compare to that of the first sample? Justify your response.

I expect this new sample average to be closer to $E(x)$ (from pat $(a)=1.6)$ yecause it wees a lagan. sample singe which would reduce the vomabretey causing the average to be more lively to be center to $E(x)=1.6$,
(c) The median of a random variable is defined as any value x such that $P(X \leq x) \geq 0.5$ and $P(X \geq x) \geq 0.5$. For the probability distribution shown in the table above, determine the median of X.

(d) In a sentence or two, comment on the relationship between the mean and the median relative to the shape of this distribution.

Since the meth $(E(x)$, as found in part $(a),=1.6$, which is greater than the median, whin wet foul in part (b) to be 1, this indicates that the dismbution is right shewed \rightarrow If the distribution were approximately moms, tho meas wild be about the saint at the
 this distribution equate skewed

The Examination

2. Let the random variable X represent the number of telephone lines in use by the technical support center of a software manufacturer at noon each day. The probability distribution of X is shown in the table below.

x	0	1	2	3	4	5
$p(x)$	0.35	0.20	0.15	0.15	0.10	0.05

(a) Calculate the expected value (the mean) of X.
expected value $=\sum x_{n} p_{n}(x)=0 \cdot .35+1 \cdot .2+2 \cdot .15+3 \cdot 15+4 \cdot 1+5 \cdot .05=$

(b) Using past records, the staff at the technical support center randomly selected 20 days and found that an average of 1.25 telephone lines were in use at noon on those days. The staff proposes to select another random sample of 1,000 days and compute the average number of telephone lines that were in use at noon on those days. How do you expect the average from this new sample to compare to that of the first sample? Justify your response.
I expect that this new sample of 1,000 days will be less than the sample of 20 days because this 1,000 days will include holidays and summers and more weekend in which none of the phones will be being used. Alsoftis new sample will be much more accurate because it is over such a large period of time.
(c) The median of a random variable is defined as any value x such that $P(X \leq x) \geq 0.5$ and $P(X \geq x) \geq 0.5$. For the probability distribution shown in the table above, determine the median of X.

$x=1$

$$
\begin{aligned}
& P(x \leq 1)=.55 \geq .5 \\
& P(x \geq 1)=.65 \geq .5
\end{aligned}
$$

(d) In a sentence or two, comment on the relationship between the mean and the median relative to the shape of this distribution.
The median of this relation ship is less than the mean because it is 1 while the mean is 1.6 . This is because the data is skewed right so the mean will be made greater by the skewness.

The Examination

$3 A$

(a) Is a linear model appropriate for modeling these data? Clearly explain your reasoning.

Alinear model is appropriate because the scatterplot shows a linear pattern and $r^{2}=967$ and $r=.983$ which are high and suggest a highcorcelation. Also, the residual plot shows no apparent pattern.
(b) Suppose the fuel consumption cost is $\$ 25$ per unit. Give a point estimate (single value) for the change in the average cost of fuel per mile for each additional railcar attached to a train. Show your work.

$$
\begin{aligned}
& (2.15)(25)-\$ 53.75 \quad \text { For each additional railcar } \\
& \\
& \text { attached to a train the average } \\
& \\
& \text { cost of fuel per mile increases } \\
& \\
& \$ 53.75 .
\end{aligned}
$$

(c) Interpret the value of r^{2} in the context of this problem.
$r^{2}=967$, this means that 96.7% of the variation in fuel consumption can be explained by the linear relationship between number of railcars and fuel consumption (units/mile)
(d) Would it be reasonable to use the fitted regression equation to predict the fuel consumption for a train on this route if the train had 65 railcars? Explain.
No, it would not be reasonable to use the fitted regression equation to predict the fuel consumption for a trainon this route if the train had 65 railcars because the equation was based on data that ranged from 20 to 50 railcars. predicting fuel consumption for 6 s railcars would be extrapolation and would run the risk of not predicting accurately

The regression equation is
Fuel Consumption $=10.7+2.15$ Railcars

Predictor	Coef	StDev	T	P
Constant	10.677	5.157		2.07
Railcar	2.1495	0.1396		15.40
			0.072	

$$
\mathrm{S}=4.361 \mathrm{R}-\mathrm{Sq}=96.7 \% \quad \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=96.3 \%
$$

(a) Is a linear model appropriate for modeling these data? Clearly explain your reasoning.

A linear model is appropriate, because the residual line plot does not show any kind of pattern - it is random.
(b) Suppose the fuel consumption cost is $\$ 25$ per unit. Give a point estimate (single value) for the change in the average cost of fuel per mile for each additional railcar attached to a train. Show your work. Linear Regression Equation: $\hat{y}=10.7+2.15 x$ For read additional rail car added to the train, the aug. cost of feel per mile is predicted to increase by 2.15 .
(c) Interpret the value of r^{2} in the context of this problem.
$r^{2}=96.3 \%$, which means that 96.3% of the change in fuel consumption (units/mile) can be explained by the number of rail cars.
(d) Would it be reasonable to use the fitted regression equation to predict the fuel consumption for a train on this route if the train had 65 railcars? Explain.

No, it would not be reasonable.
because 65 railcars is not included in the range of of rail cars studied in this sample.

Using the regression equation to predict fuel consumption for 65 railcars would be an error of EXTRAPOLATION:

The Examination

$3 C$

\[

\]

(a) Is a linear model appropriate for modeling these data? Clearly explain your reasoning.

Hes it is appropriate. The re value shows they
have a strong correlation and the residinal plot shows that it is spread ont and 2 linear model is appropriate.
(b) Suppose the fuel consumption cost is $\$ 25$ per unit. Give a point estimate (single value) for the change in the average cost of fuel per mile for each additional railcar attached to a train. Show your work.

$$
y=10 \cdot 7+2.15 x
$$

$$
y=10.7+2.15(50)
$$

$y=118 \cdot 2$
$118 \cdot 2$
$118 \cdot 2(25)=2955$
$y=10.7+2.15 x$
$y=10.7+2.15(49)$
$y=116.05$
$y=116.05$
$2955-2901.25=\left[\begin{array}{l}553.75 \text { is the change } \\ \text { in sverige cost }\end{array}\right.$
(c) Interpret the value of r^{2} in the context of this problem.

$$
i n
$$

$$
\because 2+\quad \text { - }
$$

The r^{2} value of. 0.96 .7 shows tho there is strong correlation between fuel consumption and the number of railcors. The correlation is positive therefore as the number of roilcors increases so does the fine consumption
(d) Would it be reasonable to use the fitted regression equation to predict the fuel consumption for a train on this route if the train had 65 railcars? Explain.
No it would not be reasonable because it would be an extrapolation of the data.

The Examination

4. Some boxes of a certain brand of breakfast cereal include a voucher for a free video rental inside the box. The company that makes the cereal claims that a voucher can be found in 20 percent of the boxes. However, based on their experiences eating this cereal at home, a group of students believes that the proportion of boxes with vouchers is less than 0.2 . This group of students purchased 65 boxes of the cereal to investigate the company's claim. The students found a total of 11 vouchers for free video rentals in the 65 boxes.

Suppose it is reasonable to assume that the 65 boxes purchased by the students are a random sample of all boxes of this cereal. Based on this sample, is there support for the students' belief that the proportion of boxes with vouchers is less than 0.2? Provide statistical evidence to support your answer.
1-proportion z-test
P: proportion of certain brand of breakfestaral boxes with
a voucher for a free video rental inside
conditions:
Randomization: Assumed that 45 boxes purchased are a random sample $n p>10 \Rightarrow 65(.2)=13$ which is greater than 10
$n(1-p)>10 \Rightarrow 65(.8)=52$ which is greater that 10
$10 n<$ population of this brand of breakfast cereal boxes
$10(65)=650$ There are more than 650 boxes of this brand
$H_{0}: p=.2$
Ha: $P<.2$
$z=\frac{\frac{11}{65}-.2}{\sqrt{\frac{-2(1-.2)}{65}}}=-.620$
P-value $=.2676$
Not significant at the 5% level
Because p-value is greater than 05, failure bo reject tho.
There is not eloughewiomec to conclude that the proportion of this bes it th brand of breakfast eermalboxes with fee video vouchers inside is less than 2 .
4. Some boxes of a certain brand of breakfast cereal include a voucher for a free video rental inside the box. The company that makes the cereal claims that a voucher can be found in 20 percent of the boxes. However, based on their experiences eating this cereal at home, a group of students believes that the proportion of boxes with vouchers is less than 0.2 . This group of students purchased 65 boxes of the cereal to investigate the company's claim. The students found a total of 11 vouchers for free video rentals in the 65 boxes.
Suppose it is reasonable to assume that the 65 boxes purchased by the students are a random sample of all boxes of this cereal. Based on this sample, is there support for the students' belief that the proportion of boxes with vouchers is less than 0.2 ? Provide statistical evidence to support your answer.
Dpaproportion of pokes with vouchers in them

$$
\begin{aligned}
& H_{0}: p=.2 \\
& H_{a}: p<.2
\end{aligned}
$$

2) a one proportion hypothesis test with z-values

- An SR was used
- $n p=(65)(.2)=13 \quad$ both are ≥ 10

$$
n q=(a s)(18)=52
$$

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}=\frac{.169-.2}{\sqrt{\frac{(.2)(8)}{65}}}=-.63
$$

$$
\text { Parve: } P(x-.2)=.2676
$$

4) with a p-value of 2676 , there is not sufficient evidence to reject the null. If $p=.2$ is true, than a sample proportion of 169 would occur 26.76% of the time by chance.

The Examination

4. Some boxes of a certain brand of breakfast cereal include a voucher for a free video rental inside the box. The company that makes the cereal claims that a voucher can be found in 20 percent of the boxes. However, based on their experiences eating this cereal at home, a group of students believes that the proportion of boxes with vouchers is less than 0.2 . This group of students purchased 65 boxes of the cereal to investigate the company's claim. The students found a total of 11 vouchers for free video rentals in the 65 boxes.

Suppose it is reasonable to assume that the 65 boxes purchased by the students are a random sample of all boxes of this cereal. Based on this sample, is there support for the students' belief that the proportion of boxes with vouchers is less than 0.2 ? Provide statistical evidence to support your answer.

$$
\begin{aligned}
& p=.2 \quad \hat{p}=\frac{11}{65}=.17 \\
& n=65
\end{aligned}
$$

(1) $H_{0}: p=.2 \quad H_{A}: p<.2$
(2) $n p>5 n(1-p)>5$ $65(.2)>5 \quad 65(.8)>5$
$13>5$
$52>5$
(3)

(1)

$$
\alpha=.05
$$

$$
\begin{aligned}
p-v a l & \leq .05 \\
.266 & \leqslant .05
\end{aligned}
$$

(5) Based on the sample data we must fail to reject the Null Hyp, Suggesting that the the company's claim of a free voucher being found io\% of bots is true. 7

The Examination

5. A survey will be conducted to examine the educational level of adult heads of households in the United States. Each respondent in the survey will be placed into one of the following two categories:

- Does not have a high school diploma
- Has a high school diploma

The survey will be conducted using a telephone interview. Random-digit dialing will be used to select the sample.
(a) For this survey, state one potential source of bias and describe how it might affect the estimate of the proportion of adult heads of households in the United States who do not have a high school diploma.
Ore potential souses of bias night be noresponse bias. Those who dort hare a high school dytoma mist work double shafts or longer hours to support their- families. If the interviewer. calls, and no one is at harold to answer, the estimate of those who droit have a high school diploma might be underestimated.
(b) A pilot survey indicated that about 22 percent of the population of adult heads of households do not have a high school diploma. Using this information, how many respondents should be obtained if the goal of the survey is to estimate the proportion of the population who do not have a high school diploma to within 0.03 with 95 percent confidence? Justify your answer.
$M E=z^{*} \cdot \sqrt{\frac{p(1-p)}{x}}$
$0.03=1.959 \sqrt{\frac{0.22(1-0.22)}{n}}$
$n \approx 731.78$
$n=732$
You should have 732 respondents

The Examination

If you need more room for your work for part (b), use the space below.
(c) Since education is largely the responsibility of each state, the agency wants to be sure that estimates are available for each state as well as for the nation. Identify a sampling method that will achieve this additional goal and briefly describe a way to select the survey sample using this method.
I would use stratified random sampling. For each state, I would have 100 or more respondents give the interviewers their informativin, and then I would prod all de respondents to form the sample for the entire nation. In order se implement this method, I will use a random Rumitur generator and formant
 find groups of 7 digits. These 7 digits will be a phone nurnter that the interviewer will call. I with then repeat the picking many more thees.

The Examination

$5 B$

5. A survey will be conducted to examine the educational level of adult heads of households in the United States. Each respondent in the survey will be placed into one of the following two categories:

- Does not have a high school diploma
- Has a high school diploma

The survey will be conducted using a telephone interview. Random-digit dialing will be used to select the sample.
(a) For this survey, state one potential source of bias and describe how it might affect the estimate of the proportion of adult heads of households in the United States who do not have a high school diploma.
Because this sample is done by telepilione, those
without prone access conn ot be reached. This may
be a source of bias because these who do not have
a diploma bray not be able to afford telephone service and thus bo excluded from this surves.
(b) A pilot survey indicated that about 22 percent of the population of adult heads of households do not have a high school diploma. Using this information, how many respondents should be obtained if the goal of the survey is to estimate the proportion of the population who do not have a high school diploma to within 0.03 with 95 percent confidence? Justify your answer.
for sample 3120 .
$z^{*} \sqrt{\frac{p^{*}\left(1-p^{*}\right)}{n}} \leq m$
$1.96 \sqrt{\frac{(.22)(.78)}{n}} \leq .03$
$\pi \geq 733$ people in order to produce
a 95\% CI with a margin of error
less than or equal to .03.

The Examination

$5 B$

If you need more room for your work for part (b), use the space below.
(c) Since education is largely the responsibility of each state, the agency wants to be sure that estimates are available for each state as well as for the nation. Identify a sampling method that will achieve this additional goal and briefly describe a way to select the survey sample using this method.

$$
\text { In each of the } 50 \text { states, we ian also randomly! }
$$

The Examination

5

5. A survey will be conducted to examine the educational level of adult heads of households in the United States. Each respondent in the survey will be placed into one of the following two categories:

- Does not have a high school diploma
- Has a high school diploma

The survey will be conducted using a telephone interview. Random-digit dialing will be used to select the sample.
(a) For this survey, state one potential source of bias and describe how it might affect the estimate of the proportion of adult heads of households in the United States who do not have a high school diploma. convenience bias-some adults won't be able to be reached cray not answer phone, be out of nowise, etc. and therefore the people who are reached and respond might not represent truespapulation
This bias may lead to overestimating prop of adv it who a diploma bic adults with a highschool diploma typically have jobs and won't be home to answer phone
(b) A pilot survey indicated that about 22 percent of the population of adult heads of households do not have a high school diploma. Using this information, how many respondents should be obtained if the goal of the survey is to estimate the proportion of the population who do not have a high school diploma to within 0.03 with 95 percent confidence? Justify your answer.

$$
\begin{gathered}
1.96\left(\frac{.226 .78}{\sqrt{n}}\right) \leq .03 \\
\sqrt{n} \frac{1.96\left(\frac{.1716}{\sqrt{n}}\right)}{1.96} \leq \frac{.03}{1.96} \sqrt{n} \\
\frac{.1716}{.0153} \leq \frac{.0153 \sqrt{n}}{.0153} \\
11.212^{2} \leq \sqrt{n} \\
125.69 \leq n \\
126=n
\end{gathered}
$$

if we contaret 126 respondents,
 margin of error will decrease

The Examination

$5 C$

If you need more room for your work for part (b), use the space below.
(c) Since education is largely the responsibility of each state, the agency wants to be sure that estimates are -available for each state as well as for the nation. Identify a sampling method that will achieve this additional goal and briefly describe a way to select the survey sample using this method.

strata (states)
in each state, usendom digit dial ling of reside of state assign each telephone number a random digit number, choose a sample size of random digits who replacement and call these numbers

The Examination

(a) Use a 95 percent confidence interval to estimate the difference in the mean amount of lead on a child's dominant hand after an hour of play inside versus an hour of play outside at urban day-care centers in this city. Be sure to interpret your interval.

The data was given to be from a random sample, and they were take independently from each other. The boxplots of the inside and outside ploy show:

Both boxplas are roughly symmetric with no orthers or skewness so we assume Normal distributions in both. Since 0 is unknown, we use a two sample t-interval

There no reason to some $\sigma_{1}=\sigma_{2}$ so poo pooed.

$$
t=-8.316
$$

Peruse pis less than the ken of itghticere.05, we ripe $H_{0} \cdot M-H_{2}=0$. We conclude that the mes of the leal levels on dindren's lauds offer playing inside is

There is no reason to assume $\sigma_{1}=\sigma_{\text {, }}$, so NOTPOOLED $d F=8.531 \quad(9.4343,16.566)$
We ore 95% coning that the the mean of the difference, in atsele-playing dindren's bud hel and inst flaying child lead levin! is between. 9.43 .43 and 16.565

The Examination

(b) On the figure below,

- Using the vertical axis for the mean amount of lead, plot the mean for the amounts of lead on the dominant hand of children who played inside at the suburban day-care center and then plot the mean for the amounts of lead on the dominant hand of children who played inside at the urban day-care center.
- Connect these two points with a line segment.
- Plot the two means (suburban and urban) for the children who played outside at the two types of day-care centers.
- Connect these two points with a second line segment.

suburb inside -3.75 meg
sulourb elide -5.65 meg
urban write - 4.58
urban outrider -17.56

The Examination

(c) From the study, what conclusions can be drawn about the impact of setting (inside, outside), environment (suburban, urban), and the relationship between the two on the amount of lead on the dominant hand of children after play in this city? Justify your answer.

There is a big difference between inside and ateide lead levels intention ewifonment, but a lesser different between inside and aside difference in the suburban enwionmenty still), the ye is a significant disease induct inside and article settings in botherlironmenty as seen by the confidence intervals. In shourkan settings, we are 95% confident than the main difference botwa3en inside play and outside play is between -2.46 un -134. In urban settings, we ore 95% confromithat the olferese of outrute play and. inside play ts between $9,4,43$ and 15,566 In moth eases, the interval suggests that oft side play results. in higher loadionels than inside ploy. A seen by the graph we com show the st the man and of lead is higher for both END of examination fiside and outside settings in an urban environment

THE FOLLOWING INSTRUCTIONS APPLY TO THE BACK COVER OF THE SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE BACK OF THE SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER APPEARS IN THE BOX(ES) ON THE BACK COVER.
- MAKE SURE YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMINATIONS YOU HAVE TAKEN THIS YEAR.
(a) Use a 95 percent confidence interval to estimate the difference in the mean amount of lead on a child's dominant hand after an hour of play inside versus an hour of play outside at urban day-care centers in this city. Be sure to interpret your interval.
U. - mean mys of lead on the hands of chiller outside μ_{i} - mean mugs of lead on the hands of children inside

Z-Sample T Interval Test

$$
4.56+17.56 \pm 1.96\left(\sqrt{\frac{.85^{2}}{9}+\frac{4.61^{2}}{9}}\right)
$$

assumptions
$18+30$
assume normal
simple randan sample

Interval $=(-16.57,-9.434)$
We are 95% confident the mean difference of mugs of lead on the hands of children who played inside minus those who played outside is \approx between $-16.57+-9.434$.

The Examination

(b) On the figure below,

- Using the vertical axis for the mean amount of lead, plot the mean for the amounts of lead on the dominant hand of children who played inside at the suburban day-care center and then plot the mean for the amounts of lead on the dominant hand of children who playedinside at the urbanday-care center.
- Connect these two points with a line segment.
- Plot the two means (suburban and urban) for the children who played outside at the two types of day-care centers.
- Connect these two points with a second line segment.

The Examination

(c) From the study, what conclusions can be drawn about the impact of setting (inside, outside), environment (suburban, urban), and the relationship between the two on the amount of lead on the dominant hand of children after play in this city? Justify your answer.
While both studies showed a greater average amount of lead on the hands of children who played outside, those who played outside in sati urban areas picked up a great deal more lead. The intern of difference here was a lave $(-16.57,-9.434)$ as compared to the shriller interval $(-2,46,-1,34)$ from subirtion areas. There thretere seems to be mani more lead outside as respect $\frac{1}{8}$ insick in when areas. Also, since the interval was not only lagers but the numbers comprising it were highof, we can conclucte that not only is there more lead out side when coupareal to inside urban areas but that there is more lead altogether in urban areas than in suborder ares.

THE FOLLOWING INSTRUCTIONS APPLY TO THE BACK COVER OF THE SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE BACK OF THE SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER APPEARS IN THE BOXES) ON THE BACK COVER.
- MAKE SURE YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMINATIONS YOU HAVE TAKEN THIS YEAR.

The Examination

$6 c$

Part B
Question 6

Spend about 25 minutes on this part of the exam.
 Percent of Section II grade- $\mathbf{2 5}$

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.
6. Lead, found in some paints; is a neurotoxin that can be especially harmful to the developing brain and nervous system of children. Children frequently put their hands in their mouth after touching painted surfaces, and this is the most common type of exposure to lead.
A study was conducted to investigate whether there were differences in children's exposure to lead between suburban day-care centers and urban day-care centers in one large city. For this study, researchers used a random sample of 20 children in suburban day-care centers. Ten of these 20 children were randomly selected to play outside; the remaining 10 children played inside. All children had their hands wiped clean before beginning their assigned one-hour play period either outside or inside. After the play period ended, the amount of lead in micrograms (meg) on each child's dominant hand was recorded.
The mean amount of lead on the dominant hand for the children playing inside was 3.75 mcg , and the mean amount of lead for the children playing outside was 5.65 mcg . A 95 percent confidence interval for the difference in the mean amount of lead after one hour inside versus one hour outside was calculated to be ($-2.46,-1.34$).
A random sample of 18 children in urban day-care centers in the same large city was selected. For this sample, the same process was used, including randomly assigning children to play inside or outside. The data for the amount (in mcg) of lead on each child's dominant hand are shown in the table below.

Urban Day-Care Centers

Inside	6	5	4	4	4.5	5	4.5	3	5
Outside	15	25	18	14	20	13	11	22	20

$$
\begin{aligned}
& \text { Inside }=3.75 \\
& 0 \text { outside }=5.65
\end{aligned}
$$

$$
(-2.46,-1.34)
$$

The Examination
(a) Use a 95 percent confidence interval to estimate the difference in the mean amount of lead on a child's dominant hand after an hour of play inside versus an hour of play outside at urban day-care centers in this city. Be sure to interpret your interval.

$$
1 \text { will do a } 2 \text { sample } T \text { Infinal. }
$$

$$
\begin{gathered}
1 \text { will do a } 2 \\
d f=8 \quad x=.0^{5}
\end{gathered}
$$

men of outside $=1775$ city
mem of inside $=4,55$
(Assumptions =
V simple random sample
V Population 15 louse exeat
$=4.6127 \quad 5 \leqslant 20245$
$=10: 20<$ papen

$$
\begin{aligned}
& x_{1}-x_{2} \pm t^{*} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{o_{2}^{2}}{n_{2}}} \\
& \left.4.55-17.55 \pm 2.306 \frac{\sqrt{\frac{847}{9}+\frac{4.6127}{9}} \rightarrow(-16.57}{\frac{1}{9}}-9.434\right)
\end{aligned}
$$

 Thancfore, 95% of the time the ne will be a large diffensum betunan outside it inside lad cornet.

The Examination

(b) On the figure below,

- Using the vertical axis for the mean amount of lead, plot the mean for the amounts of lead on the dominant hand of children who played inside at the suburban day-care center and then plot the mean for the amounts of lead on the dominant hand of children who played inside at the urban day-care center.
- Connect these two points with a line segment.
- Plot the two means (suburban and urban) for the children who played outside at the two types of day-care centers.
- Connect these two points with a second line segment.

Suburban:
\bar{x} inside $=3.75$
\bar{x} outside $=5.65$

$$
\begin{array}{ll}
\text { Urban }= \\
\bar{x} \text { inside }=4,55 \\
\bar{x} \text { outside }=17,55
\end{array}
$$

The Examination

(c) From the study, what conclusions can be drawn about the impact of setting (inside, outside), environment (suburban, urban), and the relationship between the two on the amount of lead on the dominant hand of children after play in this city? Justify your answer.
It is obvious that there is a large difference in wo aves:

1. That inside versus outside playing affects the amount
of lead potter in children Both urban t suburban z mem difference confidence intwivals show a substantend mime the child played. This is a logical argvemunt \rightarrow
most outdoor paints are ks s pioph land child friend ill, most outdoor paints are ls pioph land chill friendly).
2. That urban areas have move lead than suburban

 areas.

END OF EXAMINATION

THE FOLLOWING INSTRUCTIONS APPLY TO THE BACK COVER OF THE SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE BACK OF THE SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER APPEARS IN THE BOX(ES) ON THE BACK COVER.
- MAKE SURE YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMINATIONS YOU HAVE TAKEN THIS YEAR.

The Examination

2005 AP ${ }^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS (Form B)

STATISTICS
SECTION II
\section*{Part A}
Questions 1-5

Spend about 65 minutes on this part of the exam.

Percent of Section II grade-75
Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.

1. The graph below displays the scores of 32 students on a recent exam. Scores on this exam ranged from 64 to 95 points.

$$
\begin{array}{l|l}
6 & * * \\
6 & * * \\
7 & * * * \\
7 & * * * * \\
8 & * * * * \\
8 & * * * * * * \\
9 & * * * * * * * \\
9 & * * * *
\end{array}
$$

(a) Describe the shape of this distribution.
(b) In order to motivate her students, the instructor of the class wants to report that, overall, the class's performance on the exam was high. Which summary statistic, the mean or the median, should the instructor use to report that overall exam performance was high? Explain.
(c) The midrange is defined as $\frac{\text { maximum }+ \text { minimum }}{2}$. Compute this value using the data on the preceding page.
Is the midrange considered a measure of center or a measure of spread? Explain.
2. For an upcoming concert, each customer may purchase up to 3 child tickets and 3 adult tickets. Let C be the number of child tickets purchased by a single customer. The probability distribution of the number of child tickets purchased by a single customer is given in the table below.

c	0	1	2	3
$p(c)$	0.4	0.3	0.2	0.1

(a) Compute the mean and the standard deviation of C.
(b) Suppose the mean and the standard deviation for the number of adult tickets purchased by a single customer are 2 and 1.2, respectively. Assume that the numbers of child tickets and adult tickets purchased are independent random variables. Compute the mean and the standard deviation of the total number of adult and child tickets purchased by a single customer.
(c) Suppose each child ticket costs $\$ 15$ and each adult ticket costs $\$ 25$. Compute the mean and the standard deviation of the total amount spent per purchase.

The Examination

2005 AP ${ }^{\circledR}$ STATISTICS FREE-RESPONSE QUESTIONS (Form B)

3. In search of a mosquito repellent that is safer than the ones that are currently on the market, scientists have developed a new compound that is rated as less toxic than the current compound, thus making a repellent that contains this new compound safer for human use. Scientists also believe that a repellent containing the new compound will be more effective than the ones that contain the current compound. To test the effectiveness of the new compound versus that of the current compound, scientists have randomly selected 100 people from a state.

Up to 100 bins, with an equal number of mosquitoes in each bin, are available for use in the study. After a compound is applied to a participant's forearm, the participant will insert his or her forearm into a bin for 1 minute, and the number of mosquito bites on the arm at the end of that time will be determined.
(a) Suppose this study is to be conducted using a completely randomized design. Describe a randomization process and identify an inference procedure for the study.
(b) Suppose this study is to be conducted using a matched-pairs design. Describe a randomization process and identify an inference procedure for the study.
(c) Which of the designs, the one in part (a) or the one in part (b), is better for testing the effectiveness of the new compound versus that of the current compound? Justify your answer.
4. A researcher believes that treating seeds with certain additives before planting can enhance the growth of plants. An experiment to investigate this is conducted in a greenhouse. From a large number of Roma tomato seeds, 24 seeds are randomly chosen and 2 are assigned to each of 12 containers. One of the 2 seeds is randomly selected and treated with the additive. The other seed serves as a control. Both seeds are then planted in the same container. The growth, in centimeters, of each of the 24 plants is measured after 30 days. These data were used to generate the partial computer output shown below. Graphical displays indicate that the assumption of normality is not unreasonable.

	N	Mean	StDev	SE Mean
Control	12	15.989	1.098	0.317
Treatment	12	18.004	1.175	0.339
Difference	12	-2.015	1.163	0.336

(a) Construct a confidence interval for the mean difference in growth, in centimeters, of the plants from the untreated and treated seeds. Be sure to interpret this interval.
(b) Based only on the confidence interval in part (a), is there sufficient evidence to conclude that there is a significant mean difference in growth of the plants from untreated seeds and the plants from treated seeds? Justify your conclusion.

2005 AP ${ }^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS (Form B)

5. John believes that as he increases his walking speed, his pulse rate will increase. He wants to model this relationship. John records his pulse rate, in beats per minute (bpm), while walking at each of seven different speeds, in miles per hour (mph). A scatterplot and regression output are shown below.

Regression Analysis: Pulse Versus Speed						
Predictor	Coef	SE Coef			P	
Constant	63.457	2.387			0.000	
Speed	16.2809	0.8192			0.000	
$\mathrm{S}=3.087$	$\mathrm{R}-\mathrm{Sq}=9$	R	$\mathrm{dj})=98.5$			
Analysis of Variance						
Source	DF	SS	MS	F		P
Regression	1	3763.2	3763.2	396.13		0.000
Residual	5	47.6	9.5			
Total	6	3810.9				

(a) Using the regression output, write the equation of the fitted regression line.
(b) Do your estimates of the slope and intercept parameters have meaningful interpretations in the context of this question? If so, provide interpretations in this context. If not, explain why not.
(c) John wants to provide a 98 percent confidence interval for the slope parameter in his final report. Compute the margin of error that John should use. Assume that conditions for inference are satisfied.

The Examination

2005 AP ${ }^{\circledR}$ STATISTICS FREE-RESPONSE QUESTIONS (Form B)

Part B
Question 6
Spend about 25 minutes on this part of the exam.
Percent of Section II grade- 25

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.
6. Regulations require that product labels on containers of food that are available for sale to the public accurately state the amount of food in those containers. Specifically, if milk containers are labeled to have 128 fluid ounces and the mean number of fluid ounces of milk in the containers is at least 128 , the milk processor is considered to be in compliance with the regulations. The filling machines can be set to the labeled amount. Variability in the filling process causes the actual contents of milk containers to be normally distributed. A random sample of 12 containers of milk was drawn from the milk processing line in a plant, and the amount of milk in each container was recorded.
(a) The sample mean and standard deviation of this sample of 12 containers of milk were 127.2 ounces and 2.1 ounces, respectively. Is there sufficient evidence to conclude that the packaging plant is not in compliance with the regulations? Provide statistical justification for your answer.
Inspectors decide to study a particular filling machine within this plant further. For this machine, the amount of milk in the containers has a mean of 128.0 fluid ounces and a standard deviation of 2.0 fluid ounces.
(b) What is the probability that a randomly selected container filled by this machine contains at least 125 fluid ounces?
(c) An inspector will randomly select 12 containers filled by this machine and record the amount of milk in each. What is the probability that the minimum (smallest amount of milk) recorded in the 12 containers will be at least 125 fluid ounces? (Note: In order for the minimum to be at least 125 fluid ounces, each of the 12 containers must contain at least 125 fluid ounces.)

An analyst wants to use simulation to investigate the sampling distribution of the minimum. This analyst randomly generates 150 samples, each consisting of 12 observations, from a normal distribution with mean 128 and standard deviation 2 and finds the minimum for each sample. The 150 minimums (sorted from smallest to largest) are shown on the next page.

2005 AP ${ }^{\oplus}$ STATISTICS FREE-RESPONSE QUESTIONS (Form B)

Sample	Minimum	Sample	Minimum	Sample	Minimum
1	121.45	51	124.28	101	125.25
2	122.51	52	124.29	102	125.31
3	122.53	53	124.30	103	125.36
4	122.72	54	124.31	104	125.38
5	122.75	55	124.34	105	125.40
6	122.89	56	124.36	106	125.42
7	122.93	57	124.37	107	125.48
8	122.99	58	124.37	108	125.49
9	123.04	59	124.39	109	125.50
10	123.08	60	124.39	110	125.52
11	123.09	61	124.41	111	125.54
12	123.10	62	124.44	112	125.56
13	123.31	63	124.53	113	125.61
14	123.34	64	124.53	114	125.67
15	123.39	65	124.54	115	125.72
16	123.40	66	124.55	116	125.76
17	123.41	67	124.55	117	125.77
18	123.41	68	124.55	118	125.78
19	123.46	69	124.55	119	125.79
20	123.49	70	124.58	120	125.84
21	123.51	71	124.67	121	125.87
22	123.57	72	124.69	122	125.87
23	123.58	73	124.73	123	125.90
24	123.59	74	124.77	124	125.90
25	123.60	75	124.78	125	125.93
26	123.66	76	124.78	126	125.93
27	123.67	77	124.80	127	125.93
28	123.72	78	124.80	128	125.94
29	123.75	79	124.81	129	125.98
30	123.77	80	124.85	130	126.00
31	123.78	81	124.91	131	126.03
32	123.84	82	124.92	132	126.05
33	123.91	83	124.92	133	126.05
34	123.93	84	124.96	134	126.06
35	123.95	85	125.00	135	126.09
36	123.95	86	125.01	136	126.15
37	123.98	87	125.02	137	126.15
38	123.99	88	125.02	138	126.16
39	124.05	89	125.03	139	126.19
40	124.05	90	125.04	140	126.19
41	124.06	91	125.05	141	126.25
42	124.12	92	125.07	142	126.26
43	124.14	93	125.08	143	126.33
44	124.15	94	125.09	144	126.35
45	124.16	95	125.14	145	126.45
46	124.19	96	125.18	146	126.50
47	124.23	97	125.21	147	126.57
48	124.27	98	125.21	148	126.62
49	124.28	99	125.22	149	126.64
50	124.28	100	125.25	150	126.95

The Examination

2005 AP $^{\circledR}$ STATISTICS FREE-RESPONSE OUESTIONS (Form B)

(d) Use the simulation results to estimate the probability that was requested in part (c) and compare this estimate with the theoretical value you calculated.

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 1

Solution

Part (a):

The distribution is skewed to the left (or toward the lower values).

Part (b):

Since the distribution is skewed towards the lower values, the mean will be pulled in that direction. Thus, the instructor should report the median to motivate her students.

Part (c):

Step 1: Correct Mechanics:
midrange $=\frac{64+95}{2}=79.5$
Step 2: Identify the midrange as a measure of center.
Step 3: Correct rationale:
The maximum provides information about the upper tail, more specifically the upper extreme value. The minimum provides information about the lower tail, more specifically the lower extreme value. By averaging these two values and creating the midrange, we are creating a statistic that provides the halfway point between the two extremes. This statistic is a measure of center.

Scoring

Each part is scored as essentially correct (E), partially correct (P), or incorrect (I).
Part (a) is essentially correct (E) if the student states that the distribution is skewed and indicates the direction.
Part (a) is partially correct (P) if the student:

- Recognizes that the distribution is skewed but either does not mention the direction or does not indicate the correct direction; OR
- says that the distribution is not symmetric; OR
- says the distribution is not normal.

Part (a) is incorrect (I) if the student says the distribution is bell-shaped or roughly normal.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 1 (continued)

Part (b) is scored as essentially correct (E) if the median is chosen and a correct rationale based on the skewness of the distribution is provided.

Part (b) is partially correct (P) if the median is chosen, but the rationale is weak OR the mean is chosen based on a weak rationale.

Part (b) is incorrect (I) if no rationale is provided for the chosen statistic OR the mean is chosen based on a flawed rationale.

Part (c) is scored as essentially correct (E) if all three steps are essentially correct.
Part (c) is partially correct (P) if two steps are essentially correct.
Part (c) is incorrect (I) if at most one step is correct.
Note: Step 3 is essentially correct if the student provides a rationale that appeals to the midrange as a value in the middle of two extremes OR that appeals to the midrange as a middle value and a correct rationale of why it is not a measure of spread OR appeals to the property that adding a constant to every observation will shift the midrange by the amount of the constant while measures of spread are unaffected by adding a constant to every observation.

4 Complete Response (3E)

All three parts essentially correct

3 Substantial Response (2E 1P)

Two parts essentially correct and one part partially correct
2 Developing Response (2E 0P or 1E 2P)
Two parts essentially correct and zero parts partially correct
OR
One part essentially correct and two parts partially correct
1 Minimal Response (1E 1P or 1E 0P or 0E 2P)
One part essentially correct and either zero parts or one part partially correct
OR
Zero parts essentially correct and two parts partially correct

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES (Form B)

Question 2

Solution

Part (a):
The mean of C is $0 \times 0.4+1 \times 0.3+2 \times 0.2+3 \times 0.1=1$.
The standard deviation of C is $\sqrt{(0-1)^{2} \times 0.4+(1-1)^{2} \times 0.3+(2-1)^{2} \times 0.2+(3-1)^{2} \times 0.1}=1$.
Part (b):
Let $T=C+A$, where A is the total number of adult tickets purchased by a single customer, denote the total number of tickets purchased by a single customer.
The mean of T is $\mu_{T}=\mu_{C}+\mu_{A}=1+2=3$.
The standard deviation of T is $\sigma_{T}=\sqrt{\sigma_{C}^{2}+\sigma_{A}^{2}}=\sqrt{1^{2}+1.2^{2}}=\sqrt{2.44}=1.562$.

Part (c):

Let $M=15 \times C+25 \times A$ denote the total amount of money spent per purchase.
The mean of M is $\mu_{M}=15 \mu_{C}+25 \mu_{A}=15 \times 1+25 \times 2=\$ 65$.
The standard deviation of M is $\sigma_{M}=\sqrt{15^{2} \sigma_{C}^{2}+25^{2} \sigma_{A}^{2}}=\sqrt{225 \times 1^{2}+625 \times 1.2^{2}}=\sqrt{1125}=\$ 33.54$.

Scoring

Each part is scored as essentially correct (E), partially correct (P), or incorrect (I).
Part (a) is essentially correct (E) if both the mean and the standard deviation of C are calculated correctly and the work is shown, with the exception of minor arithmetic errors.

Part (a) is partially correct (P) if either the mean or the standard deviation of C is calculated correctly and the work is shown.

Note: The variance and the standard deviation of C are both 1. If the variance is reported instead of the standard deviation, the response is scored as (P).

Part (a) is incorrect (I) if both the mean and the standard deviation of C are calculated incorrectly OR if no work is shown.

Notes:

1. Unsupported answers will be scored as incorrect.
2. If the student incorrectly calculates the mean and/or standard deviation in part (a) and then correctly uses those values in parts (b) and (c), there will be no second penalty.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 2 (continued)

3. Standard notation for means $\left(\mu_{C}, \mu_{A}, \mu_{T}\right.$, and $\left.\mu_{M}\right)$, variances $\left(\sigma_{C}^{2}, \sigma_{A}^{2}, \sigma_{T}^{2}\right.$, and $\left.\sigma_{M}^{2}\right)$, and standard deviations ($\sigma_{C}, \sigma_{A}, \sigma_{T}$, and σ_{M}) are acceptable without definition. If nonstandard notation, such as p_{C}, p_{A}, p_{T}, and p_{M}, is defined correctly for this problem, then it will be scored as essentially correct. Nonstandard notation, without a definition, will be scored at most partially correct.

Part (b) is essentially correct (E) if both the mean and the standard deviation of T are calculated correctly and the work is shown, with the exception of minor arithmetic errors.

Part (b) is partially correct (P) if either the mean or the standard deviation of T is calculated correctly.
Part (b) is incorrect (I) if both the mean and the standard deviation of T are calculated incorrectly OR no work is shown.

Part (c) is scored as essentially correct (E) if both the mean and the standard deviation of M are calculated correctly and the work is shown, with the exception of minor arithmetic errors.

Part (c) is partially correct (P) if either the mean or the standard deviation of M is calculated correctly.
Part (c) is incorrect (I) if both the mean and the standard deviation of M are calculated incorrectly OR if no work is shown.

4 Complete Response (3E)

All three parts essentially correct
3 Substantial Response (2E 1P)
Two parts essentially correct and one part partially correct
2 Developing Response (2E 0P or 1E 2P)
Two parts essentially correct and zero parts partially correct
OR
One part essentially correct and two parts partially correct
1 Minimal Response (1E 1P or 1E 0P or 0E 2P)
One part essentially correct and either zero parts or one part partially correct OR
Zero parts essentially correct and two parts partially correct

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 3

Solution

Part (a):
Each of the 100 selected people will be assigned a unique random number using a random number generator. A list of names and numbers will be created and sorted from smallest to largest by the assigned numbers (and carrying along the name). The first 50 people on the list will be asked to apply the new compound to their right arm and the other 50 people will be asked to apply the current compound to their right arm. The compounds will be put in identical, unmarked tubes so neither the participants nor the researchers know which compound is being applied. The analysts will be the only people who know which participants received which compound. Each person will be randomly assigned to a bin by assigning random numbers to bins using a random number generator. The first person on the list will be assigned to the bin with the smallest number, the second person on the list will be assigned to the bin with the second smallest number, and so on. After each person inserts his or her right arm into the assigned bin for one minute, the number of mosquito bites will be counted. The mean number of mosquito bites for the two compounds will be compared using a two-sample t-test and/or a confidence interval for the difference in means for two independent samples.

Part (b):

Each participant will be randomly assigned to a bin as described in part (a). The researchers will distribute two identical tubes, one labeled 1 and the other labeled 2, to each participant. One of those tubes will contain the new compound and the other will contain the current compound. Neither the researchers nor the participants will know which compound is in which tube. Only the analyst will have this information. Each participant will apply one compound to one arm and the other compound to the other arm. The assignment of the compounds to the arms is completed using randomization. A random number will be generated for each participant, and the participants with the 50 smallest random numbers will apply tube 1 to their right arm, and the remaining 50 participants will apply tube 2 to their left arm. Each participant will insert both arms into the assigned bin at the same time for one minute, and the number of mosquito bites will be counted on each arm. The analyst will compute the difference in the number of bites (new - current) for each of the 100 participants and use a one-sample t-test and/or construct a confidence interval for the mean of the differences to test the null hypothesis that the mean difference is zero.

Part (c):

The matched-pairs design in part (b) is better because one potential source of variation, person-to-person variability in susceptibility to mosquito bites, is controlled.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 3 (continued)

Scoring

Part (a) is divided into two subparts. Each subpart is scored as essentially correct (E), partially correct (P), or incorrect (I). Parts (b) and (c) are scored as essentially correct (E), partially correct (P), or incorrect (I).

Part (a) contains two parts. The first part (a1) deals with the description of a completely randomized design (CRD). The second part (a2) deals with the inference procedure.

Part (a1) is essentially correct (E) if the student:

- Describes a completely randomized design (CRD) that indicates that participants are assigned to two treatment groups corresponding to the new and current compounds; AND
- Correctly describes an appropriate randomization procedure for assigning participants to treatment groups.

Part (a1) is partially correct (P) if the explanation of the randomization procedure is not clear or is incomplete OR the student fails to address the assignment of participants to treatment groups.

Part (a1) is incorrect (I) if the student describes a design that is not based on random assignment. For example, if a design allows the subjects to self-select into two groups. A matched-pairs design is also scored as incorrect.

Part (a2) is essentially correct (E) if the student:

- Chooses a two-sample t-test or a two-sample confidence interval for the difference in means; AND
- Indicates that the mean number of mosquito bites will be compared for the two compounds.

Part (a2) is partially correct (P) if only one of the above is included.
Part (a2) is incorrect (I) if none of the above is included.
Part (b) is essentially correct (E) if the student describes a matched-pairs experiment that:

- Identifies the participants as the blocks; AND
- Describes a method for randomly assigning the treatments within each block (for designs in which the two treatments are not applied at the same time, the order in which the treatments are given must also be properly randomized); AND
- Correctly identifies an appropriate inference procedure based on the observed differences in mosquito bites within each block.

Part (b) is partially correct (P) if the student does any of the following:

- Provides a correct inference procedure, but
- Uses gender or some other characteristic to form the pairs;
- Attempts to describe the random assignment within each block, but the explanation of the random assignment is not clear or incomplete;
- Neglects to indicate that the analysis will be based on the differences within each block; OR
- Describes a correct randomization process but does not provide a correct inference procedure.

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B) Question 3 (continued)

Part (b) is incorrect (I) if the student describes any design not based on random assignment within the blocks (e.g., allows the subjects to self-select which compound is applied to which arm) or just refers to "random assignment" but does not describe the method of assignment.

Notes for part (b):
Examples of alternative matched-pairs designs that will be scored as essentially correct:

1. If the student assumes that only one arm can be inserted into a bin, the experiment can be done by randomly selecting 50 of the 100 available participants. The bins are labeled from 1 to 100 and two bins are randomly assigned to each subject, one for each arm. This can be done by using a random number generator to assign each participant a unique random number and sorting the list of participants with respect to those numbers. Bins 1 and 2 are assigned to the first participant on the list, bins 3 and 4 are assigned to the second participant on the list, and so on. For each subject, a coin is tossed to determine which bin is assigned to which arm. Then, the experiment proceeds as described above. Another coin will be tossed to decide which arm receives the new compound. The current compound is applied to the other arm. Either both arms will be tested at the same time or another coin will be tossed to determine which arm is tested first.
2. In this design, each participant uses one bin twice. One bin is randomly assigned to each of the 100 participants as described above. Each participant will apply one compound to one arm and the other compound to the other arm. A coin can be tossed to decide which arm receives the new compound. The current compound is applied to the other arm. The coin can be tossed a second time to determine which arm is put into the bin first. A potential disadvantage of this experiment is that the mosquitoes that are most aggressive and most resistant to the compounds will be more likely to bite the first arm inserted into a bin and less likely to bite the second arm. Randomizing the order in which the arms are inserted into the bin controls potential bias of this order effect, but the variability of the observed differences may be substantially larger than for the two other matched-pairs designs that were previously described, and this would make the comparison of the effects of the compounds less precise.

Part (c) is essentially correct (E) if the matched-pairs design is chosen over a CRD based on rationale that the blocking factor will reduce person-to-person variability in susceptibility to mosquito bites.

Part (c) is partially correct (P) if the student:

- Chooses the CRD over an incorrect matched-pairs design with appropriate rationale; OR
- Chooses a matched-pairs design over a CRD, with weak rationale.

Part (c) is incorrect (I) if the student:

- Makes a choice with no justification or a severely flawed argument; OR
- Chooses the matched-pairs design because the sample size is larger; OR
- Chooses the CRD with the justification that a CRD is always better than a matched-pairs design; OR
- Chooses the matched-pairs design with the justification that a matched-pairs design is always better than a CRD.

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES (Form B)
 Question 3 (continued)

Each essentially correct (E) response counts as 1 point, each partially correct (P) response counts as $1 / 2$ point.

4 Complete Response

3 Substantial Response
2 Developing Response
1 Minimal Response
Note: If a response is in between two scores (for example, $21 / 2$ points), use a holistic approach to determine whether to score up or down depending on the strength of the response and communication.

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 4

Solution

Part (a):

Step 1: Identify appropriate confidence interval by name or by formula.
One sample confidence interval for a mean (of the differences)

$$
O R \quad \bar{x}_{d} \pm t_{n-1}^{*} \frac{s_{d}}{\sqrt{n}}
$$

Step 2: Check appropriate conditions.
Assume the population of differences in growth is normally distributed. The information provided in the stem of the problem suggests that this condition is met. Because the 24 seeds were randomly chosen and randomly assigned to the containers, the differences are independent.

Step 3: Correct mechanics.
The 95% confidence interval for the mean difference in growth is $-2.015 \pm 2.201 \frac{1.163}{\sqrt{12}}=-2.015 \pm(2.201)(0.336)=-2.015 \pm 0.7389$ or (-2.7539, -1.2761).

Step 4: Interpret the confidence interval in context.
We are 95% confident that the mean difference in the growth of the untreated and treated seeds is between -2.7539 and -1.2761 .

Part (b):

Step 1: Identify a correct pair of hypotheses.
$H_{0}: \mu_{d}=0$ versus $H_{a}: \mu_{d} \neq 0$, where μ_{d} is the mean difference in the untreated and treated seeds.

Step 2: State the correct conclusion in context.
Since the 95% confidence interval does not include zero, the null hypothesis can be rejected at the $\alpha=0.05$ significance level. In other words, we have statistically significant evidence at the $\alpha=0.05$ level that there is a mean difference in the growth of untreated and treated seeds.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)
 Question 4 (continued)

Scoring

Each part is scored as essentially correct (E), partially correct (P), or incorrect (I).
Part (a) is essentially correct (E) if all three of steps 1, 3, and 4 of the confidence interval solution are correct.
Part (a) is partially correct (P) if two of the three steps are correct.
Part (a) is incorrect (I) if only one of the steps is correct.
Notes:

1. Step 2 may be omitted since this information is provided in the stem.
2. In step 3, other confidence levels may be used, e.g.,

- 90% C.I. is $-2.015 \pm 1.796 \frac{1.163}{\sqrt{12}}=-2.015 \pm 0.6030$ or $(-2.618,-1.412)$
- 99% C.I. is $-2.015 \pm 3.106 \frac{1.163}{\sqrt{12}}=-2.015 \pm 1.0428$ or $(-3.0578,-.9722)$

3. In step 4, a correct interpretation of the confidence level cannot substitute for a correct interpretation of the confidence interval in context.
4. If a two-sample procedure is used, the highest possible score is (P). The 95% confidence interval for the difference in the two means is $\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\min \left\{n_{1}-1, n_{2}-1\right\}}^{*} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=$ $(15.989-18.004) \pm 2.201 \sqrt{\frac{(1.098)^{2}}{12}+\frac{(1.175)^{2}}{12}}=-2.015 \pm 1.0218$ or $(-3.037,-0.993)$.
5. The incorrect two-sample confidence intervals from the calculator are:

- 95% C.I. is $(-2.978,-1.052)$
- 99% C.I. is $(-3.324,-0.706)$

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 4 (continued)

Part (b) is essentially correct (E) if the correct conclusion is stated in context and justified using the confidence interval constructed in part (a). Statements of the null and alternative hypotheses are not required.

Part (b) is partially correct (P) if the student:

- Does not provide a conclusion in the context of the problem; OR
- Provides a conclusion in the context of the problem but the justification is weak; OR
- Uses a completely correct application of an appropriate hypothesis test to justify a correct conclusion but does not refer to the confidence interval in part (a).

Part (c) is incorrect (I) if the student:

- Provides a conclusion that is inconsistent with the interval provided in part (a); OR
- Provides a correct conclusion with no justification; OR
- Ignores the confidence interval in part (a) and fails to correctly conduct an appropriate hypothesis test to justify a conclusion.

Note: If the student uses a two-sample confidence interval or some other incorrect confidence interval in part (a), the solution will be scored relative to the reported interval. The student will not be penalized in part (b) for an incorrect solution to part (a).

4 Complete Response (EE)

Both parts are essentially correct
3 Substantial Response (EP or PE)
One part essentially correct and the other part partially correct
2 Developing Response (EI, IE, or PP)
One part essentially correct and the other part incorrect
OR
Both parts partially correct

1 Minimal Response (PI or IP)

One part is partially correct

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES (Form B)

Question 5

Solution

Part (a):

Predicted Pulse $=63.457+16.2809($ Speed $)$

Part (b):

The intercept (63.457 bpm) provides an estimate for John's mean resting pulse (walking at a speed of zero mph).

The slope ($16.2809 \mathrm{bpm} / \mathrm{mph}$) provides an estimate for the mean increase in John's heart rate as his speed is increased by one mile per hour.

Part (c):

The margin of error for the confidence interval for the slope parameter is $t_{n-2}^{*} \times s_{b}$, where s_{b} is the standard error of the slope parameter. For a 98% confidence interval, the margin of error is $3.365 \times 0.8192=2.7566$ bpm.

Scoring

Part (a) is scored as essentially correct (E) or incorrect (I). Parts (b) and (c) are scored as essentially correct (E), partially correct (P), or incorrect (I).

Note: If the student uses X and Y, then both variables must be identified.
Part (b): There are four steps to constructing correct interpretations:
Step 1: A correct mathematical interpretation of the reported slope (16.2809) as a rate of increase in heart rate as walking speed increases.

Step 2: A correct mathematical interpretation of the reported intercept as a pulse rate when walking speed is zero.

Step 3: Correct use of units of measurement, e.g., John's heart rate increases 16.2809 bpm as his speed is increased by one mile per hour.

Step 4: Interpretation of the reported values as estimates of the corresponding mean quantities.

The Examination

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 5 (continued)

Part (b) is essentially correct (E) if all four steps are correct.
Part (b) is partially correct (P) if two or three steps are correctly addressed. Step 2 is scored as incorrect, for example, if the student suggests that the intercept does not have a meaningful interpretation.

Part (b) is incorrect (I) if at most one step is correct.
Note: The student is only penalized once for switching the variables.
Part (c) is essentially correct (E) if the standard error of the slope is identified and the correct critical value is used to calculate the margin of error.

Part (c) is partially correct (P) if the student:

- Computes the 98% confidence interval but does not identify the margin of error; OR
- Recognizes that the margin of error consists of the standard error of the coefficient and the critical value but uses an incorrect value for one of the two components or uses a t-value with 6 degrees of freedom and an incorrect standard error.

Part (c) is incorrect (I) if the student uses:

- The standard error of the coefficient as the margin of error; OR
- A critical value as the margin of error.

4 Complete Response (3E)

All three parts essentially correct
3 Substantial Response (2E 1P)
Two parts essentially correct and one part partially correct
2 Developing Response (2E OP or 1E 2P)
Two parts essentially correct and zero parts partially correct
OR
One part essentially correct and two parts partially correct
1 Minimal Response (1E 1P or 1E 0P or 0E 2P)
One part essentially correct and either zero parts or one part partially correct
OR
Zero parts essentially correct and two parts partially correct

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES (Form B)

Question 6

Solution

Part (a):

Step 1: State a correct pair of hypotheses.
$H_{0}: \mu=128$ fluid ounces versus $H_{a}: \mu<128$ fluid ounces

Step 2: Identify a correct test (by name or by formula) and checks appropriate conditions.
One sample t-test for a mean
OR $\quad t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$

Condition: The random sample is taken from a normal population. (This information is stated in the stem so it does not need to be repeated here.)

Step 3: Use correct mechanics, including the value of the test statistic, degrees of freedom, and p-value (or rejection region)
Test Statistic: $t=\frac{127.2-128}{2.1 / \sqrt{12}}=\frac{-0.8}{0.6062}=-1.3192$
p-value: $P\left(T_{11 d . f .}<-1.3192\right)=0.1070$

Step 4: Using the result of the statistical test, state a correct conclusion in the context of the problem.
Since the p-value $=0.1070$ is greater than any reasonable significance level, say $\alpha=.05$, we do not have statistically significant evidence to refute the claim that the company is in compliance with the regulations. That is, we cannot reject the null hypothesis that the mean quantity of milk in 12 containers is at least 128 fluid ounces.

If both an α and a p-value are given, the linkage is implied. If no α is given, the solution must be explicit about the linkage by giving a correct interpretation of the p-value or explaining how the conclusion follows from the p-value.

If the p-value in step 3 is incorrect but the conclusion is consistent with the computed p-value, step 4 can be considered as correct.

AP ${ }^{\circledR}$ STATISTICS 2005 SCORING GUIDELINES (Form B)

Question 6 (continued)

Part (b)

Let X denote the amount of fluid in a randomly selected container from this group. The probability that a randomly selected container from this group contains at least 125 fluid ounces is:

$$
P(X \geq 125)=P\left(Z \geq \frac{125-128}{2}\right)=P(Z \geq-1.5)=1-0.0668=0.9332
$$

Part (c):

Let $X_{(1)}=\min \left\{X_{1}, X_{2}, \ldots, X_{12}\right\}$. The probability that the smallest amount of milk recorded in the 12 randomly selected containers will be at least 125 fluid ounces is:

$$
\begin{aligned}
P\left(X_{(1)} \geq 125\right) & =P\left(X_{1} \geq 125, X_{2} \geq 125, \ldots, X_{12} \geq 125\right) \\
& =\left[P\left(X_{1} \geq 125\right)\right]^{12} \\
& =(0.9332)^{12} \\
& =0.4362
\end{aligned}
$$

Part (d):

Looking at the sorted list of 150 minimums, we notice that 66 of the minimums are at least 125 and 84 of the minimums are less than 125. Thus, the probability in part (c) is approximated by
$P\left(X_{(1)} \geq 125\right) \approx \frac{66}{150}=0.44$ or $P\left(X_{(1)} \geq 125\right) \approx 1-\frac{84}{150}=0.44$. The difference between the simulated value and the theoretical value, $0.44-0.4362=0.0038$, is very small. In other words, the simulation provides a very good approximation to the theoretical value.

Scoring

Each part is scored as essentially correct (E), partially correct (P), or incorrect (I).
Part (a) is essentially correct (E) if all four of the steps are correct. Each step is scored as correct or incorrect, no partial credit is given for the steps.

Part (a) is partially correct (P) if two or three steps are correct.
Part (a) is incorrect (I) if at most one step is correct.

The Examination

AP ${ }^{\circledR}$ STATISTICS
 2005 SCORING GUIDELINES (Form B)

Question 6 (continued)

Part (b) is essentially correct (E) if the student provides:

- The correct probability; AND
- An algebraic or graphical justification, with the exception of minor arithmetic or transcription errors.

Part (b) is partially correct (P) if the student only provides one of the two items above.
Part (b) is incorrect (I) if the student provides a probability other than 0.9332 with no justification.
Part (c) is essentially correct (E) if the student provides:

- The correct probability; AND
- An algebraic justification, with the exception of minor arithmetic or transcription errors.

Part (c) is partially correct (P) if the student only provides one of the two items above.
Part (c) is incorrect (I) if the student provides a probability other than 0.4632 with no justification.
Note: The student will only be penalized once if they correctly use an incorrect probability from part (b) in the calculations for part (c).

Part (d) is essentially correct (E) if the student provides a:

- Correct estimate based on the simulation results; AND
- Valid comparison of the theoretical and simulated values.

Part (d) is partially correct (P) if the student provides:

- Only one of the two items above; OR
- An estimate of $\frac{65}{150}=0.4333$; OR
- An estimate of $\frac{85}{150}=0.5667$; OR
- An estimate of $\frac{84}{150}=0.56$.

Notes:

1. If a student is unable to solve part (c), the student may assume the value is equal to some number and then make a comparison between this number and the estimate from the simulation to earn an essentially correct response. That is, the student will not be penalized twice for not being able to calculate the theoretical value.
2. The remarks in the comparison should be consistent with the two values provided by the student, even if these values are incorrect.

The Examination

AP ${ }^{\circledR}$ STATISTICS

2005 SCORING GUIDELINES (Form B)

Question 6 (continued)

Each essentially correct (E) response counts as 1 point, each partially correct (P) response counts as $1 / 2$ point.

4 Complete Response

3 Substantial Response
2 Developing Response
1 Minimal Response
Note: If a response is in between two scores (for example, $21 / 2$ points), use a holistic approach to determine whether to score up or down depending on the strength of the response and communication.

The Examination

2006 Exam Schedule

Week 1

	Morning Session $8: 00$ a.m.	Afternoon Session $12: 00$ p.m.
May 1	English Language	French Language Human Geography
May 2	${\text { Computer Science } \mathrm{A}^{\star \star}}^{\text {Computer Science } \mathrm{AB}^{\star \star}}$ Spanish Language $^{* \star}$	Statistics
May 3	Calculus AB Calculus $\mathrm{BC}^{\star \star}$ Music Theory	World History
May 4	English Literature	French Literature ${ }^{\star \star}$ German Language
May 5	United States History	European History Studio Art (portfolios due)

Week 2

	Morning Session 8:00 a.m.*	Afternoon Session $\text { 12:00 p.m. }{ }^{*}$
May 1	Biology** Italian Language ${ }^{* *}$	Physics B ${ }^{* *}$ Physics C ${ }^{* *}$
May 2	Government \& Politics: United States	Government \& Politics: Comparative
May 3	Chemistry** Environmental Science**	Psychology** Russian Language**
May 4	Macroeconomics** Art History**	Microeconomics
May 5	Spanish Literature	Latin Literature** Latin: Vergil ${ }^{* *}$

* Schools in Alaska must begin the morning exam administration between 7:00 a.m. and 8:00 a.m. and the afternoon exam administration between 11:00 a.m. and 12:00 p.m.
${ }^{* *}$ Coordinators should contact AP Services if a student would like to take exams that are scheduled for the same slot.

Coordinators are responsible for notifying students when and where to appear for the exams. Early testing is not permitted under any circumstances.

Professional Development

Professional Development

Introduction

AP Professional Development and Support

More than 130,000 AP teachers and administrators serve over one million students worldwide. The College Board, in turn, serves these dedicated AP professionals in a wide variety of ways, focusing on improving student achievement and increasing access to these rigorous college-level courses.

K-12 Professional Development at the College Board provides course-specific content, shares effective classroom strategies, and assists each school's program development, supporting this committed community of practice through face-to-face workshops, online resources and services, print publications, and consultation. Each component links to AP content and objectives, providing a web of support around these student learning goals.

AP Workshops, Conferences, and Summer Institutes

The College Board offers a variety of in-person professional development opportunities year-round, principally through workshops, conferences, and summer institutes. Workshop and institute leaders are recognized and endorsed members of the AP community engaging in intensive collegial exchange. For teachers, these course-specific training opportunities are designed to support the new or experienced teacher in all aspects of AP course development, organization, and methodology. For AP Coordinators and AP administrators, workshops address critical issues faced in introducing, developing, and supporting an AP program. If you want to start an AP program at your school or are looking for ways to enhance your AP courses, register today for a workshop, institute, or course near you. See apcentral.collegeboard.com/events for a listing of professional development opportunities.

AP Central

As part of its mission and focus on professional development for AP teachers, the College Board developed AP Central, the official online destination for AP teachers, Coordinators, administrators, and all those who are involved with or interested in the AP Program and Pre-AP. By the end of the 2004-2005 academic year, AP Central, located at apcentral. collegeboard.com, had over 425,000 registered members, and the number continues to grow weekly. The site offers Course Descriptions, exam questions, sample syllabi, and other resources for each AP course on the Course Home Pages. Other features include a Teachers'

Professional Development

Resources area that contains over 4,400 reviews of resources for most AP courses, an Institutes \& Workshops search engine, and subject-specific electronic discussion groups in which teachers can learn from each other by sharing their experiences. Over 30,000 AP teachers, Coordinators, and administrators participate in the electronic discussion groups. AP Central continues to expand its scope by offering online events and presentations by experts in the AP content areas and has begun to offer online workshops to the middle and high school professional community.

AP Publications and Other Resources

The College Board provides additional support to members of the AP community in the form of publications and other resources in each AP subject area. These include Released Exams, Teacher's Guides, videos, and CD-ROMs. There are nearly 200 resources currently available through the College Board Store at store.collegeboard.com and the AP Document Library on AP Central.

Working With Partners

Providing the depth and breadth of professional support that the AP community merits is a daunting challenge and demands close collaboration with schools, universities, professional associations, and other organizations. AP is building capacity through varied types of collaborations and partnerships, especially to target high program priorities, such as increasing the numbers of minority AP students served and increasing the range of professional development offered.

Some of our partners are:

- Alliance Associations of Teachers of Japanese (AATJ)
- American Association of Teachers of German (AATG)
- American Association of Teachers of Spanish and Portuguese (AATSP)
- American Council of Teachers of Russian (ACTR)
- American Council on the Teaching of Foreign Languages (ACTFL)
- American Historical Association (AHA)
- American Psychological Association (APA)
- The Asia Society
- Association of Teachers of Japanese (ATJ)
- Bowdoin College
- Center for Advanced Study of Education
- Chinese Language Association of Secondary-Elementary Schools (CLASS)
- Chinese Language Teachers Association (CLTA)
- City University of New York (CUNY)

Professional Development

- Computer Science Teachers Association
- The Embassy of Italy
- Environmental Literacy Council
- The Freeman Foundation
- Hanban
- History Teaching Institute at Ohio State University
- The Japan Foundation
- Mathematical Association of America (MAA)
- The Math Gateway (National Science Digital Library (NSDL) portal)
- Ministry of Education, Taiwan
- National Association of Direct Supervisors of Foreign Languages (NADSFL)
- National Council of Japanese Language Teachers (NCJLT)
- National Council of State Supervisors for Languages (NCSSFL)
- National Council on Economic Education (NCEE)
- National Italian American Foundation (NIAF)
- National Teacher Training Institute (NTTI)/Channel 13
- National Writing Project
- New York State United Teachers (NYSUT)
- The Northeast Conference on the Teaching of Foreign Languages (NECTFL)
- Order Sons of Italy in America (OSIA)
- Organization of American Historians (OAH)
- Rice University
- The Smithsonian Institution and the National Museum of American History
- Southern Conference on Language Teaching (SCOLT)
- The Starr Foundation
- SUNYSAT/New York Network
- UNICO National
- University of California: Riverside
- University of Virginia's Center for the Liberal Arts (UVA-CLA)
- World History Association

Expanding the Reach of AP Worldwide

Initiatives are also being developed worldwide to expand the reach of AP. Workshops and institutes have recently been or will soon be conducted in Bangkok, Beijing, Buenos Aires, Guatemala City, Heidelberg, Ho Chi Minh City, Honolulu, Jakarta, Johannesburg, London, Manila, Paris, Puerto Vallarta, Quito, Rome, San Jose, Seoul, and Shanghai. We hope to continue building support for our international colleagues.

Professional Development

Research and Evaluation

The AP Program must support a wide range of professionals across different subject areas, different school communities, and different stages of professional careers. We must continually learn how to improve our efforts. Two key elements are now under way: an evaluation system extending to all workshops and institutes, including a corresponding program-wide database and reporting system; and a research agenda now extended to targeted areas of professional development. We seek strong partners interested in pursuing research and analysis related to key professional development goals of the program.

Joining and Building the AP Community

The College Board believes that "professional development" goes far beyond attending workshops; it involves becoming an active participant in a teaching community beyond one's own institution. The College Board encourages teachers to become part of the growing collaborative community that is AP. Professional opportunities include serving as an AP Reader and as an endorsed workshop consultant. Each June, thousands of college faculty and high school teachers from all over the world gather at sites around the United States for the annual AP Reading, where they evaluate and score millions of AP students' answers to free-response sections of the AP Exams. Endorsed workshop consultants are innovative, dedicated, and successful AP teachers, teachers trained in Pre-AP, and college faculty members who work with their peers on teaching methods in their particular disciplines. Other opportunities include service on AP Exam Development Committees and special working groups, as well as developing content and materials for AP Central.

The College Board invites you to join this dynamic worldwide group of colleagues!

Professional Development

AP Central
 apcentral.collegeboard.com

AP Central was developed to inform, support, and connect members of the AP community. AP teachers face two significant challenges: staying current in their discipline and with the AP Program, and finding appropriate and sufficient resources to enhance and support their teaching.

AP Central provides the most up-to-date information on the AP Program and offers a unique and growing set of resources, including contributions by over 250 members of the AP community.

The AP Statistics Course Home Page apcentral.collegeboard.com/stats

The Course Home Page provides quick access to the valuable resources at AP Central for the course, including:

- The Course Description (available as a PDF)
- Detailed information about the exam, including sample questions, scoring guidelines, scoring statistics, grade distributions, and more
- Sample syllabi
- Helpful articles, classroom-ready worksheets, lesson plans, and information written for and by AP teachers and college professors
- Teachers' Resources (a searchable inventory of annotated references to teaching resources)
- Institutes \& Workshops catalog (search for workshops, summer institutes, and other professional development opportunities)
- The electronic discussion group for the course, to exchange ideas and information with other teachers
- The College Board Store (to purchase products for the course, including Released Exams)

Professional Development

AP Central provides many ways for AP Statistics teachers and other AP professionals to become involved in the AP Program and support other members of the AP community. The Contact AP tab at the top of every page and other email links on the site offer an easy way to submit contributions or contact others who can help answer your questions.

Presented on the next two pages is the AP Central Quickstart Guide, which provides a brief overview of AP Central's key features.

AP Central ${ }^{\circledR}$
 apcentral.collegeboard.com

The Official Online Home for the AP® Program and Pre-AP®

The College Board created AP Central to provide the most current information about the $A P ®$ Program and Pre-AP®, as well as a wide variety of teaching resources and tools. Our goal is to support and connect AP teachers and other professionals involved with or interested in AP or Pre-AP.

Registration and Login

To access all the resources, content, and tools available on AP Central, complete the free registration. Choose "Save Login Information as a Cookie" to avoid logging in each time you visit.

Members Home Page

The Members Home Page is a showcase for our feature stories and discipline-related articles. Here we also offer the latest AP Program updates, news stories, and convenient links.

In the "Also" section of the Members Home Page you will find short cuts to useful content areas such as "Using This Site" for details about content and tools and the "AP Document Library" for important AP Program information.

Program Content: AP Courses \& Exams, Pre-AP, and Professional Development

Program content is organized into sections in the navigation bar on the left side of the page. When you pass your cursor over the content buttons on the left navigation bar, a window will appear with a listing of the topics available in that section. To access a topic of your choice, simply click its name.

THE PROGRAM	- Overview of the AP Program - Mission, history of the Program, and initiatives (Access \& Equity, AP International, and AP Scholars) - AP Toolkit: Starting an AP Program - Information for teachers and Coordinators - AP Research \& Data - Participation statistics, performance data, comparability studies, summary reports
THE COURSES	- Course Home Pages - Links to official information and teaching resources for every AP course - Course Descriptions - The official AP Course Descriptions - Sample Syllabi - Examples of syllabi to help plan your course
THE EXAMS	- Exam Questions - Multiple-choice and free-response questions, scoring guidelines, student samples, scoring commentary, and the Chief Reader's Student Performance Q\&A - Exam Tips - Teaching suggestions for preparing students for the AP Exams - For Coordinators - Everything Coordinators need to know about exam administration
PROFESSIONAL DEVELOPMENT	- Institutes \& Workshops - Overview of the College Board's workshops and summer institutes - Online Events - Live professional development events you can participate in via the Internet - Professional Opportunities - Applications to be a consultant and/or an AP Exam Reader
PRE-AP ©	- Workshops - Detailed descriptions of all Pre-AP workshops - Teachers' Corner - Articles and teaching tips for middle and high school teachers
HIGHER EDUCATION	- Setting Credit and Placement Policies - Information on setting AP policies for your college or university - Course and Exam Development - How AP courses and exams are developed

Interactive tools are located on the horizontal bar at the top of every page. To use one of the tools, simply click one of the tabs described below.

AP community	Electronic Discussion Groups - Moderated discipline-specific online forums for the exchange of ideas, insights, and practices. Community Contacts - Contact AP community members directly via email. Search for members by state, professional role, experience level, and course. Member email addresses will not be shared, until and unless the member chooses to respond.
TEACHERS RESOURCES	Teachers' Resources - Evaluations of reference books, textbooks, documents, Web sites, videos, software, and more. Reviews are currently available for the following AP course areas: Biology, Calculus, Chemistry, Computer Science, Economics, English, Environmental Science, European History, French, German, Government \& Politics, Human Geography, Latin, Music Theory, Physics, Psychology, Spanish, Statistics, Studio Art, U.S. History, and World History.
INSTiTUTES \& workshops	Professional Development Events - Search for workshops, meetings, and other professional development opportunities by discipline, date, and location.
FAQs	Frequently Asked Questions and Answers about the AP Program or a specific course.
CONTACT AP	Ouestions, Comments, and Submissions - If you would like to ask a question or submit an article or teaching idea, please use the "Contact AP" button.

Personalization: My AP Central and Email Newsletters

During registration you can select up to five courses or subject areas that are most important to you. To set or change your personalization selections after registration, choose Personal Profile on the AP Central home page. Choose "My AP Central" to go directly to the Course Home Page, Course Description, Exam Questions, Exam Tips, and Sample Syllabi sections for your courses.
The AP Central staff compiles and sends email bulletins for each AP course on a regular basis. When you personalize for a course in your profile you are automatically subscribed to the email newsletter for that course. To unsubscribe, select the "Do not send" option on the Personal Profile page.

Printing

Many pages on AP Central are available in a printer-friendly version. To print, choose PAINT CPI on the top right of the page, then choose the "Click to Print Page" button.

Using PDF and Audio Files

Many College Board documents are available in Adobe® PDF format. Sound files are offered in two formats: RealAudio and MP3. Information about using and troubleshooting PDF and audio files can be found on the pages where these types of files appear.

Comments About AP Central

To submit comments and suggestions to AP Central, use the "Contact AP" button located at the top of every page, or fill out our online user survey at apcentral.collegeboard.com/feedback/survey.

Professional Development

Pre-AP ${ }^{\oplus}$ Professional Development

Pre- AP^{\ominus} is a suite of $\mathrm{K}-12$ professional development resources and services. These initiatives are designed to equip all middle and high school teachers with the strategies and tools they need to engage students in active, high-level learning and ensure that every middle and high school student develops the skills, habits of mind, and concepts required to succeed in college.

Pre-AP is ...

- An inclusive program for encouraging more students to access higher learning
- A new way of thinking about and approaching the classroom
- A tool for working together with other teachers, focused on the same goals
- A system for strengthening the skills every student needs to succeed-in AP^{\oplus}, on the SAT^{\circledR}, in college, and in a career

Only the College Board's Pre-AP professional development suite reflects the topics, concepts, and skills found in AP courses and enables you to:

- Establish a scaffold within your district to support teachers as they create a continuum of progressive skills for students
- Help teachers develop vertical teams to guarantee that students systematically build upon their skills-rather than repeat or skip skills from grade to grade
- Improve access to college-level courses for all students

Pre-AP Professional Development Workshop Categories

Vertical Teaming. These workshops are designed for both new and experienced AP Vertical Teams - groups of teachers who work together to develop and implement a vertically aligned program. They are also suitable for individual teachers. Participants will engage in activities that use content to introduce and illustrate the vertical teams concept and some of its key attributes. Each activity provides time for discussion and reflection focused on the group dynamics created by the activity and the implications for vertical teams as they implement the goals of the workshop.

Classroom Strategies. The classroom strategies workshop provides in-depth discussions and activities for middle and high school educators. Participants will improve their understanding of content, instructional strategies, and pedagogical methods that will help their students succeed in college and rigorous high school courses such as those offered by the AP Program.

Professional Development

Instructional Leadership. Administrators will examine how to use Pre-AP professional development-especially AP Vertical Teams-to create a system that challenges all students to perform at rigorous academic levels.

Pre-AP Resources

AP Central

The Pre-AP area on AP Central has a Teachers' Corner section filled with articles and sample workshop materials for those interested in Pre-AP initiatives. Visit apcentral.collegeboard.com/pre-ap/teachers.

Pre-AP ${ }^{\ominus}$ Workshops

To schedule a Pre-AP workshop in your district:

1. Call your Solutions Manager for a consultation at 800 999-9149.
2. Go to apcentral.collegeboard.com for a complete, searchable list of already scheduled Pre-AP professional development workshops near you.

Vertical Teaming Workshops

Audience: Teams of middle and high school teachers and administrators
Learn how your AP Vertical Team can use content to introduce and illustrate the vertical teams concept and some of its key attributes.

- Pre-AP: Topics for AP Vertical Teams in English
- Pre-AP: Topics for AP Vertical Teams in Mathematics
- Pre-AP: Topics for AP Vertical Teams in Music Theory
- Pre-AP: Topics for AP Vertical Teams in Science
- Pre-AP: Topics for AP Vertical Teams in Social Studies
- Pre-AP: Topics for AP Vertical Teams in Studio Art
- Pre-AP: Advanced Topics for AP Vertical Teams in English—Grammar
- Pre-AP: Advanced Topics for AP Vertical Teams in Mathematics-Assessment
- Pre-AP: Advanced Topics for AP Vertical Teams in Social Studies—Developing Reading Habits
- Pre-AP: Advanced Topics for AP Vertical Teams in World Languages and Cultures
- Pre-AP: Coaching and Sustaining Successful AP Vertical Teams (Spring '06)
- Pre-AP: Setting the Cornerstones for the AP Vertical Team

Professional Development

Classroom Strategies Workshops

Audience: Individual classroom teachers in middle school and high school
Participants will improve their understanding of content, instructional strategies, and pedagogical methods that will help their students succeed in college and rigorous high school courses such as AP.

Math:

- Pre-AP: Strategies in Mathematics—Helping Students Learn Mathematics Through Problem Solving (formerly Building Success for Mathematics)
- Pre-AP: Strategies in Mathematics-Rate
- Pre-AP: Strategies in Mathematics-Accumulation
- Pre-AP: Strategies in Mathematics-Functions
- Pre-AP: Strategies in Mathematics and Science-Analyzing and Describing Data
- Pre-AP: Strategies in Mathematics-Chance, Variation, and Probability
- Pre-AP: Strategies in Mathematics—Developing Algebraic Thinking

English:

- Pre-AP: Strategies in English—Comedy and Tragedy: Balancing the Curriculum
- Pre-AP: Strategies in English—Writing Tactics Using SOAPSTone
- Pre-AP: Strategies in English—The Five-S Strategy for Passage Analysis
- Pre-AP: Strategies in English-Beyond Acronyms: Inquiry-Based Close Reading
- Pre-AP: Strategies in English—Rhetoric
- Pre-AP: Strategies in English—Reading to Write
- Pre-AP: Strategies in English—Differentiated Instruction in Middle School Language Arts (Spring '06)

Social Studies:

- Pre-AP: Strategies in Social Studies-Writing Tactics Using SOAPSTone
- Pre-AP: Strategies in Social Studies-Using Visual and Graphic Materials in Middle Grade Classrooms to Promote Thinking and Writing Skills (Spring '06)

Science:

- Pre-AP: Strategies in Science-Creating a Learner-Centered Classroom
- Pre-AP: Strategies in Science—Energy Systems
- Pre-AP: Strategies in Science-Inquiry-Based Laboratories for Middle Schools
- Pre-AP: Strategies in Mathematics and Science-Analyzing and Describing Data

Professional Development

Spanish:

- Pre-AP: Strategies in Spanish—Developing Language Skills
- Pre-AP: Strategies in Spanish—Literary Analysis
- Pre-AP: Strategies in Spanish—Writing Skills

Interdisciplinary:

- Pre-AP: Interdisciplinary Strategies for English and Social Studies (formerly Building Success for English and Social Studies)
- Pre-AP: Interdisciplinary Strategies-Argumentation and the Writing Process

Instructional Leadership Workshops

Audience: Secondary instructional leaders including board members, superintendents, principals, central office staff, and counselors
Learn how to include Pre-AP professional development in school development plans, organize and develop a support system for AP Vertical Teams, evaluate the impact of AP Vertical Teams on school improvement, and more.

- Pre-AP: Instructional Leadership Through AP Vertical Teams
- Pre-AP: Instructional Leadership Strategies-Promoting Excellence and Equity in Advanced Placement Program Courses
- Pre-AP: Instructional Leadership Strategies-Using Data to Improve Student Preparation in Advanced Placement Program Courses
- Pre-AP: Instructional Leadership Strategies-Inclusion of Special Needs Students in a Curriculum That Leads to College (Spring '06)

Pre-AP Publications

You may order any of the publications below from the College Board store at store.collegeboard.com.

- The AP Vertical Teams Guide for English
- The AP Vertical Teams Guide for Social Studies
- The AP Vertical Teams Guide for Studio Art
- The AP Vertical Teams Guide for Music Theory
- The AP Vertical Teams Guide for Science
- Advanced Placement Program Mathematics Vertical Teams Toolkit

Professional Development

AP Publications and Other Resources

The following College Board publications and other resources are available for AP Statistics:

Item No. Item Cost
999387 2005, 2006 AP Statistics Course Description \$15.00
9956642002 AP ${ }^{\text {® }}$ Statistics Released Exam \$25.00
9971202002 AP ${ }^{\ominus}$ Statistics Exam, Packet of 10 \$35.00
2551231997 AP ${ }^{\ominus}$ Statistics Released Exam \$25.00
254366 1997 AP ${ }^{\oplus}$ Statistics Exam, Packet of 10 \$35.00
994584 AP Statistics Teacher's Guide (2001) \$25.00
040781231 AP Statistics Teacher's Guide (electronic format) \$12.00
Coming Soon
AP Vertical Teams ${ }^{\bullet}$ Guide for Mathematics

Professional Development

[CollegeBoard AP) ${ }^{2}$

AP ${ }^{\circledR}$ Order Form
 Fall 2005

Below is a brief description of the types of $A P^{\circledR}$ resources that are available. Please see page 11 for ordering instructions.

General Interest Publications and Resources

These materials highlight important features of the AP Program, including how to build strong AP courses, the benefits of the Program for schools and students, and general information about preparing for and administering the exams. For additional resources go to apcentral.collegeboard.com/freepubs.

Course Descriptions

These books outline the AP course content, explain the kinds of skills students are expected to demonstrate in the corresponding introductory college-level course, and describe the AP Exam. They are sold separately or as a set. Course Descriptions are available for downloading free of charge from AP Central ${ }^{\circledR}$.

Teacher's Guides*

Written primarily for new AP teachers, these guides contain syllabi developed by high school teachers currently teaching the AP course and by college faculty who teach the equivalent course at their institution. Along with detailed course outlines and innovative teaching tips, you will find helpful lists of recommended teaching resources.

Released Exams*

Released AP Exam books, which include a complete copy of the exam, are published periodically. In addition to providing the multiple-choice questions and answers, a Released Exam describes the process of scoring the free-response questions and includes examples of students' actual responses, the scoring guidelines, and scoring commentary that explains why the responses received the scores they did. A cassette or compact disc is included with exams that have an audio component. Anyone, including students, can order a Released Exam (with an answer key).
You can also purchase a packet of 10 copies of the exam (questions and blank answer sheet only; no answer key) to simulate an AP Exam administration in your classroom.

Multimedia Resources

Five CD-ROMs are available-AP Calculus AB, AP English Language, AP English Literature, AP European History, and AP U.S. History-that contain sample questions, tutorials, and many other features that will help teachers and students prepare for these AP courses and exams. Other items include VHS tapes and slides for AP Art History and AP Studio Art.

AP Central ${ }^{\circledR}$

AP Central is the College Board's official online home for the AP Program and Pre-AP ${ }^{\circledR}$.
AP Central offers the most up-to-date information on AP Exams, courses, and other Program developments. New and experienced AP teachers will find tips, strategies, professional development opportunities, and subject-specific content to support their teaching. Free-response questions, scoring guidelines, sample syllabi, and teaching units are available. AP Central also offers electronic versions of AP publications, including the AP Program Guide, AP Coordinator's Manual, AP Examination Instructions, AP Course Descriptions, and various forms for AP Coordinators. Visit AP Central at apcentral.collegeboard.com.
*Materials included in Teacher's Guides or Released Exams may not reflect the current AP Course Description and exam in each subject, and teachers are advised to take this into account as they use these materials to support their instruction of students. For up-to-date information about AP courses and exams, please download the official AP Course Description from the AP Central Web site at apcentral.collegeboard.com.

Shop online: new AP publications are added regularly to store.collegeboard.com.

Professional Development

Quantity	Item Number	Title	Pric	Subtotal
GENERAL INTEREST				
*Free copies of the titles below are available at AP Central (apcentral.collegeboard.com/freepubs).				
	728402	AP Program Guide 2005-06		Free*
	730455	Bulletin for AP Students and Parents 2005-06.		Free*
	730456	Bulletin for AP Students and Parents 2005-06 (Spanish).		Free*
	040081058	AP Tools for Schools Resource Kit		Free*
	040081227	Get with the Program.		Free*
	050081482	The Value of AP Courses and Exams		Free*
	050081483	The Value of AP Courses and Exams (Spanish)		Free*
	725257	AP and Higher Education.		Free*
	040081389	Complete Set of Course Descriptions.	\$125	
PRE-AP ${ }^{\text {® }}$				
	993502	AP Vertical Teams ${ }^{\circledR}$ Guide for English .	\$30	
	200936	AP Mathematics Vertical Teams Toolkit	\$40	
	991079	AP Vertical Teams Guide for Social Studies	\$30	
	993930	AP Vertical Teams Guide for Studio Art.	\$45	
	995218	AP Vertical Teams Guide for Music Theory.	\$25	
	995323	AP Vertical Teams Guide for Fine Arts (Studio Art and Music Theory set)	\$60	
	997310	AP Vertical Teams Guide for Science	\$40	

ART HISTORY

A Teacher's Guide supplement that discusses the teaching of art beyond the European tradition is available at AP Central (apcentral.collegeboard.com/arthistory).

727260	2006, 2007 AP Art History Course Description	\$15
996946	AP Art History Teacher's Guide.	\$25
040081281	2004 AP Art History Released Exam	\$25
040081282	2004 AP Art History Exam, Packet of 10	\$35
255111	1998 AP Art History Released Exam.	\$25
254367	1998 AP Art History Exam, Packet of 10.	\$35
999388	2004 AP Art History Slides and Questions	\$12
994840K	2003 AP Art History Slides and Questions	\$12
993296	2002 AP Art History Slides and Questions	\$12
989962	2001 AP Art History Slides and Questions	\$12
987665	2000 AP Art History Slides and Questions.	\$12
200999	1999 AP Art History Slides and Questions	\$12
224569	1998 AP Art History Slides and Questions	\$12

Professional Development

Quantity	Item Number	Title	Price	Subtotal
ART (Studio)				
Schools offering AP Studio Art for the first time should call the College Board Call Center at 212 713-8066 to request AP Studio Art posters for their students and faculty.				
	727259	2006 AP Studio Art Course Description	\$15	
	728824	AP Studio Art Poster 2005-2006.	\$3	
	997928	AP Studio Art Teacher's Guide	\$25	
	996112	AP Studio Art Slide Samples, 2-D Design Portfolio.		
	997819	AP Studio Art Slide Samples, Drawing Portfolio	\$51	
	997822	AP Studio Art Slide Samples, 3-D Design Portfolio	$\$ 60$	
BIOLOGY				
	727258	2006, 2007 AP Biology Course Description .	\$15	
	987267	AP Biology Teacher's Guide.	\$25	
	991481	AP Biology Lab Manual for Teachers (Revised 2001).	\$15	
	991461	AP Biology Lab Manual for Students (Revised 2001).	\$18	
	998728	2002 AP Biology Released Exam	\$25	
	998970	2002 AP Biology Exam, Packet of 10	\$35	
	255165	1999 AP Biology Released Exam	\$25	
	254394	1999 AP Biology Exam, Packet of 10	\$35	

CALCULUS (AB, BC)

Collections of AP Calculus free-response questions and solutions from 1969 to 1997 and multiplechoice questions and solutions from all Released Exams from 1969 through 1998 are available for purchase and download at the College Board Store (store.collegeboard.com)

727257	2006, 2007 AP Calculus Course Description \$15
208973	AP Calculus AB and BC Teacher's Guide. \$25
725168	2003 AP Calculus AB and BC Released Exams \$35
725165	2003 AP Calculus AB Exam, Packet of 10 \$35
725164	2003 AP Calculus BC Exam, Packet of 10 \$35
255113	1998 AP Calculus AB and BC Released Exams. \$35
254391	1998 AP Calculus AB Exam, Packet of 10 \$35
254392	1998 AP Calculus BC Exam, Packet of 10 \$35
255285	Calculus in the Year 2000: New Ways of Teaching the Derivative and the Definite Integral, VHS \$59
201907	APCD ${ }^{\text {® }}$ Calculus AB, CD-ROM, single user, home package . . $\$ 49$
201908	APCD Calculus AB, CD-ROM, school package, licensed for 50 student users, may be networked \$450

Professional Development

| Item
 Quantity Number | Title | Price |
| :--- | :--- | :--- | Subtotal

COMPUTER SCIENCE

The AP Computer Science Course Description and the AP Marine Biology Simulation Case Study and Teacher's Manual are available for download at AP Central (apcentral.collegeboard.com/ compscia). A collection of AP Computer Science syllabi is available for purchase and download at the College Board Store (store.collegeboard.com).

Professional Development

Quantity	Item Number	Title	Price	Subtotal
ENGLISH (Language and Composition, Literature and Composition)				
	727255	2006 AP English Course Description	\$15	
	208963	AP English Language Teacher's Guide	\$25	
	992860	2001 AP English Language Released Exam	\$25	
	993282	2001 AP English Language Exam, Packet of 10	\$35	
	255292	1996 AP English Language Free-Response Guide with Multiple-Choice Section (Released Exam)	\$25	
	254910	1996 AP English Language Exam, Packet of 10	\$35	
	201889	APCD English Language, CD-ROM, single user, home package	\$49	
	201892	APCD English Language, CD-ROM, school package, licensed for 50 student users, may be networked	$\$ 450$	
	208991	AP English Literature Teacher's Guide	\$25	
	040081284	2004 AP English Literature Released Exam	\$25	
	040081283	2004 AP English Literature Exam, Packet of 10	\$35	
	255168	1999 AP English Literature Released Exam	\$25	
	254405	1999 AP English Literature Exam, Packet of 10	\$35	
	201864	APCD English Literature, CD-ROM, single user, home package	$\$ 49$	
	201863	APCD English Literature, CD-ROM, school package, licensed for 50 student users, may be networked	\$450	
ENVIRONMENTAL SCIENCE				
	727254	2006, 2007 AP Environmental Science Course Description	\$15	
	997785	AP Environmental Science Teacher's Guide	\$25	
	998729	2003 AP Environmental Science Released Exam.	\$25	
	998972	2003 AP Environmental Science Exam, Packet of 10. .	\$35	
	255164	1998 AP Environmental Science Released Exam.	\$25	
	254393	1998 AP Environmental Science Exam, Packet of 10	\$35	

Professional Development

Item Quantity Number	Title
FRENCH (Language, Literature)	Price

Professional Development

Quantity	Item Number	Title	Price	Subtotal
GOVERNMENT AND POLITICS (Comparative, United States)				
	727250	2006, 2007 AP Government and Politics Course Description	\$15	
	209216	AP Comparative Government and Politics Teacher's Guide.	\$25	
	255170	1999 AP Comparative Government and Politics Released Exam		
	254398	1999 AP Comparative Government and Politics Exam, Packet of 10	\$35	
	255157	1994 AP Comparative Government and Politics Free-Response Guide with Multiple-Choice Section (Released Exam)	\$25	
	254343	1994 AP Comparative Government and Politics Exam, Packet of 10	\$35	
	209215	AP U.S. Government and Politics Teacher's Guide	\$25	
	998869	2002 AP U.S. Government and Politics Released Exam	\$25	
	998973	2002 AP U.S. Government and Politics Exam, Packet of 10	\$35	
	255171	1999 AP U.S. Government and Politics Released Exam	\$25	
	254399	1999 AP U.S. Government and Politics Exam, Packet of 10.	\$35	
HISTORY (European)				
	727253	2006, 2007 AP European History Course Description .	\$15	
	208988	AP European History Teacher's Guide	\$25	
	040081286	2004 AP European History Released Exam	\$25	
	040081285	2004 AP European History Exam, Packet of 10	\$35	
	255169	1999 AP European History Released Exam	\$25	
	254397	1999 AP European History Exam, Packet of 10	\$35	
	201891	APCD European History, CD-ROM, single user, home package	\$49	
	201890	APCD European History, CD-ROM, school package, licensed for 50 student users, may be networked.	\$450	

Professional Development

Quantity	Item Number	Title	Price	Subtotal
HISTORY (United States)				
Fifty Years Later: Five Teaching Units on Brown v. Board of Education is available for purchase and download at the College Board Store (store.collegeboard.com).				
	727244	2006, 2007 AP U.S. History Course Description	\$15	
	209059	AP U.S. History Teacher's Guide .	\$25	
	992861	2001 AP U.S. History Released Exam.	\$25	
	993281	2001 AP U.S. History Exam, Packet of 10	\$35	
	255278	1996 AP U.S. History Free-Response Guide with Multiple-Choice Section (Released Exam)	$\$ 25$	
	254325	1996 AP U.S. History Exam, Packet of 10	\$35	
	200914	Doing the DBQ (22 years of AP U.S. History Document-Based Questions and Scoring Guidelines)	$\$ 15$	
	2018651	APCD U.S. History, CD-ROM, single user, home package	\$49	
	2018621	APCD U.S. History, CD-ROM, school package, licensed fo 50 student users, may be networked	$\$ 450$	
	994512	AP Innovations: Using Simulations in the AP U.S. History Classroom (2002) VHS, 86 min. .	$\$ 59$	
HISTORY (World)				
Additional teaching resources for AP World History are available at AP Central, including a collection of Teaching Units available for purchase and download at the College Board Store (store.collegeboard.com).				
	727242	2006, 2007 AP World History Course Description	\$15	
	989372	AP World History Teacher's Guide	\$25	
	993987	AP World History Best Practices.	\$25	
	997784	2002 AP World History Released Exam	\$25	
	997912	2002 AP World History Exam, Packet of 10	\$35	
ITALIAN LANGUAGE AND CULTURE				
	727248	2006, 2007 AP Italian Language and Culture Course Description.	\$15	
LATIN (Literature, Vergil)				
	727247	2006, 2007 AP Latin Course Description	\$15	
	989390	AP Latin Teacher's Guide.	\$25	
	255180	1999 AP Latin Literature and Latin: Vergil Released Exams.	\$35	
	254400	1999 AP Latin Literature Exam, Packet of 10.	\$35	
	237272	1999 AP Latin: Vergil Exam, Packet of 10.	\$35	
	255154	1994 AP Latin Free-Response Guide with Multiple-Choice Section (Released Exam)	\$25	
	254345	1994 AP Latin Exam, Packet of 10	\$35	

Professional Development

Quantity	Item Number	Title	Price	Subtotal
MUSIC THEORY				
	999385	2005, 2006 AP Music Theory Course Description (includes CD)	\$15	
	209010	AP Music Theory Teacher's Guide (includes cassette)	\$25	
	998852	2003 AP Music Theory Released Exam (includes CD).	\$25	
	998974	2003 AP Music Theory Exam, Packet of 10	\$35	
	255115	1998 AP Music Theory Released Exam (includes cassette)	\$25	
	254386	1998 AP Music Theory Exam, Packet of 10	\$35	

PHYSICS (Physics B, Physics C)

The AP Physics Lab Guide is available for purchase and download at the College Board Store (store.collegeboard.com).

Professional Development

Quantity	Item Number	Title	Price	Subtotal
SPANISH (Language, Literature)				
	999386	2005, 2006 AP Spanish Course Description.	\$15	
	209293	AP Spanish Language Teacher's Guide	\$25	
	998870	2003 AP Spanish Language Released Exam (includes CD)	\$25	
	998975	2003 AP Spanish Language Exam, Packet of 10	\$35	
	255121	1998 AP Spanish Language Released Exam (includes cassette)	\$25	
	254388	1998 AP Spanish Language Exam, Packet of 10	\$35	
	991479	AP Spanish Literature Teacher's Guide	\$25	
	725167	2003 AP Spanish Literature Released Exam.	\$25	
	725166	2003 AP Spanish Literature Exam, Packet of 10.	\$35	
	255182	1999 AP Spanish Literature Released Exam (includes cassette)	\$25	
	254396	1999 AP Spanish Literature Exam, Packet of 10	\$35	
STATISTICS				
	999387	2005, 2006 AP Statistics Course Description.	\$15	
	994584	AP Statistics Teacher's Guide	\$25	
	995664	2002 AP Statistics Released Exam	\$25	
	997120	2002 AP Statistics Exam, Packet of 10	\$35	
	255123	1997 AP Statistics Released Exam .	\$25	
	254366	1997 AP Statistics Exam, Packet of 10	\$35	
			TOTAL	

Professional Development

How to Order AP Publications

Please send this entire order form to the address below for processing orders placed by check, money order, purchase order, or credit card. Payment must accompany all orders.

College Board Publications
Dept. APF2005A
P.O. Box 869010

Plano, TX 75074
Credit card orders may be placed by phone by calling operator APF2005A at $\mathbf{8 0 0} \mathbf{3 2 3 - 7 1 5 5}$, Monday through Friday, 8 a.m.-9 p.m. ET.

International customers: call 212 713-8260 or fax 212 713-8265.
Credit card orders and institutional purchase orders above $\$ 25$ may be faxed anytime to 888 321-7183. (You do not need to mail a confirmation copy of your order.)

Checks should be made payable to The College Board. Please do not use a P.O. Box address for shipping. Allow five to ten business days for delivery.

Print your billing and shipping addresses on the opposite side of this form. Add the quantities and subtotals from each page and enter the total below. Orders for five or more copies of a single title receive a 20% discount. College Board members receive a 15% discount on most single titles when ordering one to four copies. Please reflect these discounts in your order total.

For customer service-in English or Spanish—on publications, order status, software licensing agreements, or additional shipping options, call us at $800323-7155$ (M-F, 8 a.m.-9 p.m., ET).

We will issue a refund (or cancellation of invoice) for any product returned, in original condition, within 30 days of the billing date on the invoice. Postage is not refundable. This includes unopened software and videos; for opened software/videos we offer an exchange only. Sorry, but no collect (C.O.D.) shipments can be accepted.

Prices and discounts are subject to change without notice. Please keep a copy of this order form for your records.

Total from page 10
(less discount if applicable) \qquad
Postage and handling
(see chart)
\$ \qquad

Subtotal
Sales tax, if applicable
(CA, DC, FL, GA, IL, MA, PA, TX, VA, Canada)

Grand Total

\$ \qquad
\$ \qquad

- Enclosed is an institutional purchase order (above \$25).

Enclosed is my check or money order made payable to The College Board.

- Please charge my: - American Express Discover MasterCard DVISA

My credit card number is: \qquad
My card expiration date is: \qquad $\overline{\text { Cardholder's signature }}$

Other products and services may be trademarks of their respective owners.

Professional Development

Bill to: Please print your name and address on the lines below.
Institution \qquad
Attention \qquad
Address (Do not use P.O. Box numbers for shipping)
\qquad
\qquad
City \qquad State/Country \qquad ZIP Code \qquad
Phone \qquad Fax \qquad
E-mail \qquad

- Please let me know by e-mail when new AP publications are released.

Mailing Label: College Board Publications
Dept. APF2005A
P.O. Box 869010

Plano, TX 75074
Ship to: (if different from "Bill to" address)
Institution \qquad
Attention \qquad
Address (Do not use P.O. Box numbers for shipping)
\qquad
\qquad
City \qquad State/Country \qquad ZIP Code \qquad
Phone \qquad Fax \qquad
E-mail \qquad
$00003-13426 \cdot$ CB25E. $001 \cdot$ Printed in U.S.A. 730454
|||||||||||||||||||||||||||||||||||||||

Professional Development

Becoming an AP Exam Reader

In June, high school and college faculty members from around the world gather in the United States for the annual AP Reading. There they evaluate and score the free-response sections of the AP Exams. AP Exam Readers are led by a Chief Reader, a college professor who has the responsibility of ensuring that students receive grades that accurately reflect college-level achievement. Readers find the experience an intensive collegial exchange, in which they can receive professional support and training. More than 7,530 teachers and college faculty participated in the 2005 Reading. Readers receive certificates rewarding professional development hours and Continuing Education Units (CEUs) for their participation in the AP Reading.

How to Apply

You may apply to be a Reader by using the application included later in this chapter. Directions for submitting the application are included on the form and at apcentral.collegeboard.com/reader. By providing this application electronically, we hope to make the process faster and more convenient for you and Performance Assessment Scoring Services (PASS), which processes the application materials at ETS. The Chief Reader who reviews the applications also needs your vitae and course syllabus before he or she proceeds (see question 15 on the application). If you have any questions about completing the form or the application process, or about any other aspect of the AP Reading, please contact PASS via email, apreader@ets.org; phone, 609 406-5384, Monday-Friday 9 a.m. to 4 p.m. (ET); or mail:

Educational Testing Service
Attn: Performance Assessment Scoring Services
Mail Stop 09-Z
Princeton, NJ 08541

Requirements for Application

Experience

AP Exam Readers from secondary schools must currently teach the AP course in a face-to-face classroom setting and have at least three years' experience in teaching that course. There are two exceptions to this "rule." First, if the AP course is new, teachers must demonstrate comparable expertise and teaching experience. Second, teachers who are teaching an online AP course to a virtual classroom may apply if they have at least three years' experience in teaching the course in a face-to-face classroom setting.

Professional Development

Openings

For some subjects, there is a waiting list; therefore, submitting this application does not constitute an appointment. Qualified appointed applicants are invited to serve for one Reading and may be reappointed thereafter. Educational Testing Service is an equal opportunity/affirmative action employer, and especially encourages minorities and women to apply. ETS is an authorized provider of Continuing Education Units (CEUs), approved by the International Association of Continuing Education and Training (IACET).

Frequently Asked Questions About Becoming a Reader

When is the latest I can apply for next year's Reading?
While there is no official cut-off for applying to be an Exam Reader in a given year, applications that are received after September are less likely to be considered for the following June's Reading.

When and how will I know whether my application has been approved?
Once your complete application materials have been received, including your syllabus and vitae, they are routed for review and approval. This process, depending on the time of year, can take up to a couple of months. When the process is complete, however, you will be sent a letter indicating that your application has been approved.

If my application is approved, will I automatically be invited to participate in the next Reading?

Being approved to be a Reader does not guarantee you an invitation to the next or any particular Reading. Approval of your application adds your name to the pool of qualified Exam Readers in your subject. The Chief Reader considers many factors before issuing invitations to read, and tries to include a broad geographic, ethnic, and gender representation, a balance of college and high school Readers, and new and experienced AP Exam Readers each year.

Are there specific qualifications that I need to have?

Applicants should be currently teaching in the field for which they are applying. College applicants must be teaching at least one course comparable to the AP course described in the Course Description. Generally, high school applicants must be currently teaching the AP course in a face-to-face classroom setting and have at least three years' experience in teaching that course. There are two exceptions to this rule. First, if the AP course is new, teachers must demonstrate comparable expertise and teaching experience.

Professional Development

Second, teachers who are teaching an online AP course to a virtual classroom may apply if they have had at least three years' experience in teaching the course in a face-to-face classroom setting.

How long is my application kept on file?

Approved applications are kept on file for six years.

How long am I likely to have to wait until I am invited to read?

The number of invitations to read in a given year is determined by multiple factors: the number of Exam Readers already in the Reader pool; the number of invitees that are unable to attend in a given year; projected exam volumes for a given year; and any changes in the exam format that impact the grading process. Given these changing factors, it is difficult to tell how long it might take before you are invited to participate in the Reading.

When are Reading invitations mailed out? If I turn down an invitation this year, will I lose my chance of being selected for next year's Reading?
The first round of invitations usually goes out in December. Follow-up rounds go out periodically from January through May, depending on the need for Exam Readers in that particular year. Not being able to attend a Reading in a given year does not preclude you from-nor is it a guarantee to-being invited in following years.

I was an Exam Reader last year; will I be invited to read again this year?

Invitations to participate in the AP Reading are for a specific year only and do not imply or guarantee an invitation for the following year. The majority of Exam Readers are experienced, so there is a possibility that you will be invited again if your performance during the Reading was acceptable.

Who chooses the Exam Readers each year?

Each subject is headed by a Chief Reader, a college faculty member who has responsibility for making appointment decisions and overseeing the grading process at the Reading.

How many Readings can I potentially attend?

The AP Program's retirement policy is for an Exam Reader to read six years before being retired, unless he or she is appointed to a leadership position, in which case the invitation may be extended for another six years. However, occasionally there are special needs in selected subjects for Readers or specific types of Readers. In those special circumstances, the Program suspends its retirement policy for a year or two in order to recruit additional Readers to replace those who are due to be rotated off.

Professional Development

How do I get to the Reading?

The Program uses the services of a national travel agency each year, and information about contacting that agency to make arrangements for your travel will be included in the appointment materials.

Where do I stay at the Reading? Do I have to share a room? If so, can I choose a roommate?

At most Reading sessions, you will stay in a college dorm and eat in a college cafeteria. Most likely, you will not have a roommate, but you will typically have a suitemate with whom you share a bathroom. At the Daytona Beach facility, Readers are housed in hotels and do share a room; in this case, you will be given the option to identify a roommate. Also, there is an opportunity-on a first-come, first-served basis-for Readers to pay the difference for a single hotel room.

What kinds of activities are scheduled in the evenings?

Typically, the Reading day is from 8:30 a.m. to 4:45 p.m. The evenings usually offer formal or informal voluntary activities, such as a presentation of interest to those in your discipline, receptions where you will meet new Readers and/or College Board staff, trips to local shopping malls, or trips to local minor league baseball games if there is a team in the area. There are also opportunities to socialize with other Readers over a game of cards or watch the basketball playoffs on television, for example.

I'm a vegetarian. Can you accommodate special dietary needs?

All of our Reading sites offer options at every meal that fit into a vegetarian's diet.

Is there a dress code?

No, there isn't a dress code. It's a good idea to bring comfortable shoes, though, because some locations require a lot of walking between buildings. Colorado State University has no air conditioning in the dorms, but all other sites have air conditioning in both the reading and sleeping spaces.

Professional Development

ETS is an authorized provider of Continuing Education Units (DEUs)

Application to Be a Reader at the AP ${ }^{\circledR}$ Reading

$A P^{\circledR}$ Readers from colleges and universities must be active faculty members and must have taught at least one semester of a college course comparable to the AP course as described in its respective AP Course Description within the past three years. AP Readers from secondary schools must currently be teaching the AP course in a face-to-face classroom setting and have at least three years experience in teaching that course - except 1) in the case of new AP courses, where comparable expertise and teaching experience must be demonstrated, or 2) in the case of teachers currently teaching the AP course online, where these teachers must have first had at least three years' experience teaching the AP course face-to-face or the equivalent of the college-level course within the past three years. For some subjects, there is a waiting list; therefore, submitting this application does not constitute an appointment to participate in the AP Reading. Qualified appointed applicants are invited to serve for one Reading and may or may not be reappointed thereafter. Applications may also be obtained and submitted online at www.ets.org/reader/ap.

1. Application to be a Reader to the AP Reading in: CHECK ONE ONLY. You may apply to score only one subject at a time

\square	Art History	\square	Environmental Science	\square	Latin
\square	Art (Studio Art)	\square	European History	\square	Music Theory
\square	Biology	\square	French Language	\square	Physics
\square	Calculus	\square	French Literature	\square	Psychology
\square	\square	German	\square	Spanish Language	
\square	\square	\square	Government \& Politics (Comparative)	\square	Spanish Literature
\square	Economics (Macroeconomics)	\square	Government \& Politics (United States)	\square	Statistics
\square	Economics (Microeconomics)	\square	Human Geography	\square	U.S. History
\square	English Language \& Composition	\square	Italian	\square	World History
\square	English Literature \& Composition				

2. NAME \qquad U.S. Social Security \# \qquad $-$ \qquad
3. Provide all the information below. Check the appropriate boxes to indicate your preferred mail and e-mail addresses and fax and telephone numbers. (Check only ONE box, either home or institution, for each form of communication.)

4. Are you eligible for employment in the United States by virtue of being one of the following?
A. U.S. Citizen \square Yes \square No
B. Permanent Resident \square Yes \square No If Yes, Expiration Date

If your response to $4 A$ and $4 B$ is NO, ETS will attempt to obtain temporary work status on your behalf.
5. If the answer to question 4 A and 4 B is "No", are you currently authorized to work in the United States? \square Yes \square No If your answer is "yes", please explain the basis of your employment authorization. \qquad
6. Have you scored exams for any other AP subject or other programs at ETS? \square Yes \square No If yes, give program name and years of service: \qquad o
. Our goal is to select a diverse group of Readers which is representative of AP students. To help us reach that goal, please describe yourself (optional). Please check one box in each category.

GENDER: \square Female \square Male
ETHNIC GROUP: \square 1. American Indian or Alaskan Native
\square 2. African American or Black
\square 3. Asian, Asian American, or Pacific Islander
\square 6. Latin American, South American, Central American, Hispanic American, or Latino
\square 4. Mexican or Mexican American
\square 7. White
\square 8. Other/Interracial
\square 9. No response

Professional Development

8. ACADEMIC DEGREES/CERTIFICATIONS:

Degree	Year	Institution	Major	Minor

9. TEACHING EXPERIENCE at all levels:

From	To	Institution	Courses

10. Areas of specialization:
11. Provide any other relevant information concerning your qualifications, especially as it relates to the knowledge, experience, and/or expertise required to teach the AP course or its college equivalent.
12. Describe your experience, interest, or involvement in the Advanced Placement Program ${ }^{\oplus}$ or other relevant competency, assessment, placement, or evaluation programs. If you are a secondary school teacher, please specify how long you have taught the AP course.
13. OTHER REQUIRED INFORMATION (Your application is not complete without the following materials):
A. Attach your syllabus for the AP course or the comparable college course you teach.
B. Attach a copy of your vitae.
C. If you are a potential Studio Art reader, include 4 slides of your artwork (slides cannot be returned to applicants).
D. If you responded NO to questions 4 A and 4B, attach two copies of your relevant degree(s) or college transcripts.

If you are not submitting an online application, please sign and return this completed form and required documentation in one of these two ways:

Fax:	(609) 406-5260
Mail:	ETS
	Performance Assessment Scoring Services, Room Z-285
	225 Phillips Blvd.
	Ewing, New Jersey 08628

You may contact Performance Assessment Scoring Services at apreader@ets.org.
Signature \qquad Date \qquad
How did you learn about becoming an AP Reader? (Check all that apply.)

ㅁ AP Central
\square AP National Conference
\square Chief Reader and/or Development Committee Member
\square Colleague who is a Reader
\square College Board publication
\square College Board Staff
\square Letter/e-mail from College Board or ETS
\square Online discussion group for AP Teachers
\square Professional Conference
\square Professional journal, newsletter, or magazine advertisement
\square Other \qquad

By submitting this application, you agree to the following Reader Applicant Agreement:

I authorize investigation of all statements contained in this application. I hereby authorize and request any present or former employer, or other professional references listed having knowledge about me to furnish bearer with any and all information in their possession regarding me in order that my employment qualifications may be evaluated. I hold said persons and/or organizations blameless and without liability for statements or opinions made regarding my character, experience or qualifications. I am willing that a photocopy of this authorization be accepted with same authority as original. I authorize ETS to contact any references for full information and release the Company from any liability or action based upon such request.
I understand that by submitting this application I am not guaranteed an appointment to participate in the AP Reading. Appointments are made on an annual basis based on the diverse needs of the Advanced Placement Program. An appointment to an AP Reading does not ensure appointment in consecutive years. If hired, I agree to abide by the ETS employment policies.

ETS is an Equal Opportunity/Affirmative Action Employer and especially encourages minorities and women to apply.

Professional Development

Becoming an AP and Pre-AP Workshop Consultant

Wanted!

Innovative, dedicated, and successful teachers, college faculty, counselors, and administrators who are eager to share their passion and expertise to help lead the educational community.

Why do it?

- To exchange ideas with colleagues.
- To join a talented cadre of lead teachers, counselors, and administrators in your region and across the nation.
- To support your colleagues in the teaching community, and thereby help students beyond your classroom and school.
- To share best practices and promote innovation and excellence in your field.
- To spread enthusiasm, light a few fires, and have your own thinking renewed.
(Consultants receive an honorarium and are reimbursed for expenses.)

What's required?

- At least three years' experience successfully teaching an AP course, a middle or high school course leading to AP courses, or a comparable college course. For counselors and administrators, at least three years of successful counseling or administration experience.
- The ability to convey ideas and strategies to one's peers.
- Enthusiasm and creativity.
- Additional requirements depending on type of consultant are outlined in the Guidelines for Endorsement.
- Formal application.
(If selected, applicants will be required to participate in consultant training and preparation activities.)

How do I apply?

After reading the Workshop Consultant Endorsement Policy, complete the application. Both items may be found on AP Central: apcentral.collegeboard.com/consultant/info.

Note: Your application does not guarantee selection. Applicants selected to attend consultant training will be notified by a College Board staff member from your regional office.

Chapter VI

Program Information

Purpose and History

Purpose

The Advanced Placement Program provides an opportunity for high school students to pursue and receive credit for college-level course work completed at the secondary school level. The AP Program, sponsored by the College Board, is based on the premise that college-level material can be taught successfully to able and well-prepared high school students. Like other College Board programs, the AP Program is worldwide in scope; its policies are determined by representatives of College Board member institutions and agencies throughout the country (public and independent secondary schools, colleges, and universities) and are implemented by the College Board. The AP Program is open to any secondary school that elects to participate. Similarly, the examinations are open to any candidate who wishes to participate. Operational services and the development, scoring, and grading of the examinations are provided by ETS.

The AP Program serves three groups: students who have the ability and desire to pursue college-level study while still in secondary school, secondary schools that are interested in offering such opportunities, and colleges that wish to encourage and recognize such achievement. The AP Program serves these constituencies by:

- Providing conferences, consultants, and Course Descriptions;
- Supplying, scoring, and grading examinations that are based on learning goals set forth in Course Descriptions;
- Sending examination grades to AP students, their schools, and the colleges they designate;
- Preparing a series of related publications and online materials;
- Supporting related research; and
- Offering consultative services to colleges that wish to recognize and foster AP achievement in secondary schools.

In essence, the AP Program is a cooperative endeavor that helps high school students complete college-level courses and permits colleges to evaluate, acknowledge, and encourage that accomplishment through the granting of appropriate credit and placement. Many colleges award sophomore standing to an incoming first-year student who has successfully completed three or more AP courses.

Program Information

History

The AP Program was born in the early 1950s out of a general concern within the academic community for the educational progress of able students. At that time, a number of colleges and universities already had programs of early admission and/or advanced standing for talented students. In the fall of 1954, the College Entrance Examination Board voted to accept the AP Program and to administer AP Examinations in the spring of 1956. They also requested that Educational Testing Service be responsible for developing the examinations. Charles R. Keller, head of the History Department at Williams College, was appointed the first College Board Director of the AP Program. Under his leadership and that of his successors, the AP Program has grown steadily. AP Examinations are now offered in 35 subject areas across 20 disciplines. In 2005, more than 1.2 million students representing more than 25,000 secondary schools took more than 2.1 million examinations. They had their results sent to approximately 3,500 colleges. By challenging and stimulating students, the AP Program provides access to high quality education, accelerates learning, rewards achievement, and enhances both high school and college programs.

Why Take the AP Exam?

Many schools offer AP courses in several subject areas. Some make them an integral part of their curriculum and may give an honors weight for those taking the AP Exam. Some offer AP classes as an alternative and leave the final decision regarding the AP Exam to the students. Many students wonder whether the college of their choice will give them credit for their AP course. It is important to remember that, first of all, more and more colleges and universities are now giving credit to students who score high enough on the AP Exam to meet their criteria. For more information, contact the Advanced Placement Program, The College Board, 45 Columbus Avenue, New York, NY 10023-6992; 212 713-8066. Some colleges do not give credit for AP and require incoming students to take their "in-house" test. It is obvious that, if the student has taken the AP course and the examination, he/she is very well prepared for the entrance test and should score much higher than if he/she had not reached that level of instruction.

The benefits of AP are not only academic; they are also financial. Students can enter a more advanced course in their field, replace the exempt course with a different one, or choose to graduate earlier. Because today's college degree requirements are more demanding, some students have to take another semester or two to satisfy them. In such cases, the value of AP is indisputable. Because of the selectivity of many universities, a student who has taken an AP course is usually considered to be a very desirable candidate.

Program Information

The cost of taking the Advanced Placement Examination may present an obstacle to some students, but it is important to remember that a financial benefit may come later. The College Board offers reduced fees to students who can demonstrate financial need, and in some states, public funding is available to cover AP Exam fees.

Program Information

Advanced Placement Report to the Nation

The College Board's first-ever Advanced Placement Report to the Nation, which was released in January 2005, coincided with the fiftieth anniversary of the AP ${ }^{\circledR}$ Program in U.S. schools. The Report uses a combination of state, national, and AP Program data in new ways to provide each state with a context for seeing its successes, understanding its challenges, and setting meaningful and data-driven goals to connect more students to college success.

For each AP course, the Report offers breakdowns of the students who took the exam in 2004 by grade level, gender, and race and ethnicity. The Report also provides scoring statistics for the 2004 exams, as well as listing small, medium, and large schools that have exemplary programs in a particular course.

Part I of the Report comprises three powerful themes that appear once we situate each state's AP participation and performance data within the context of its own racial/ethnic demographics and population size: excellence and equity in college-level achievement, AP and college readiness, and closing equity gaps. Because one of the chief purposes of Part I is to provide state departments of education with new data to gauge success and identify current challenges in providing equitable educational opportunities (and because current, reliable racial/ethnic demographic data for independent schools is not available for all states), the data in Part I represent public schools only.

Part II of the Report uses data from all schools participating in AP worldwide (public and nonpublic) to identify schools currently leading the world in AP participation and performance, and to provide overall participation and performance information for each of the AP subject areas.

While the Report focuses on new ways to examine AP participation and performance in the states and the nation, it also includes basic, general facts and information in Appendix A: Fast Facts about AP.

The Report can be downloaded as a PDF by visiting apcentral.collegeboard.com/apreport. (Viewing the Report requires Adobe Acrobat Reader ${ }^{\circledR}$ version 6.0 or higher.)

Other AP data and research is available in the AP Document Library on AP Central at apcentral.collegeboard.com/documentlibrary.

Program Information

AP Grades and College Credit

AP Grades

The Readers' scores on the essay and problem-solving questions are combined with the results of the computer-scored multiple-choice questions, and the total raw scores are converted to AP’s 5-point scale:

AP Grade Qualification

5 Extremely Well Qualified
4 Well Qualified
3 Qualified
2 Possibly Qualified
1 No Recommendation

Grade Distributions

Many teachers want to compare their students' grades with the national percentiles. Grade distribution charts are available on AP Central, as is information on how the cutoff points for each AP grade are calculated.

Earning College Credit and/or Placement

Credit, advanced placement, or both are awarded by the college or university, not the College Board or the AP Program. The best source of specific and up-to-date information about an individual institution's policy is its catalog or Web site (see below for more on the College Board's Credit Policy Search tool).

Why Colleges Grant Credit and/or Placement for AP Grades

Colleges know that the AP grades of their incoming students represent a level of achievement equivalent to that of students who take the same course in the colleges' own classrooms. That equivalency is assured through several Advanced Placement Program processes:

- College faculty serve on the committees that develop the Course Descriptions and examinations in each AP subject.
- College faculty are responsible for standard setting and are involved in the evaluation of student responses at the AP Reading.

Program Information

- AP courses and exams are updated regularly, based on both the results of curriculum surveys at up to 200 colleges and universities and the interactions of committee members with professional organizations in their discipline.
- College comparability studies are undertaken in which the performance of college students on AP Exams is compared with that of AP students to confirm that the AP grade scale of 1-5 is properly aligned with current college standards.

In addition, the College Board has commissioned studies that use a "bottom-line" approach to validating AP Exam grades by comparing the achievement of AP students with non-AP students in higher-level college courses. For example, in the 1998 Morgan and Ramist "21-College" study, AP students who were exempted from introductory courses and who completed a higher-level course in college compared favorably, on the basis of their college grades, with students who completed the prerequisite first course in college, then took the second, higher-level course in the subject area. Such studies answer the question of greatest concern to colleges: are AP students who are exempted from introductory courses as well prepared to continue in a subject area as students who took their first course in college? To see the results of several college validity studies, go to AP Central. (The complete Morgan and Ramist study can be downloaded from the site.)

Program Information

AP Potential ${ }^{\text {TM }}$

There are perhaps dozens of potential Advanced Placement Program students at your school right now. They may not strike you immediately as potential AP students, but studies have shown that student performance on the PSAT/NMSQT ${ }^{\oplus}$ can be useful in identifying additional students who may be successful in AP courses.

AP Potential ${ }^{\mathrm{mw}}$ is a free Web-based tool available to schools that administer the PSAT/ NMSQT. AP Potential analyzes current PSAT/NMSQT student score data to generate a roster of students who may be successful in AP courses. The College Board sends principals a code that grants access to AP Potential in January. The principal and designated teachers, counselors, and administrators can then sign in to create rosters of potential AP students by name and suggested AP course.

Using a probability level that you select, AP Potential generates a roster of students at your school likely to score a 3 or better on a given AP Exam. You can set this probability threshold for subject areas offered at your school, or for subjects that you consider offering. AP Potential can thus help you find additional students for existing AP courses at your school; further, if you are considering adding a new AP course to your school's offerings, you can generate a roster of potential students for that course to help you reach out to students who might be encouraged to register for that course. Potential students are identified based on their PSAT/NMSQT score (i.e., math, critical reading, writing skills, or combined score depending on the subject area) and the correlation of these scores to AP Exam results. The foundation of the AP Potential tool is a study conducted in 1998 that established this relationship. A subsequent study conducted in 2004, which was based on an even larger sample of AP students, confirmed the findings of the previous study and showed that the PSAT/NMSQT remains a useful indicator of AP Exam performance.

Researchers are quick to note that even such a strong indicator only accounts for a fraction of the factors that ultimately determine a student's AP Exam grade. Individual student motivation and preparation, parental support, and teacher efficacy all play powerful and significant roles in a student's academic success. Accordingly, a student should never be barred from participation in AP simply because his or her name doesn't appear in the roster of AP Potential students. On the contrary, AP Potential has been designed to assist schools by providing rosters that help counselors, administrators, and teachers make sure that no student who has a likelihood of succeeding in AP is overlooked.

Program Information

In summary, AP Potential should be used in conjunction with the College Board's policy on AP student selection: "All students who are willing to accept the challenge of a rigorous academic curriculum should be considered for admission to AP courses. The Board encourages the elimination of barriers that restrict access to AP courses for students from ethnic, racial, and socioeconomic groups that have been traditionally underrepresented in the AP Program. Schools should make every effort to ensure that their AP classes reflect the diversity of their student population." For more information about AP Potential, visit www.collegeboard.com/appotential.

Program Information

Exam Security

The entire AP Exam must be kept secure until the scheduled administration date. Except during the actual exam administration, exam materials must be placed in locked storage. Forty-eight hours after the exam has been administered, the green and blue inserts containing the free-response questions (Section II) can be made available for teacher and student review (note that the alternate form of the freeresponse section-used for late testing administration-is NOT released). However, the multiple-choice section (Section I) MUST remain secure both before and after the exam administration. No one other than students taking the exam can ever have access to or see the questions contained in Section I-this includes AP Coordinators and all teachers. The multiple-choice section must never be shared or copied in any manner.

Selected multiple-choice questions are reused from year to year to provide an essential method of establishing high exam reliability, controlled levels of difficulty, and comparability with earlier exams. These goals can be attained only when the multiplechoice questions remain secure. This is why teachers cannot view the questions and students cannot share information about these questions with anyone following the exam administration. To ensure that all students have an equal opportunity to demonstrate their abilities on the exam, AP Exams must be administered in a uniform manner. It is extremely important to follow the administration schedule and all procedures outlined in detail in the most recent AP Coordinator's Manual. Please note that Studio Art portfolios and their contents are not considered secure testing materials; see the AP Coordinator's Manual for further information. The manual also includes directions on how to deal with misconduct and other security problems. Any breach of security should be reported to ETS Test Security immediately (call 800 353-8570, fax 609 406-9709, or email tsreturns@ets.org).

Program Information

College Board Regional Offices

National Office
Advanced Placement Program
45 Columbus Avenue
New York, NY 10023-6992
212 713-8066
Email: ap@collegeboard.org
\section*{AP Services}
P.O. Box 6671
Princeton, NJ 08541-6671
609 771-7300
877 274-6474 (toll free in the U.S. and Canada)
Email: apexams@info.collegeboard.org

AP Canada Office

1708 Dolphin Avenue, Suite 406
Kelowna, BC, Canada V1Y 9S4
250 861-9050
800 667-4548 (toll free in Canada only)
Email: gewonus@ap.ca

AP International Office

Serving all countries outside the U.S. and Canada
45 Columbus Avenue
New York, NY 10023-6992
212 373-8738
Email: apintl@collegeboard.org

Middle States Regional Office
Serving Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania,
Puerto Rico, and the U.S. Virgin Islands
2 Bala Plaza, Suite 900
Bala Cynwyd, PA 19004-1501
866 392-3019
Email: msro@collegeboard.org

Program Information

Midwestern Regional Office

Serving Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, West Virginia, and Wisconsin
6111 N. River Road, Suite 550
Rosemont, IL 60018-5158
866 392-4086
Email: mro@collegeboard.org

New England Regional Office

Serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont
470 Totten Pond Road
Waltham, MA 02451-1982
866 392-4089
Email: nero@collegeboard.org

Southern Regional Office

Serving Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina,
South Carolina, Tennessee, and Virginia
3700 Crestwood Parkway NW, Suite 700
Duluth, GA 30096-7155
866 392-4088
Email: sro@collegeboard.org

Southwestern Regional Office

Serving Arkansas, New Mexico, Oklahoma, and Texas
4330 South MoPac Expressway, Suite 200
Austin, TX 78735-6735
866 392-3017
Email: swro@collegeboard.org

Western Regional Office

Serving Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, Oregon,
Utah, Washington, and Wyoming
2099 Gateway Place, Suite 550
San Jose, CA 95110-1051
866 392-4078
Email: wro@collegeboard.org

[^0]: ${ }^{1}$ We are not considering here the statistical issue of sampling variability, which would result in a margin of error placed on our point estimate. We are addressing underlying assumptions that affect the point estimate itself.

[^1]: ${ }^{2}$ This is not to say that you should not still look at the data! That should always precede any inference. But if $n>40$, then you can be pretty confident that the inference procedures in the AP Statistics curriculum that assume a normal distribution for \bar{X} will be reasonably accurate.

[^2]: ${ }^{3}$ In this example, this occurs largely because we are ignoring something called the "continuity correction," which may be found in many texts but which will not be addressed here. It is not part of the AP Statistics curriculum.

[^3]: ${ }^{4}$ An intriguing additional feature of these graphs is the "dip" that they all show initially. This is the result of the fact that when $n=2$, the number of degrees of freedom for the t distribution is equal to 1 . The t distribution for 1 degree of freedom has a different mathematical form than the t distribution for degrees of freedom greater than 1.

