

© 2010 The College Board. © 2010 The College Board.

87

AP Computer Science Curriculum Module: GridWorld

However, to keep the fly population alive and well, flies will leave larvae behind after
each move. The larvae will turn into a fly after a period of 10 iterations of its act method.
VenusFlytrap and Fly both inherit from Critter, while Larvae inherits from Actor.

(Note that I created a third creature in this example [i.e., the Larvae creature], whereas
the assignment calls for only two creatures. If students become enthusiastic about the project
and ask to create more creatures than are required, I encourage them to proceed as long as
the new creatures meet the requirements of their respective parts.)

Environmental Feature

In this project, a tree serving two purposes was implemented. First, it will drop nuts into
adjacent locations for the agouti to eat. Second, it serves as a resting place for flies. If a fly flies
into an adjacent location, the fly will “enter” the tree and be stored internally in the tree in an
ArrayList. When four flies have entered the tree, they will, one by one, fly away from the tree.

The following figure shows a complete Amazon Ecosystem, with each of the
objects described above.

Complete Amazon Ecosystem

© 2010 The College Board.

88

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

The following figure shows the new data members and methods added to the class derived
from Critter.

Class Diagrams for Objects Derived from Critter

Select methods from the Fly, Agouti and VenusFlytrap classes are shown below.

Fly placeLarvae method
void placeLarvae(Location loc)

{
	 if (moveCounter < 10)
	 {
		 moveCounter++;	
	 }
	 else
	 {
		 moveCounter = 0;
		 int currentDir = getDirection();
		 Location currentLoc = getLocation();

		 // find the direction BEHIND the fly
		 // where the larvae will be left
		 int behindDir = currentDir + Location. HALF_CIRCLE;

		 // find the location behind the fly
		 Location locBehind =
			 currentLoc.getAdjacentLocation(behindDir);

		 if (isValidLarvaeLocation(locBehind))
		 {
			 // place larvae behind fly
			 Larvae newLarvae = new Larvae();
			 newLarvae.putSelfInGrid(getGrid(), locBehind);
		 }
	 }

} // end method placeLarvae

© 2010 The College Board. © 2010 The College Board.

89

AP Computer Science Curriculum Module: GridWorld

Agouti dropSeeds method
public void dropSeeds()
{
	 int currentDir = getDirection();
	 Location currentLoc = getLocation();
	 // finding the direction to the left and right
	 // of the Aguouti
	 int dirLeft = currentDir + Location.LEFT;
	 int dirRight = currentDir + Location.RIGHT;

	 // these are the locations left and right of the bird
	 Location locLeft =
		 currentLoc.getAdjacentLocation(dirLeft);
	 Location locRight =
		 currentLoc.getAdjacentLocation(dirRight);
	 if(isValidSeedLocation(locLeft))
	 {
		 Seed s = new Seed();
		 s.putSelfInGrid(getGrid(), locLeft);
	 }
	 if(isValidSeedLocation(locRight))
	 {
		 Seed s = new Seed();
		 s.putSelfInGrid(getGrid(), locRight);
	 }
} // end method dropSeeds

VenusFlytrap processActors method
public void processActors(ArrayList<Actor> creatures)

{
	 int currentDirection = getDirection();
	 Location inFront =
		 getLocation().getAdjacentLocation(currentDirection);
	 for (Actor thisCreature : creatures)
	 { 	
		 if (thisCreature.getLocation().equals(inFront)
			 && thisCreature instanceof Fly)
		 {
			 thisCreature.removeSelfFromGrid();	
			 changeDirection();
			 timeSinceEaten = 0;
		 }

	 } // end for

} // end processActors

© 2010 The College Board.

90

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

Conclusion

This sample Amazon project can be used to demonstrate possibilities for each of the
four parts of the project. After some discussion, students will undoubtedly think of even
more relevant and sophisticated ecosystems to simulate, especially if they have taken or
are taking AP Environmental Science. (Note that this project can be further modified to
model systems consisting of “nonliving creatures,” e.g., robots, traffic systems, air traffic
controller systems, etc.) Allowing students to design their own creatures and integrating
these creations into one project gives them ownership of the project and makes for a great

“Grand Finale,” both for the students and the teacher.

Sample Files for the Amazon Project can be downloaded from the GridWorld tag
at http://www.thecubscientist.com/APCS/indexAPCS.html.

Worksheets on Part 4 of GridWorld, written by Joe Coglianese, are in the
appendixes that follow.

© 2010 The College Board. © 2010 The College Board.

91

AP Computer Science Curriculum Module: GridWorld

Appendix A

GridWorld Case Study Part 4 — Critter
Interacting Objects
Reading Worksheet

The Critter Class

	 1.	 Read page 29 of the Student Manual.

	 2.	 What do all Critters share?

	 3.	 What does a Critter do first when it acts?

	 4.	 What are the next four things a Critter does?

	 5.	 How can different types of Critters move differently than Critter?

	 6.	 Which method identifies the behavior of a Critter ?

	 7.	 How many methods are invoked by the act method?

	 8.	 Which method(s) could be overridden in the subclasses of Critter to produce
different behaviors?

	 9.	 Declare an ArrayList<Actor> variable named actorList.

	10.	 Assign actorList to be the actors for Critter someCritter to process.

	11.	 Write code to have someCritter process all the actors in actorList that are
not a Critter. (Leave the contents of actorList unchanged.)

	12.	 Declare an ArrayList<Location> variable named locList.

	13.	 Assign locList to be the locations that someCritter could move into.

	14.	 Write a segment of code to have someCritter move to a randomly selected
location from the locList.

	15.	 Which method should not be overridden in the subclasses of Critter?

	16.	 What was the design intention of the Critter class?

	17.	 When the Critter class is unsuitable for extending, what class should be
extended?

	18.	 Do questions Do You Know? Set 7.

© 2010 The College Board.

92

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

GridWorld Case Study Part 4 — Critter
Interacting Objects
Reading Worksheet (Solutions)

The Critter Class

	 1.	 Read page 29 of the Student Manual.

	 2.	 What do all Critters share? A common pattern of behavior

	 3.	 What does a Critter do first when it acts? Gets a list of actors to process

	 4.	 What are the next four things a Critter does? Processes those actors, and then
generates a set of possible move locations, selects one of them and moves to
that location

	 5.	 How can different types of Critters move differently than Critter? They
may get possible move locations differently, and they may select the actual move
location differently.

	 6.	 Which method identifies the behavior of a Critter ? act method

	 7.	 How many methods are invoked by the act method? Five

	 8.	 Which method(s) could be overridden in the subclasses of Critter to
produce different behaviors? getActors, processActors,
getMoveLocations, selectMoveLocation, makeMove

	 9.	 Declare an ArrayList<Actor> variable named actorList.
ArrayList<Actor> actorList;

	10.	 Assign actorList to be the actors for Critter someCritter to process.

	 actorList = someCritter.getActors();

	11.	 Write a segment of code to have someCritter store all the actors in
actorList that are not Critters in a different ArrayList. (Leave the
contents of actorList unchanged.)
ArrayList<Actor> nonCritters = new ArrayList<Actor>();
for (Actor actr : actorList)
	 if (!(actr instanceof Critter))
		 nonCritters.add(actr);

	12.	 Declare an ArrayList<Location> variable named locList.
ArrayList<Location> locList;

© 2010 The College Board. © 2010 The College Board.

93

AP Computer Science Curriculum Module: GridWorld

	13.	 Assign locList to be the locations that someCritter could move into.
locList = someCritter.getMoveLocations();

	14.	 Write a segment of code to have someCritter move to a randomly selected
location from the locList.
int size = locList.size();
int ranNum = (int)(Math.random() * size);
someCritter.makeMove(locList.get(ranNum));

	15.	 Which method should not be overridden in the subclasses of Critter? act

	16.	 What was the design intention of the Critter class? Critters are actors that
process other actors and then move.

	17.	 When the Critter class is unsuitable for extending, what class should be
extended? Actor

	18.	 Do questions Do You Know? Set 7.

© 2010 The College Board.

94

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

Appendix B

GridWorld Case Study Part 4 — Critter Behaviors
Interacting Objects
Reading Worksheet

Default Critter Behavior

	 1.	 Read pages 30–31 of the Student Manual.

	 2.	 What does a critter do before moving?

	 3.	 What two steps are involved in processing other actors?

	 4.	 How does the processActors method in the Critter class know which
actors to process?

	 5.	 Why would a subclass of Crittter override the getActors method?

	 6.	 Write code to have a Critter variable named someCritter process all the
actors in the grid.

	 7.	 What does the processActors method in the Critter remove?

	 8.	 What operator allows a Critter to tell if it is going to process another
Critter?

	 9.	 If a critter did not eat Actors, what would it eat?

	10.	 What is the three-step process for a critter to move to a new location?

	11.	 Why are there three different methods implementing this single process?

	12.	 What is returned by the getMoveLocations method for Critter?

	13.	 If a critter were at (4, 3) facing East, what could be in the list returned by
getMoveLocations?

	14.	 How does a critter select which location to move to?

	15.	 What does getMoveLocations return if a critter is unable to move?

	16.	 What gets passed to the makeMove method by a critter?

	17.	 What if null is passed in as an argument for the makeMove method?

© 2010 The College Board. © 2010 The College Board.

95

AP Computer Science Curriculum Module: GridWorld

GridWorld Case Study Part 4 — Critter Behaviors
Interacting Objects
Reading Worksheet (Solutions)

Default Critter Behavior

	 1.	 Read pages 30–31 of the Student Manual.

	 2.	 What does a critter do before moving? Process other actors in some way

	 3.	 What two steps are involved in processing other actors?

a.	 Select which actors to process
b.	 Process each selected actor

	 4.	 How does the processActors method in the Critter class know which
actors to process? An ArrayList<Actor> containing all neighboring actors
is passed in as an argument.

	 5.	 Why would a subclass of Critter override the getActors method? To choose
a different set of actors that it will process

	 6.	 Write a segment of code to have a Critter variable named someCritter
process all the actors in the grid.
Grid<Actor> grd = someCritter.getGrid();
ArrayList<Location> allOccpLoc = grd.getOccupiedLocations();
ArrayList<Actor> allActors = new ArrayList<Actor>();
for (Locations loc : allOccpLoc)
	 allActors.add(grd.get(loc));
someCritter.processActors(allActors);

	 7.	 What does the processActors method in the Critter remove? All actors
that are not rocks or critters

	 8.	 What operator allows a Critter to tell if it is going to process another
Critter? instanceof

	 9.	 If a critter did not eat Actors, what would it eat? Nothing

	10.	 What is the three-step process for a critter to move to a new location?

a.	 Determine which locations are candidates for the move.
b.	 Select one candidate
c.	 Make the move

	11.	 Why are there three different methods implementing this single process? Allows
subclasses to change each behavior separately

© 2010 The College Board.

96

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

	12.	 What is returned by the getMoveLocations method for Critter? All the
empty adjacent locations

	13.	 If a critter were at (4, 3) facing East, what could be in the list returned by
getMoveLocations? (3, 2), (3, 3), (3, 4), (4, 2), (4, 4), (5, 2), (5, 3) and (5, 4)

	14.	 How does a Critter select which location to move to? Randomly

	15.	 What does getMoveLocations return if a Critter is unable to move? Its
current location

	16.	 What gets passed to the makeMove method by a critter? The selected location

	17.	 What if null is passed in as an argument for the makeMove method? The critter
removes itself from the grid!

© 2010 The College Board. © 2010 The College Board.

97

AP Computer Science Curriculum Module: GridWorld

Appendix C

GridWorld Case Study Part 4 — ChameleonCritter
Interacting Objects
Reading Worksheet

Extending the Critter Class

ChameleonCritter

1.	 Read pages 32–33 of the Student Manual.

2.	 Which actors does Critter class send its list of actors for processing?

3.	 Which actors does ChameleonCritter class send its list of actors for
processing?

4.	 What are the neighbors of the ChameleonCritter at (6, 3)?

5.	 How does Critter process actors?

6.	 How does ChameleonCritter process actors?

7.	 Which method(s) does the ChameleonCritter override?

8.	 What are the neighbors of the ChameleonCritter at (6, 3)?

9.	 If the ChameleonCritter at (4, 4) move to (3, 4), what direction would it
be facing?

© 2010 The College Board.

98

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

GridWorld Case Study Part 4 — ChameleonCritter
Interacting Objects
Reading Worksheet (Solutions)

Extending the Critter Class

ChameleonCritter

1.	 Read pages 32–33 of the Student Manual.

2.	 Which actors does Critter class send its list of actors for processing? All the
neighboring actors (touching the critter)

3.	 Which actors does ChameleonCritter class send its list of actors for
processing? The same as Critter, all the neighboring actors

4.	 What are the neighbors of the ChameleonCritter at (6, 3)? (5, 2), (5, 3), (5, 4),
(6, 2), (6, 5), (7, 2), (7, 3) and (7, 5)

5.	 How does Critter process actors? Removes actors that are not rocks or critters

6.	 How does ChameleonCritter process actors? Randomly selects one and
changes its own color to the color of the selected actor

7.	 Which method(s) does the ChameleonCritter override? makeMove,
processActors

8.	 What are the neighbors of the ChameleonCritter at (6, 3)? (5, 2), (5, 3), (5, 4),
(6, 2), (6, 5), (7, 2), (7, 3) and (7, 5)

9.	 If the ChameleonCritter at (4, 4) move to (3, 4), what direction would it be
facing? Location.NORTH

© 2010 The College Board. © 2010 The College Board.

99

AP Computer Science Curriculum Module: GridWorld

Appendix D

GridWorld Case Study Part 4 — CrabCritter
Interacting Objects
Reading Worksheet

Another Critter

CrabCritter

	 1.	 Read page 34 of the Student Manual.

	 2.	 Which actors does CrabCritter class send its list of actors for processing?

	 3.	 Actors at which locations would be sent for processing by a CrabCritter at (6,
3) facing Location.EAST?

	 4.	 How does CrabCritter process actors?

	 5.	 Where is CrabCritter process actors defined?

	 6.	 If a CrabCritter were at (4, 3) facing Location.EAST, what locations
would be returned by getMoveLocations?

	 7.	 What methods did the CrabCritter override?

	 8.	 From what location would a CrabCritter at (3, 4) facing Location.NORTH eat?

	 9.	 What will a CrabCritter not eat? Why?

	10.	 How does a crab select which location to move to?

	11.	 What does a crab do if it cannot move?
Suppose there is a new subclass of CrabCritter named SkinnyCrabCritter. It
processes actors like CrabCritter but it only randomly selects one actor to eat. The
SkinnyCrabCritter moves like CrabCritter, but if it has not eaten it dies.

	12.	 Explain why SkinnyCrabCritter dying in processActors would violate
the method’s postconditions.

	13.	 In what method could SkinnyCrabCritter die?

	14.	 Propose a way to have SkinnyCrabCritter die based on not eating in any
given turn.

© 2010 The College Board.

100

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

	15.	 Write the processActors method for SkinnyCrabCritter.

	16.	 Complete the Do You Know? Set 9.

© 2010 The College Board. © 2010 The College Board.

101

AP Computer Science Curriculum Module: GridWorld

GridWorld Case Study Part 4 — CrabCritter
Interacting Objects
Reading Worksheet (Solutions)

Another Critter

CrabCritter

	 1.	 Read page 34 of the Student Manual.

	 2.	 Which actors does CrabCritter class send its list of actors for processing?
Actors from the three cells in front of CrabCritter

	 3.	 Actors at which locations would be sent for processing by a CrabCritter at (6,
3) facing Location.EAST? (5, 4), (6, 4) and (7, 4)

	 4.	 How does CrabCritter process actors? Removes all actors from the three cells
in front that are not rocks or critters

	 5.	 Where is CrabCritter process actors defined? Critter

	 6.	 If a CrabCritter were at (4, 3) facing Location.EAST, what locations
would could be returned by getMoveLocations? [(4, 2), (4, 4)]

	 7.	 What methods did the CrabCritter override? getActor,
getMoveLocations and makeMove .

	 8.	 From what location would a CrabCritter at (3, 4) facing Location.NORTH
eat? (2, 3), (2, 4), (2, 5)

	 9.	 What will a CrabCritter not eat? Why? Rock or Critter because it was
inherited from Critter

	10.	 How does a crab select the location to move to? Randomly

	11.	 What does a crab do if it can not move? Turns 90 degrees
Suppose there is a new subclass of CrabCritter named SkinnyCrabCritter. It
processes actors like CrabCritter but it only randomly selects one actor to eat. The
SkinnyCrabCritter moves like CrabCritter, but if it has not eaten it dies.

	12.	 Explain why SkinnyCrabCritter dying in processActors would
violate the method’s postconditions. Postcondition (2) the location of the critter is
unchanged.

	13.	 In what method could SkinnyCrabCritter die? makeMove

© 2010 The College Board.

102

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

	14.	 Propose a way to have SkinnyCrabCritter die based on not eating in any
given turn. Add a Boolean instance variable to store if it has eaten. Then check
the value of the variable in the makeMove method and remove itself from the
grid if it has not eaten.

	15.	 Write the processActors method for SkinnyCrabCritter.
public void processActors(ArrayList<Actor> actors)
{
	 int num = actors.size();
	 if(num == 0)
	 {
		 hasEasten = false;
		 return;
	 }
	 int ranNum = (int) (Math.random() * num);
	 Actor other = actors.get(ranNum);
	 other.removeSelfFromGrid();
}

	16.	 Complete the Do You Know? Set 9.

© 2010 The College Board. © 2010 The College Board.

103

AP Computer Science Curriculum Module: GridWorld

Unit Plan: Part 5 — Grid
Leigh Ann Sudol

Introduction

This project is designed to help students learn about extending the AbstractGrid class
as a part of the GridWorld case study (http://www.thecubscientist.com/APCS/indexAPCS.
html). Included in this project are a number of supporting materials to help students
become proficient at using the Grid class and also to become familiar with questions
regarding different implementations of a grid. The program assignment, Airplane
Scheduling, asks the students to extend the AbstractGrid class and then use the class
in a context to answer questions about seating priority in an airplane. In addition to the
program assignment, you will also find multiple-choice questions and a short-answer
assessment question involving Big-Oh for different implementations of a grid.

Student Programming Assignment: Airplane
Scheduling

Airlines face interesting problems every day. One common problem is to determine the best
way to seat passengers to ensure that it takes the least possible time for them to board the
airplane. Since there is only one door to the airplane, only one passenger can enter the plane
at a time. The passenger then walks to the row that contains his or her assigned seat, stores his
or her carry-on luggage, and then moves into his or her seat.

The question becomes whether it is better to board the passengers who have
assigned seats in the rear of the plane first, board them in random order or board them
in some combination of the two. This question is a perfect use for a computer simulation,
because we can adjust variables and run a large number of tests without inconveniencing
the consumers.

In order to create the simulation you will need to write the following classes:
AirplaneTester:	 This class will contain a main method for testing your simulation.
AirplaneWorld:	 This class will extend the ActorWorld class and handle the

order in which the passengers board the plane.
Passenger:	 This class will extend the Actor class and handle information

that passengers need, such as what seat they will sit in during the
flight.

Airplane:	 This class will extend AbstractWorld and will be used to
represent the seats in the airplane.

© 2010 The College Board.

104

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

Passenger

The Passenger class should extend the Actor class and also provide functionality to
store the location of the passenger’s assigned seat on the airplane (separate from her or his
current location). It should also provide functionality for a counter to be used to “pause”
passengers as they are putting away their luggage upon reaching their rows, before leaving
the aisle to sit in their assigned seats.

The Passenger constructor should take two parameters: a row and seat
(column) value for the assigned seat of that passenger. It should assign values to the
private variables, including a wait time of 10 time steps for stowing luggage.

The Passenger class should also have an implementation for an act method.
The Passenger act method should deal with the following cases:

1.	 If the passenger is already in his or her seat, he or she should not do anything.

2.	 If the passenger is in the row where his or her seat is located and their luggage
counter is 0, then he or she should move into their seat.

3.	 If the passenger is in the row where his or her seat is located and their luggage
counter is greater than 0, he or she should continue storing their luggage (subtract
one from the luggage counter).

4.	 If the passenger is not yet to his or her row and the aisle is not blocked in front of
them, he or she should move one row closer to their assigned row.

Passenger class starter code

	 import info.gridworld.actor.Actor;
	 import info.gridworld.grid.Location;

	 public class Passenger extends Actor {
	 //declare instance variables here
	 public Passenger(int row, int seat){

	 }

	 public void act(){

	 }

}

© 2010 The College Board. © 2010 The College Board.

105

AP Computer Science Curriculum Module: GridWorld

Airplane

The Airplane class should extend the AbstractGrid class and provide data storage
for the grid. The Airplane, in addition to maintaining the ability to store rows and
columns of passengers, should also maintain a variable for the aisle row within the
airplane. The aisle is a column without seats and will be the means by which passengers
make their way to their seats.

The Airplane class needs a constructor that will take the number of rows, the
number of seats across and the location of the aisle.
Other methods the Airplane class needs to implement will be:

	 1.	 get(Location loc), which will retrieve a passenger stored at a particular
row/seat location

	 2.	 getNumCols(), which will return the number of seats across, plus one for the aisle

	 3.	 getNumRows(), which will return the number of rows of seats in the airplane

	 4.	 getOccupiedLocations(), which will return an ArrayList of
Locations for all of the seats that currently have passengers sitting in them, as
well as all of the locations in the aisle where passengers are either loading baggage
or waiting to continue on to their seats

	 5.	 isValid(Location loc), which will return true if the given location is a
valid seat or aisle location on the plane and false otherwise

	 6.	 remove(Location loc), which will remove the passenger from the grid (plane)

	7.	isAisleEmpty(), which will return a Boolean value if the aisle of the airplane
is empty (either the plane is completely empty or all passengers are seated)

	 8.	 getCenterAisle(), which will return the column number of the central aisle

	 9.	 put(Location loc, Passenger obj), which will insert the passenger
into the grid (Airplane) at the given location

	10.	 put(Location loc, Object obj), which is used only to satisfy the
abstract class inheritance requirements

© 2010 The College Board.

106

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

Airplane class starter code

import java.util.ArrayList;
import info.gridworld.actor.Actor;
import info.gridworld.grid.Grid;
import info.gridworld.grid.AbstractGrid;
import info.gridworld.grid.Location;

public class Airplane extends AbstractGrid{
//declare instance variables here
/**
	* Constructor for an Airplane
	* Creates a simulated airplane with seatsAcross-1 seats (leaving
	* an empty aisle in the middle for passengers to walk down)
	* @param numR the number of rows of seats in the airplane
	* @param seatsAcross the number of seats across plus the aisle
	* @param centerRow the location of the aisle in the airplane
	*/
public Airplane(int numR, int seatsAcross, int centerRow){

}

/**
	* returns the passenger at the given location, null if there is
	* no one there
	*/
public Passenger get(Location loc) {

}

/**
	* returns the number of columns in the grid - this is the
	* number of seats in any given row plus the aisle
	*/
public int getNumCols() {

}

/**
	* returns the number of rows in the grid/Airplane
	*/
public int getNumRows() {

© 2010 The College Board. © 2010 The College Board.

107

AP Computer Science Curriculum Module: GridWorld

}

/**
	* returns an ArrayList containing the occupied locations in the
	* grid
	*/
public ArrayList<Location> getOccupiedLocations() {

}

/**
	* returns true if the given Location is valid, false otherwise
	*/
public boolean isValid(Location loc) {

}

/**
	* removes the passenger at the given location from the grid
	*/
public Passenger remove(Location loc) {

}

/**
	* Returns true if there are no passengers in the aisle
	* waiting to be seated
	*/
public boolean isAisleEmpty(){

}

/**
	* returns the number corresponding to the column that serves
	* as the center aisle on the airplane
	*/
public int getCenterAisle(){

}

/**
	* puts the passenger into the grid at the given location
	*/
public Passenger put(Location loc, Passenger obj) {

}

© 2010 The College Board.

108

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

/**
	* puts the indicated object into the grid.
	* This method exists only to satisfy inheritance requirements.
	* only the overloaded put method with a passenger
	* object should be called
	*/
public Object put(Location loc, Object obj) {

}

}

AirplaneWorld

The AirplaneWorld class should extend the ActorWorld class. The
AirplaneWorld class does not need any new data stored other than what
ActorWorld provides for.

The AirplaneWorld constructor should take an Airplane parameter and
call the ActorWorld constructor with that parameter.

The Airplane world has one additional method, runSim(), that is used to run
the airplane simulation and watch how passengers seat themselves.

In a purely random seating arrangement, the runSim method will create a new
ArrayList of Passengers, with each passenger having a targeted seat location within
the aircraft. The easiest way to accomplish this is to write some loops to create a passenger
for every seat; be careful not to seat anyone in the aisle.

Until the ArrayList is empty, if the “door” to the airplane is empty (location 0,
aisle), randomly remove one passenger from the ArrayList and add him or her to the
airplane. Don’t forget to step and show the grid as you go. Also, make sure that all of your
passengers get seated before you finish the simulation (i.e., make sure the aisle is empty).

AirplaneWorld class starter code

import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;
import java.util.ArrayList;

public class AirplaneWorld extends ActorWorld {
public AirplaneWorld(Airplane grid) {

	 }

	 public void runSim(){

	 }

}

© 2010 The College Board. © 2010 The College Board.

109

AP Computer Science Curriculum Module: GridWorld

AirplaneTester class starter code

import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;

public class AirplaneTester {
public static void main(String args[]){
	 Airplane toLoad = new Airplane(30, 7, 3);
	 AirplaneWorld simulation = new AirplaneWorld(toLoad);
	 simulation.runSim();
}

}

Notes to the Instructor for the Airplane
Scheduler Assignment

Use and ordering of activities

It is assumed that students have already covered a number of data structures and Parts 1–4
of the GridWorld case study. If students have not addressed a number of data structures,
the materials should be edited to cover only the data structures that have been covered
in class. These materials can be revisited once the additional data structures have been
studied. The suggested ordering and use of these materials within an AP Computer
Science class are listed below.

1.	 Introduce the Grid classes.

•	 Introduction to the Grid Classes (PowerPoint presentation) is available at
http://www.virtualcompsci.net/gridworld/Gridworld.ppt.

•	 Students should also read Part 5 of the case study narrative (http://apcentral.
collegeboard.com/apc/members/repository/ap07_gridworld_casestudy_5.pdf).

2.	 Use the Airplane Scheduling program assignment with students.

•	 Have students read the description of the assignment and complete the
preassignment questions (see Appendix A). The discussion points can be used
to help students construct answers to the preassignment questions that will give
them insight into the program assignment.

•	 Students should then complete the program assignment. Links to the
starter code are available at http://www.virtualcompsci.net/gridworld/
AirplaneStarterCode/Airplane.java, http://www.virtualcompsci.net/gridworld/
AirplaneStarterCode/AirplaneTester.java, http://www.virtualcompsci.net/
gridworld/AirplaneStarterCode/AirplaneWorld.java, which includes the starter

© 2010 The College Board.

110

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

files Airplane.java, AirplaneTester.java, AirplaneWorld.
java and Passenger.java.

•	 Students complete the post-assignment questions (see Appendix A).

3.	 Use the multiple-choice questions (see Appendix B) as assessments (as a part of a
quiz or test) or as homework.

4.	 Use the short-answer assessment questions (see Appendix C) as a part of a formal
assessment or as homework for the students.

General Description

This assignment was designed to not only familiarize students with writing code in order
to implement a special type of Grid (an Airplane), but to also use that grid in context
and to draw conclusions based upon what is observed in the simulation.

The Airplane class itself can be implemented by a wide variety of data
structures. The solution is shown with a 2D matrix; however, since this is the
implementation provided to students in the narrative (along with a HashMap), you
can choose to either specify another data structure for the students or require them to
select their own data structure and reflect upon their choice. Questions for discussion
are provided in the appendixes that follow. These questions can either be used for group
discussion; for individual reflection by each student; or, in the case where students select
their own data structure, as prompts for a class presentation of the data structure that
they used and an explanation of why they chose that structure. The Airplane class
was chosen to extend AbstractGrid to allow you the freedom to implement any data
structure you choose with your students and this assignment.

Also included in this module is starter code for the four classes of the assignment.
It is left to the discretion of the instructor whether he or she chooses to provide the starter
code to the students.

© 2010 The College Board. © 2010 The College Board.

111

AP Computer Science Curriculum Module: GridWorld

Appendix A

Discussion Questions

Preassignment Questions

These questions can be used before the assignment (after the description is read, but
before any code is written), for a discussion part way through the assignment as a way to
check for understanding, or after the assignment in a summary. Following the questions,
you will find possible discussion points to use with each question in your class discussion.

1.	 What similarities are there between an Airplane and a Grid? What are the
characteristics of each Location within an airplane as modeled by a Grid?

2.	 What information does an Airplane need to know that is separate from a
BoundedGrid? (For example, what is the difference between the information
you need to store for an Airplane and the information you store for a generic
BoundedGrid?)

3.	 Without extending any Grid class or interface, what would the challenges be for
implementation of the simulation?

4.	 Consider an Airplane implementation where the data structure used
specifically stores Passenger objects. For this particular program, why is it
feasible to store the objects in the grid in this manner, instead of using a data
structure that can store any type of object the way that BoundedGrid does?

5.	 What are some possible data structures that could be used for the Airplane?
What criteria would you use to choose one of these data structures? What
information would you like to know about the flights in order to choose the most
appropriate data structure?

6.	 Knowing that the planes are restricted to a relatively small size, but that the airline
wants to run the simulation a very large number of times repeatedly in order to
gather results, how does that affect your considerations?

Possible Discussion Points

1.	 Both an Airplane seat and a Grid cell can be occupied by only one actor/
person at a time. You can divide an airplane into the places where people are able
to stand and sit, just like you can divide a grid into locations. Each location in the
airplane can be defined by a row number and a seat assignment (or classified as an
aisle — a passenger standing between seats).

© 2010 The College Board.

112

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

2.	 An airplane needs to know the location of the aisle and any informational
methods that would be helpful in looking at seated pasengers versus standing
passengers.

3.	 Without extending a Grid class, the airplane could not know where the aisle was;
this information would have to be kept elsewhere, and it would make the code in
other places more difficult to write and less abstracted.

4.	 For this simulation, we are programming it specifically to hold passengers. With
the problem description given and the requirements of the client, it is not likely
that other types of objects would take up seats on the airplane.

5.	 Students may name any data structure covered in the course. Answers will vary
based on the material covered prior to this assignment. Knowledge about how full
the flights are would be helpful in selecting the most appropriate data structure.

6.	 This indicates that speed is a more important concern than space. It would be
acceptable to choose a data structure that required more memory in favor of a
faster implementation (i.e., a two-dimensional array would be preferable to a
linked list or even a sparse matrix).

Post-Assignment Questions

These questions can either be used for class discussion or as a part of an assessment.

1.	 For each of the following methods, specify the Big-Oh time for your
implementation:
getCenterAisle
aisleEmpty
getOccupiedLocations
get
put

2.	 Name a data structure, other than the one you used, that improves the time
efficiency of at least one of the above listed methods (even if the other methods
get slower). List the Big-Oh time for each of the above methods for the other data
structure that you chose. Defend your choice over this other data structure.

3.	 How would you change the program if we allowed for very large aircraft that had
two aisles (three seats to one side, an aisle, four seats in the middle, a second aisle
and three seats to the other side)?

4.	 How would you change the program if there were two doors to enter the airplane?

5.	 Based on your observations of seating time, what would you recommend to the
airline as a method of boarding passengers?

6.	 We only dealt with passengers as they entered the airplane. What other
possibilities in an airport exist for the study of data structures?

© 2010 The College Board. © 2010 The College Board.

113

AP Computer Science Curriculum Module: GridWorld

Appendix B

Multiple-Choice Questions for Assessment
GridWorld Module 5

Multiple-Choice Questions

Use the following information to answer questions 1–4.
Consider the following two implementation of a Grid that stores Actors in an array.
You may assume that the average time for adding new items to the grid does not take
resizing into account.

Implementation I: The array is maintained in sorted order by inserting each new
actor into the array in order by location whenever an Actor is put into the Grid. The
Grid is also set up to maintain the list in sorted order with no gaps (null elements
between data) throughout the program. In order to find an Actor within the Grid, a
private getIndex method is implemented that uses a binary search in order to locate
either the index of the Actor itself or the index where the actor should be inserted.

Implementation II: The array is maintained in the order in which Actors were
added to the environment. A linear search is performed in order to get the index of an
Actor within the array any time it needs to be located.

1.	 What is the expected time for the Grid method get under Implementation I above?
a.	 O(1)
b.	 O(log n)
c.	 O(n)
d.	 O(n log n)
e.	 O(n2)

2.	 What is the expected time for the Grid method get under Implementation II above?
a.	 O(1)
b.	 O(log n)
c.	 O(n)
d.	 O(n log n)
e.	 O(n2)

© 2010 The College Board.

114

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

3.	 Which of the following data structures would yield a comparable time for the get
method as Implementation I above?
a.	 LinkedList
b.	 HashMap
c.	 TreeMap
d.	 HashSet
e.	 None of the above

4.	 Which of the following methods would not need to be changed from their current
implementation in BoundedGrid in order to implement a Grid as defined
above (either Implementation I or II)?
a.	 put
b.	 isValid
c.	 remove
d.	 getNeighbors
e.	 All methods would need to be reimplemented

Use the following information to answer questions 5–7.
A group of scientists want to study how different plants attract different types of insects.
For this, they are going to write a computer simulation containing complex insect
behavior programmed into actors. When creating the simulation, they decided it would
be easier to divide the garden into sections based on the plants being grown and then
record all the different types of insects in each section to see what plants are favored. Their
current implementation of the Grid allows for only one Actor per location; however,
they would like to change the implementation of the Grid to allow the actors to move
freely throughout the grid, regardless of the number of actors already at that location.
Consider the following two implementations for the GardenGrid.

Implementation I: The GardenGrid implementation contains a HashMap
keyed by location. Each value stored in the HashMap is a HashSet of IDActors
representing the collection of actors in any one grid in the garden. The IDActor class is
an extension of Actor that contains a unique ID number for each actor that is used as
the key for the HashMap.

Implementation II: The GardenGrid implementation contains a HashMap of
IDActors. The unique ID number for each actor is used as the key for the HashMap.

5.	 With Implementation I above, if there are N locations inside the grid and S insects
in the simulation, what is the worst case time for retrieving information about a
single insect if we have its location and ID number?
a.	 O(1)
b.	 O(N)
c.	 O(S*N)
d.	 O(S)

© 2010 The College Board. © 2010 The College Board.

115

AP Computer Science Curriculum Module: GridWorld

e.	 O((log S)*N)

6.	 With Implementation II above, if there are N locations inside the grid and S
insects in the simulation, what is the worst case time for retrieving information
about a single insect if we have its location and ID number?
a.	 O(1)
b.	 O(N)
c.	 O(S*N)
d.	 O(S)
e.	 O((log S)*N)

7.	 The scientists in the study anticipate having a very large number of actors spread
relatively evenly over the different grids. They anticipate concentrations in
particular areas; however, they do not anticipate all of the insects being in only one
location on the grid. With this in mind, which of the above implementations will
be more efficient if the scientists plan on focusing on one location in the grid at a
time? This means that, during the simulation, at each time step they would retrieve
all the actors stored at a given location in order to process such information as
number of insects and variety of species.
a.	 Implementation I would be better.
b.	 Implementation II would be better.
c.	 Implementation I and II would be the same.
d.	 It is impossible to know the answer without more information about the

behavior of the insects.
e.	 It is impossible to know the information without more information about the

plants.

8.	 When creating an implementation of the Grid interface, which of the following
methods would most likely be affected by a change in data structure?
a.	remove
b.	getValidAdjacentNeighbors
c.	getNeighbors
d.	 a and c only
e.	 a, b, and c

Answers to Multiple-Choice Questions

1.	 b	 2.	 c

3.	 c	 4.	 b

5.	 d	 6.	 a

7.	 a	 8.	 d

© 2010 The College Board.

116

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

Appendix C

Short-Answer Assessment Questions
Involving Big-Oh
GridWorld Case Study
Module 5

Consider a GridWorld environment used to study migration patterns of bugs. The
migration of bugs is done in a very large bounded grid (think of a locust cloud 20
meters wide that is represented in a grid large enough to be comparable to the state
of Texas). In addition to migrating based on their own internal control, the bugs
are also migrating based upon wind patterns. The BoundedGrid is modified to
include a method applyWind. The applyWind method takes a Direction (N,
S, E or W) and also a start and end index for the wind. In this simplified model, the
wind “pushes” each object within the start and end indices one space in the direction
the wind is blowing. The indices are used opposite to the direction, so if the wind is
blowing either north or south then the index is a row value; if the wind is blowing
east or west, then the index is a column value.

Consider the following images of worlds after the call to applyWind:

	 Starting Locations	 After applyWind(Direction.NORTH, 2,3)

	 	
	 Starting Locations	 After applyWind(Direction.EAST, 1, 1)

	 	

© 2010 The College Board. © 2010 The College Board.

117

AP Computer Science Curriculum Module: GridWorld

Fill in the following table with Big-Oh notation, representing the time it would
take for the applyWind method for each of the following implementations of the
GridWorld environment. Use r for the number of rows in the grid, c for the number of
columns in the grid and n for the width of the range to be blown. If another variable is
needed for the analysis, be sure to define it (i.e., b = number of bugs in environment).

North/South Wind

Implementation Big-Oh time for applyWind
2D Arrayarray

HashMap keyed by Location

TreeMap keyed by Location

Linked List of all Bugs
(no ordering to how they are stored)

HashSet of all Bugs

East/West Wind

Implementation Big-Oh time for applyWind
2D aArray

HashMap keyed by Location

TreeMap keyed by Location

Linked List of all Bugs
(no ordering to how they are stored)

HashSet of all Bugs

Solutions

Use r for the number of rows, c for the number of columns in the grid and n for the width
of the range to be blown. If another variable is needed for the analysis, be sure to define it
(i.e., b = number of bugs in environment).

© 2010 The College Board.

118

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

North/South Wind

Implementation Big-Oh time for applyWind
2D Array O(n*r)

HashMap keyed by Location O(n*r)

TreeMap keyed by Location O(n*r*log b)

LinkedList of all BugBugs
(no ordering to how they are stored)

O(b)

HashSet of all BugBugs O(b)

East/West Wind

Implementation Big-Oh time for applyWind
2D Array O(n*c)

HashMap keyed by Location O(n*c)

TreeMap keyed by Location O(n*c*log b)

LinkedList of all BugBugs
(no ordering to how they are stored)

O(b)

HashSet of all BugBugs O(b)

Discussion Question

How do the values of n, r, c and b affect which implementations are more efficient?
(really large n, r and c with a really small b or vice versa)

© 2010 The College Board. © 2010 The College Board.

119

AP Computer Science Curriculum Module: GridWorld

Appendix D

GridWorld Case Study Part 5 — AbstractGrid
Grid Data Structures
Reading Worksheet

The AbstractGrid Class

	 1.	 Read pages 39–40 of the Student Manual.

	 2.	 What two concrete implementations of the Grid interface are provided?

	 3.	 What is the difference between bounded and unbounded grids?

	 4.	 Why was the AbstractGrid class defined?

	 5.	 How many methods of the Grid interface are defined by the AbstractGrid class?

	 6.	 How are methods in AbstractGrid different from methods in Grid?

	 7.	 What are the subclasses of AbstractGrid?

	 8.	 Why is AbstractGrid an abstract class?

	 9.	 What does the toString method return?

	10.	 The concrete subclasses of the AbstractGrid must define which methods?

	11.	 Does a concrete implementation of a Grid need to extend AbstractGrid?
Why/Why not?

	12.	 Complete Do You Know? Set 10.

© 2010 The College Board.

120

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

GridWorld Case Study Part 5 — AbstractGrid
Grid Data Structures
Reading Worksheet (Solutions)

The AbstractGrid Class

	 1.	 Read pages 39–40 of the Student Manual.

	 2.	 What two concrete implementations of the Grid interface are provided? Bounded
grid (BoundedGrid<E>) and unbounded grid (UnboundedGrid<E>)

	 3.	 What is the difference between bounded and unbounded grids? Bounded grids
have a fixed number of rows and columns. Unbounded grids allow any row and
column location to be a valid location in the grid.

	 4.	 Why was the AbstractGrid class defined? The AbstractGrid provides
code that two concrete grid classes share.

	 5.	 How many methods of the Grid interface are defined by the AbstractGrid
class? Five

	 6.	 How are methods in AbstractGrid different from methods in Grid? All
methods in an interface(Grid) are undefined; some of the methods in an
abstract class (AbstractGrid) can be defined.

	 7.	 What are the subclasses of AbstractGrid? BoundedGrid and
UnboundedGrid

	 8.	 Why is AbstractGrid an abstract class? AbstractGrid does not define all
the methods in Grid and it’s not intended to be instantiated.

	 9.	 What does the toString method return? A String containing the locations of
all the occupants

	10.	 The concrete subclasses of the AbstractGrid must define which methods?
getNumRows, getNumCols, isValid, getOccupiedLocations,
get, put, remove

	11.	 Does a concrete class that implements the Grid interface need to extend
AbstractGrid? Why/Why not? No, but a concrete class that does not extend
AbstractGrid needs to implement all Grid methods.

	12.	 Complete Do You Know? Set 10.

© 2010 The College Board. © 2010 The College Board.

121

AP Computer Science Curriculum Module: GridWorld

Appendix E

GridWorld Case Study Part 5 — BoundedGrid
Grid Data Structures
Reading Worksheet

The BoundedGrid Class

	 1.	 Read page 41 of the Student Manual.

	 2.	 What does a BoundedGrid have a fixed number of ?

	 3.	 What arguments does the constructor for BoundedGrid require?

	 4.	 If a method attempts to access a location outside of a BoundedGrid, what
results?

	 5.	 How does the BoundedGrid class store grid occupants?

	 6.	 What type of data is the occupantArray declared to hold?

	 7.	 When the array is constructed, what is contained in the array elements?

	 8.	 Why not declare: private E[][] occupantArray?

	 9.	 Why not just have the Grid<Actor> and avoid generics?

	10.	 What advantage would it be to hold the occupants in an instance variable
ArrayList<ArrayList<E>> occupantList instead of Object[][]
occupantArray?

	11.	 How does the BoundedGrid make sure that only type E objects are added to
the array?

	12.	 Complete Do You Know? Set 11.

Suppose a new class BoundedArrayListGrid<E> is created, which is a subclass of
AbstractGrid<E>. The class stores the grid occupants in a two-dimensional list.

private ArrayList<ArrayList<E>> occupantList;

	13.	 Write the getNumRows method for BoundedArrayListGrid<E>.

	14.	 What is the time complexity (Big-Oh) for the getNumRows method?

	15.	 Write the getNumCols method for BoundedArrayListGrid<E>.

© 2010 The College Board.

122

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

	16.	 What is the time complexity (Big-Oh) for the getNumCols method?

	17.	 Write the constructor for BoundedArrayListGrid<E>. (Hint: use
BoundedGrid.java as a model.)

© 2010 The College Board. © 2010 The College Board.

123

AP Computer Science Curriculum Module: GridWorld

GridWorld Case Study Part 5 — BoundedGrid
Grid Data Structures
Reading Worksheet (Solutions)

The BoundedGrid Class

	 1.	 Read page 41 of the Student Manual.

	 2.	 What does a BoundedGrid have a fixed number of ? rows and columns

	 3.	 What arguments does the constructor for BoundedGrid require? int rows,
int cols

	 4.	 If a method attempts to access a location outside of a BoundedGrid, what
results? A run-time exception is thrown.

	 5.	 How does the BoundedGrid class store grid occupants? 2-D array.

	 6.	 What type of data is the occupantArray declared to hold? Object

	 7.	 When the array is constructed, what is contained in the array elements? null

	 8.	 Why not declare: private E[][] occupantArray? Java does not allow
generic arrays.

	 9.	 Why not just have the Grid<Actor> and avoid generics? The Grid<E> is
designed to work with any type of objects, not just actors. Limiting Grid to actors
would prevent it from being used for making games, maps or other non Actor uses.

	10.	 What advantage would it be to hold the occupants in an instance variable
ArrayList<ArrayList<E>> occupantList instead of Object[][]
occupantArray? Java allows generic ArrayLists.

	11.	 How does the BoundedGrid make sure that only type E objects are added to
the array? The put method requires elements to be of type E.

	12.	 Complete Do You Know? Set 11.

Suppose a new class BoundedArrayListGrid<E> is created that is a subclass of
AbstractGrid<E>. The class stores the grid occupants in a two-dimensional list.

private ArrayList<ArrayList<E>> occupantList;

© 2010 The College Board.

124

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

13.	 Write the getNumRows method for BoundedArrayListGrid<E>.
public int getNumRows()
{
	 return occupantList.size();
}

14.	 What is the time complexity (Big-Oh) for the getNumRows method? O(1)

15.	 Write the getNumCols method for BoundedArrayListGrid<E>.
public int getNumCols()
{
	 return occupantList.get(0).size();
}

16.	 What is the time complexity (Big-Oh) for the getNumCols method? O(1)

17.	 Write the constructor for BoundedArrayListGrid<E> . (Hint: use BoundedGrid.
java as a model.)
public BoundedArrayListGrid(int rows, int cols)
{
	 if (rows <= 0)
		 throw new IllegalArgumentException(“rows <= 0”);
	 if (cols <= 0)
		 throw new IllegalArgumentException(“cols <= 0”);

	 occupantList = new ArrayList<ArrayList<E>>();

	 for (int i = 0; i < rows; i++)
{

	 ArrayList<E> row = new ArrayList<E>();

		 occupantList.add(row);
		 for (int j = 0; j < cols; j++)

			 row.add(null);

}

}

© 2010 The College Board. © 2010 The College Board.

125

AP Computer Science Curriculum Module: GridWorld

Appendix F

GridWorld Case Study Part 5 — UnboundedGrid
Grid Data Structures
Reading Worksheet

The UnboundedGrid Class

	 1.	 Read page 42 of the Student Manual.

	 2.	 What arguments does the constructor for BoundedGrid require?

	 3.	 What locations are valid in an UnboundedGrid?

	 4.	 How are locations stored in an UnboundedGrid?

	 5.	 What is the key type for the map?

	 6.	 What is the value type for the map?

	 7.	 What is returned by the getNumRows and getNumCols methods for
UnboundedGrid?

	 8.	 What is returned by the isValid method for UnboundedGrid?

	 9.	 What map method does getOccupiedLocations use to determine occupied
location in the grid?

	10.	 Complete Do You Know? Set 12.

Suppose a new class was constructed UnboundedBinarySearchTreeGrid<E>,
which is a subclass of AbstractGrid<E>. The class stores the occupants in a binary
search tree based on their Location. (Need to guarantee a getLocation method
for this to work, so the constructor throws an exception if E is not an Actor.)

private TreeNode occupantBST;

	11.	 What is returned by the getNumRows and getNumCols methods for
UnboundedGrid?

	12.	 Write the get method for UnboundedBinarySearchTreeGrid<E>.

	13.	 What is the time complexity (Big-Oh) for get method?

© 2010 The College Board.

126

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

GridWorld Case Study Part 5 — UnboundedGrid
Grid Data Structures
Reading Worksheet (Solutions)

The UnboundedGrid Class

	 1.	 Read page 42 of the Student Manual.

	 2.	 What arguments does the constructor for BoundedGrid require? None

	 3.	 What locations are valid in an UnboundedGrid? Any

	 4.	 How are locations stored in an UnboundedGrid? Map<Location, E>

	 5.	 What is the key type for the map? Location

	 6.	 What is the value type for the map? E — same type as grid occupants

	 7.	 What is returned by the getNumRows and getNumCols methods for
UnboundedGrid? -1

	 8.	 What is returned by the isValid method for UnboundedGrid? true

	 9.	 What map method does getOccupiedLocations use to determine occupied
location in the grid? keyset()

	10.	 Complete Do You Know? Set 12.

Suppose a new class was constructed UnboundedBinarySearchTreeGrid<E>,
which is a subclass of AbstractGrid<E>. The class stores the occupants in a binary
search tree based on their Location. (Need to guarantee a getLocation method
for this to work, so the constructor throws an exception if E is not an Actor.)

private TreeNode occupantBST;

	11.	 What is returned by the getNumRows and getNumCols methods for
UnboundedGrid? -1

	12.	 Write the get method for UnboundedBinarySearchTreeGrid<E>.
public E get(Location loc)
{

	 if (loc == null)
		 throw new NullPointerException(“loc == null”);
	 return getHelper(root, loc);
}

private E getHelper(TreeNode node, Location loc)

© 2010 The College Board. © 2010 The College Board.

127

AP Computer Science Curriculum Module: GridWorld

{
	 if (node == null)
		 return null;
	 Location nodeLoc = node.getLocation();
	 if (loc.compareTo(nodeLoc) == 0)
		 return node.getOccupant();
	 else if (loc.compareTo(nodeLoc) < 0)
		 return getHelper (node.getLeft(), loc);
	 else
		 return getHelper (node.getRight(), loc);
}

13.	 What is the time complexity (Big-Oh) for get method?

O(n) //Unbalanced Tree
O(Log n) //Balanced Tree

© 2010 The College Board.

128

AP Computer Science Curriculum Module: GridWorld

© 2010 The College Board.

About the Editor and Authors
Joe Coglianese is an AP Computer Science teacher at Troy High School in Fullerton,
Calif., and has been teaching since 2000. He has been an AP Reader for the AP Computer
Science Exam since 2006. He has worked to develop programs to interest historically
underrepresented students in technology.

Judy Hromcik is an AP Computer Science teacher at Arlington High School in Arlington,
Texas. She was a member of the AP Computer Science Development Committee from
2001 to 2005, has been an AP reader and is currently a Question Leader for the AP
Computer Science Exam. She has been a College Board consultant since 1997 and has
conducted many AP Computer Science Summer Institutes. Hromcik wrote the solutions
for the new case study GridWorld and has pilot tested GridWorld in her classes.

Kathleen A. Larson taught AP Computer Science at Kingston High School, Kingston, N.Y.,
from 1984 through 2005. She currently teaches Introduction to Java Programming at Ulster
County Community College, part of the State University of New York System. She has served
as an AP Reader, Table Leader and Question Leader for the AP Computer Science Exam;
is a past member of the AP Computer Science Development Committee; and has taught
numerous one-day, two-day and weeklong College Board–sponsored workshops for AP
Computer Science teachers. Her publications include AP Computer Science syllabi and the
Teacher’s Guide for the Marine Biology Simulation Case Study.

Mike Lew is an AP Computer Science and AP Physics teacher at Loyola High School in
Los Angeles, Calif., where he has taught since 1991. He has been teaching AP Computer
Science since 1995. Lew was an AP Computer Science Exam Reader from 2001 to 2004
and has been presenting one-day AP workshops and weeklong AP Summer Institutes
since 2004. He has also authored a teacher’s guide for the textbook Head First Java.

Leigh Ann Sudol has been teaching computer science since 1996. During that time she
has taught in public high schools, community colleges and universities. Her courses have
been delivered online, in person and also in mixed settings. She is currently a visiting
lecturer in the School of Computer Science at Carnegie Mellon University and a member
of the board of directors of the Computer Science Teachers Association, where she serves
as chair of the publications committee. Sudol has served as the high school liaison for the
Special Interest Group on Computer Science Education (SIGCSE) 2007. She coauthored
Java Software Structures for AP Computer Science AB and also the most recent edition of
Addison Wesley’s Review for the AP Computer Science Exam in Java. She has been a College
Board consultant and an AP Computer Science Exam Reader since 2002 and a Question
Leader for the AP Exam since 2005.

© 2010 The College Board. © 2010 The College Board.

129

AP Computer Science Curriculum Module: GridWorld

Fran Trees taught AP Computer Science at Westfield High School in Westfield, N.J.,
from 1983 to 2001. She presently teaches computer science and mathematics at Drew
University in Madison, N.J. She has served as an AP Reader, Question Leader and
Exam Leader for the AP Computer Science Exam. She has also served as a member
of the AP Computer Science Test Development Committee and a member of various
ad hoc committees for AP Computer Science. Trees has served as a College Board
consultant in computer science since 1985 and is the primary author of the Teacher’s
Guide for AP Computer Science (C++) and the Advanced Placement® Computer Science
Study Guide to Accompany Java Concepts.

