

The
Teaching
Series

Special Focus in
Computer Science

Object-Oriented Design

 connect to college success™
www.collegeboard.com

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect
students to college success and opportunity. Founded in 1900, the association is composed of
more than 5,000 schools, colleges, universities, and other educational organizations. Each
year, the College Board serves seven million students and their parents, 23,000 high schools,
and 3,500 colleges through major programs and services in college admissions, guidance,
assessment, financial aid, enrollment, and teaching and learning. Among its best-known
programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®).
The College Board is committed to the principles of excellence and equity, and that
commitment is embodied in all of its programs, services, activities, and concerns.

Equity Policy Statement

The College Board believes that all students should be prepared for and have an opportunity
to participate successfully in college, and that equitable access to higher education must be a
guiding principle for teachers, counselors, administrators, and policymakers. As part of this,
all students should be given appropriate guidance about college admissions, and provided the
full support necessary to ensure college admission and success. All students should be
encouraged to accept the challenge of a rigorous academic curriculum through enrollment in
college preparatory programs and AP courses. Schools should make every effort to ensure
that AP and other college-level classes reflect the diversity of the student population. The
College Board encourages the elimination of barriers that limit access to demanding courses
for all students, particularly those from traditionally underrepresented ethnic, racial, and
socioeconomic groups.

For more information about equity and access in principle and practice, please send an email
to apequity@collegeboard.org.

© 2005 The College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP
Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation
Service, CollegeEd, connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and
Setting the Cornerstones are trademarks owned by the College Board. PSAT/NMSQT is a registered trademark of the
College Board and National Merit Scholarship Corporation. All other products and services herein may be trademarks of
their respective owners. Permission to use copyrighted College Board materials may be requested online at:
www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program and Pre-AP: apcentral.collegeboard.com.

Table of Contents

Introduction ... 1

Immersing AP CS Students in Object-Oriented Design Using Role-Playing.............................. 2
 by Robb Cutler

Automated Unit Testing with JUnit.. 8
 by Dave Wittry

Modifying and Creating Classes: Money and Fraction... 18
 by Joe Kmoch

Design Question Lab ... 28
 by Judy Hromcik

The Game of SET: A Case Study in OO Design and Team Development 31
 by Maria Litvin

Marine Biology Simulation:
The Strategy Pattern Applied to the Fish Class... 54

 by Chris Nevison

Object-Oriented Design Concepts via Playing Cards ... 73
 by Owen Astrachan

Object-Oriented Programming Web Resources.. 81
by Debbie Carter

Contributors ... 85

Important Note:

The following materials are organized around a particular theme that reflects important
topics in AP Computer Science. They are intended to provide teachers with professional
development ideas and resources relating to that theme. However, the chosen theme cannot,
and should not, be taken as any indication that a particular topic will appear on the AP
Exam.

The Teaching Series

Introduction from the Editor

Fran Trees
Drew University
Madison, New Jersey

I remember sitting in my Spanish class having the teacher ask me a question in Spanish.
Mentally, I would parse the question, translate each word into English, formulate my
answer in English, translate my answer (usually word by word) into Spanish, and then
verbalize my Spanish response (which was occasionally understood by my teacher). The
most meaningful advice given to me at that time was, “My dear, you must learn to
THINK in Spanish.”

With that said. . .

The transition to Java finds AP Computer Science (AP CS) teachers in various stages of
“living the language.” Java was the first and only language some novice teachers ever
studied. These teachers are able to “think in Java.” For most of us, this is not the case.
What most of us have done during this transition is looked at materials we have worked
with in the past and attempted to translate them into Java. Because the object-oriented
paradigm is now a focus of AP CS, and successful translation from C++ is extremely
difficult to accomplish with this as a goal, we really shouldn’t continue to attempt this
translation. Our goal now should be to learn to THINK in Java and live and breathe in the
object-oriented world. To help you achieve this goal, our theme this year is object-
oriented design. It is hoped that the materials contained in this section help you in the
classroom and, more importantly, provide ideas and directions that will assist you in the
development of your own materials. We have described teaching strategies that use role
playing and unit testing; included sample design problems, team projects, lab
assignments, and worksheets; and finally, provided you with a list of Web-based
resources that point to object-oriented materials. I would like to thank the contributors
for their hard work and continued commitment to our AP CS family.

Special Focus in Computer Science: Object-Oriented Design 1

The Teaching Series

Immersing AP CS Students in Object-Oriented Design
Using Role-Playing

Robb Cutler
The Harker School
San Jose, California

Introduction
Roughly one-third to one-half of my AP CS-AB students have no programming or
computer science background, and many of the remaining students have no or limited
understanding of good object-oriented design principles. I introduce these concepts to
my students using some simple exercises whereby for two weeks at the beginning of the
year, they become actors immersed in the world of objects.

Initial Exercises
We start with the “first-day” role plays written by David Levine of St. Bonaventure
University. These consist of some simple “classes,” which can be acted out by the
students.

For example, an “acrobat” can do three things: Clap his or her hands a given number of
times, perform knee bends (squatting and then standing up) a given number of times, and
report how many exercises have been completed.

The methods can be given to students as instructions on a sheet of paper or written on the
whiteboard at the front of the classroom. For an acrobat, the methods are:

When you are asked to clap, you will be given a number. Clap your hands that many
times.

When you are asked to perform knee bends, you will be given a number. Stand up and
sit down that many times. Note that if you are told “two,” then you will stand up twice
AND sit down twice.

When you are asked to count, you will reply (verbally) with the total number of
exercises you have done. Note that clapping four times counts as four exercises and
performing two knee bends counts as two. If you have done these things (and only these
things), your reply should be “six.”

Special Focus in Computer Science: Object-Oriented Design 2

The Teaching Series

As the teacher, you instantiate an acrobat by asking a student—in this case, a girl named
Maya—to construct herself as an acrobat.

Maya, construct yourself as an acrobat.

To call a method, say the student’s name and invoke the method with any appropriate
parameters. For instance:

Maya, clap three.

Maya, knee bend two.

Maya, count.

Maya, clap one.

Maya, count.

As you ask her to do these things, Maya will clap three times, knee bend twice, say “five,”
clap once, and say “six.”

You can instantiate more than one acrobat object by asking other students to also
construct themselves as acrobats.

Sean, construct yourself as an acrobat.

Killy, construct yourself as an acrobat.

You can then invoke methods for different acrobats.

Sean, clap four.

Killy, clap two.

Sean, count.

Special Focus in Computer Science: Object-Oriented Design 3

The Teaching Series

This helps students differentiate between the acrobat class (the instructions to an acrobat)
and an acrobat object (the student). You can emphasize this by giving some “illegal”
instructions such as:

Acrobat, clap four. (Only acrobat objects can clap.)

Maya, clap. (Clapping requires a count.)

Clap three. (No object specified.)

Be sure to explain why these instructions are improper for the students.

After 15 minutes of this role play, my students rarely make the otherwise common
mistake of calling a method with the class name rather than with the object name. When
they do, a questioning “Acrobat clap?” from me anytime during the rest of the year brings
a smile to the student’s face and instant recognition of the problem.

You can also start associating the instructions with Java code. Write on the board the line

Acrobat sean = new Acrobat();

as you tell Sean to construct himself as an acrobat. Write

sean.clap(4);

when you instruct him to clap four times.

Students very quickly learn the Java syntax for instantiating objects and for calling
methods in a way that is not only fun but also easily remembered.

Other classes in the first-day role plays include:

• a calculator that can add, subtract, and multiply pairs of numbers
• a lazy calculator that can add either two or four numbers (overloading the add

method) and does so by creating a calculator object and asking it to do the work
• a die that returns a random roll, keeps track of the number of rolls, and can reset

the roll counter when asked
• a blackboard that draws shapes on the board

Naturally, part of the fun is coming up with your own classes. You can also extend the
role plays to give students an understanding of concepts such as inheritance, overriding,
overloading, interfaces, and abstract classes.

Special Focus in Computer Science: Object-Oriented Design 4

The Teaching Series

Designing an ATM Machine

After one class period to get used to the idea of objects and role plays, I ask my students
to design a role play for an ATM machine.

I suggest that they have certain classes (such as a display, a cash dispenser, a card reader,
and a bank account), and then I ask them to decide what other classes and methods they
need.

My goal is to guide them in their design without doing the work for them. I try to let the
students make design decisions whenever possible. My only input is to gently lead them
away from catastrophic mistakes while letting them have freedom in their design. For
instance, they can decide whether (a) each button on the ATM keypad is a separate object
or (b) the buttons are just part of the keypad object as a whole.

Once they have decided which classes and methods they need and have written the scripts
for the methods, they act out their role play. In doing so, they often find “bugs” in their
methods as they realize that they have forgotten to, for example, have the card reader
eject the customer’s card!

The result of this exercise is that students begin to think in object-oriented ways. In
addition, they learn the importance of top-down design and of designing before coding.
Naturally, other large object-oriented projects would work as well. Other design ideas I’ve
heard about (but not tried) include a vending machine, a building with multiple elevators,
and a calculator.

The Marine Biology Simulation Case Study

Part of the AP CS curriculum includes learning and being able to modify the Marine
Biology Simulation Case Study (MBSCS), a large and reasonably complex simulation of
fish interacting in a marine environment. Most students, even after several months of
programming, find the many pages of code somewhat daunting, to say the least.

Using the MBSCS role plays initially developed by Steve Andrianoff and David Levine
and modified by me, I ask my students to become fish (regular Fish, SlowFish, and
DarterFish), a BoundedEnv, a Simulation, and even a random number generator. We
spend several class periods performing the case study.

Special Focus in Computer Science: Object-Oriented Design 5

The Teaching Series

As with the first-day role plays, personifying the objects in the simulation makes the code
seem much more manageable to the students and brings a deeper and longer-lasting
understanding of the case study. Six months after we did the performance, students still
remembered who played the part of the SlowFish or the BoundedEnv and, more
importantly, they remembered how the objects interacted with each other.

Clearly, acting out the case study is no substitute for an in-depth review of the code and
hands-on practice modifying and extending the case study. Starting with a role play,
however, gives students a good introduction to a large and complex simulation and
allows them to experience the interactions among the various objects.

Summary
By the end of two weeks of role-playing, my students—without typing a single line of Java
code—have accomplished four major goals.

First, they have acquired a good intuitive sense of object-oriented design. They have
learned about classes, objects, methods, constructors, parameters, instance variables, local
variables, overloading, and inheritance. They understand the difference between a class
and an object, between instance variables and local variables, and between methods and
constructors. They can instantiate objects and know that they need an object name in
order to call a method.

Second, my students have designed, written, and executed (through role plays) a large
and complex program: the ATM machine. In doing so, they have learned good object-
oriented and top-down design principles and debugging strategies. They have also
learned a good deal of Java syntax as well.

Third, they have immersed themselves in the MBSCS and learned how it works before
looking at any code. When they get to the actual code, they are very comfortable with it.
Finally, my students have learned an invaluable resource, which they now have at their
disposal throughout the course: the ability to role-play their code. It is not uncommon to
hear students in my class talking to themselves throughout the year as they personify the
objects in their code.

Role-playing is one more way to make programming and computer science more
accessible to students, teach them good skills, and, most importantly, make class much
more fun!

Special Focus in Computer Science: Object-Oriented Design 6

The Teaching Series

Resources

The first-day role plays and the MBSCS role plays can be found at
web.sbu.edu/cs/dlevine/RolePlay/roleplay.html.

Chris Nevison of Colgate University has developed some other role plays suitable for AP
CS students. These can be found at
cs.colgate.edu/APCS/Java/RolePlays/JavaRolePlays.htm.

Special Focus in Computer Science: Object-Oriented Design 7

The Teaching Series

Automated Unit Testing with JUnit

A tool for unit testing, design, lab grading,
student motivation, reasoning, and stress reduction

Dave Wittry
Troy High School
Fullerton, California

The use of JUnit to aid in the design of a class and the creation of error-free code has been
well discussed in other works. While this paper discusses design and error-free code to
some degree, its main focus is on the most useful and motivational aspects of JUnit for
the student and teacher in a high school computer science classroom. The approach is,
therefore, practical. The following pages simply detail the understanding and advice of
one teacher after a year’s use of JUnit in the classroom. Accompanying the discussion of
JUnit below is an explanation of a complementary and free lab grading tool, Jamtester.

JUnit from the Teacher’s Perspective

What is JUnit?
JUnit (www.junit.org) is open-source software, an API framework, used to automate unit
and regression testing. In short, it is software-exercising software. Martin Fowler says of
it, “Never in the field of software development was so much owed by so many to so few
lines of code.”

How does JUnit work?
Each Java class that you write will correspond to a JUnit Java class that will test the
methods of your class.

Special Focus in Computer Science: Object-Oriented Design 8

The Teaching Series

Here’s an example:

// your students are trying to write/test this class
public class Student {
 private int exam1, exam2;

 public Student(int ex1, int ex2) {
 exam1 = ex1;
 exam2 = ex2;
 }

 public int bestScore() {
 if (exam1 > exam2) return exam1;
 return exam2;
 }

 public int worstScore() {
 return exam1; // intentional "failure".
 } // student needs to fix logic
}

this tests this
// this is the test class
import junit.framework.*;

public class StudentTest extends TestCase {

 // here is one unit test method
 public void testBestScore() {
 Student stud1 = new Student(90, 85);
 int answer = stud1.bestScore();

 assertEquals(answer, 90); // compare to known answer
 }

 // here is one unit test method
 public void testWorstScore() {
 Student stud1 = new Student(90, 85);
 int answer = stud1.worstScore();

 assertEquals(answer, 85); // compare to known answer
}
 // more unit tests not shown…

 // will generate results of tests (text output)
 public static void main(String[] args) {
 TestSuite suite = new TestSuite(StudentTest.class);
 junit.textui.TestRunner.run(suite);
 }
}

Special Focus in Computer Science: Object-Oriented Design 9

The Teaching Series

Classes and methods from the JUnit framework are in bold. The above generates the
following text output: “Tests run: 2, Failures: 1, Errors: 0,” however, with a bit more
detailed information.

As far as the testBestScore() method above,

• an object to be tested was instantiated,
• a method on the object was invoked,
• and the returned answer was compared with the known answer by using JUnit’s

assertXXX most common method, assertEquals.

That’s it!

If the test fails, the student knows to edit her code and rerun the test suite.

How and when should I introduce and use JUnit in the classroom?
At the beginning of the school year, you routinely spell out the methods to write for each
Java class; this is the perfect time to give students a JUnit test file for their class, complete
with a full suite of test cases.

Students will benefit by this early introduction. They will not need to devise the test
cases themselves, nor will they need to worry about writing a main program to test their
classes. Instead, they will be able to focus on writing their classes, and they will naturally
over time gain a comprehensive understanding of JUnit, including arranging syntax and
developing a complete set of test cases. They will also know when they have finished the
lab, that is, when all tests are successful.

You, as a teacher, will also benefit. Since you do not begin the year by teaching “main”
with all of its syntax and keywords, you can focus immediately on teaching objects and
inheritance. This way, you can, from the start, model and communicate good design
methods through the use of test cases by guiding students through a systematic way of
testing their code. Moreover, you will feel confident that your students will be writing
correct method headings, and your students will feel confident as they earn perfect scores
on their labs.

Special Focus in Computer Science: Object-Oriented Design 10

The Teaching Series

How should I use JUnit to help students test their classes?
Over time you will give your students JUnit test files which are less and less complete. In
other words, the test suites will intentionally be missing some of the test cases. This way,
the students will devise and write test cases on their own, and they will, at the same time,
develop the analytical skills necessary to recognize that they have produced a complete set
of test cases.

Eventually, you will stop giving them JUnit test files altogether. At this point, an amazing
thing will happen: the process will become completely student-centered. Without being
prompted, students will create their own JUnit test files. (See also “JUnit from the
Student’s Perspective” below to learn about their motivation.) In this manner, you will
have systematically and gradually taught them to analyze, design, test, and function
independently of you, the teacher.

How can I possibly fit one more topic into my course?
I wondered this, too, but the answer is simple: the students learn JUnit on their own.
Since it is easy to teach and can be introduced slowly, it consumes very little instructional
time. The payoff is extraordinarily high in terms of student understanding and
performance.

How can JUnit aid in regression testing?

JUnit is regression testing! But it is regression testing that is efficient and precise. It can
perform and repeat tests at any time.

Think of it this way: how many times does a student, or professional for that matter, test a
method until it seems to work, and then destabilize the method already tested by making
changes to code?

Often. Too often, in fact.

JUnit is a tool that enables all tests to be run at any time. Thus, students will know
immediately and at will that a tested method has begun to behave badly.

Special Focus in Computer Science: Object-Oriented Design 11

The Teaching Series

Why are ad hoc testing techniques flawed?
When using ad hoc testing techniques such as embedded print statements and
customized main programs, students are not naturally inclined to rerun or, more
importantly, recreate tests on their own. Who would? Such techniques are inefficient,
tedious, time-consuming, and error-prone.

As you know, students wait until they have completely finished the creation process
before they test their projects even once. This approach illustrates flawed reasoning and
compounds the problems that they will encounter as they attempt to remove errors in
their code. As you also know, coding and testing should not be treated as disparate and
independent functions. They are integral functions, complementary to one another. JUnit
reconnects coding and testing in a manner that causes the students to embrace logical
thinking and good coding practices from the outset.

How does JUnit help students design cohesive methods?
As they master JUnit testing techniques, students will also be preparing to design cohesive
methods, that is, methods that perform a single well-defined task. Importantly, cohesive
methods are hallmarks of a well-designed class.

Using JUnit early in the year, you will lecture about the proper design of cohesive
methods, among other topics, and you will reinforce your lectures by model. As the year
progresses, you will wean your students from the complete test suites, causing them to
test and design more and more on their own and undoubtedly applying the good design
skills that they have learned through your modeling. This way, students will be more
likely to recognize a method that needs refactoring, that is, broken down into several,
more cohesive methods. Through these techniques, you will communicate your goal: that
students will become good testers and good designers.

How can JUnit help me give my students more feedback?
When you give your students a complete test suite early in the year, you will essentially be
giving them the ability to receive your feedback continuously but vicariously throughout
the year. The feedback you give, that is, that JUnit gives, is immediate, specific, and
continual. Students will run their tests over and over, that is, each time they change code.
Your own feedback could not be any more specific, useful, immediate, convenient, or
time-saving.

Special Focus in Computer Science: Object-Oriented Design 12

The Teaching Series

Does all of this mean that I will save time on grading labs?

In one word, YES.

In another word, Jamtester.

Jamtester, JUnit Auto-Matic Tester, is a free software tool which will enable you to grade
all of your students’ labs simultaneously.

You will no longer need to compile and run each student lab individually.

You will no longer need to stop and write down results.

You will no longer need to interact with a program by typing in user input to grade it.

Jamtester works very simply: you give it a JUnit test file, student directories containing
the .java file(s) to be graded, and the .jar/.class files needed to make the project compile.
Hit “go” and sit back as it grades the labs.

The tool allows you to save results to a .csv file, a format readily imported by Excel and
most grading programs. You can also edit the student’s source directly in the tool, then
rerun the tests and have the new results right there in a table.

Special Focus in Computer Science: Object-Oriented Design 13

The Teaching Series

Special Focus in Computer Science: Object-Oriented Design 14

The Teaching Series

JUnit from the Student’s Perspective

Can students create, edit, and run JUnit tests easily and independently of any IDE?
Yes. In fact, Jamtester is not only a teacher tool, but it is also a student tool. Regardless of
the IDE you choose for your classroom, students will be able to test their source files
using JUnit files. Students can work simultaneously with their IDE and the Jamtester
student tool, testing as often as they like. If they wish, they can even edit their source files
directly in Jamtester without having to switch to their IDE.

Special Focus in Computer Science: Object-Oriented Design 15

The Teaching Series

Can use of JUnit alleviate students’ stress levels?
If you have read my article to this point, you will not have a hard time understanding that
JUnit will indeed reduce or likely eliminate student stress. If you are starting your reading
at this point, this may sound far-fetched.

Stress in students arises from uncertainty. Using some of the traditional procedures,
students cannot be certain that their coding is actually and accurately finished. Although
they can be capable of convincing themselves that their code is perfect, they turn in their
solutions, still anxious that they may have forgotten something—probably something
fundamental, something that will cost them valuable points.

However, by using JUnit, especially from the beginning of the year, the student is virtually
guaranteed that she will turn in a perfectly working Java class. You are giving her that
chance. She knows that if she invests the time, she will reap the benefits. Most
importantly, because she knows exactly where she stands academically, she can operate
essentially stress-free. She is in control of her grades.

The famous physicist Niels Bohr once said, “An expert is a man who has made all the
mistakes. . . .” However, we also know that the student is a person who becomes stressed
at the prospect of making mistakes. JUnit gives your students the academic and emotional
freedom to make mistakes and become unstressed experts.

How does the use of JUnit increase student-student cooperation?
While I do not allow my students to pass their source code around the lab for others to
see, I do encourage them to share their JUnit files. This way, they share the work
associated with devising test cases by brainstorming together. A natural and positive
outcome of a student discussion of test cases is that the students themselves analyze their
own code. In so doing, they may very well discover a deficiency in their own algorithm or
design before they even write or run the test.

If your students work in pairs, they may jointly create test suites. In a recent study,
Kessler and Williams determined that this technique reduces cheating. Pair-
programming, along with unit testing, is part of a discipline of software development
called Extreme Programming. See bibliography.

Special Focus in Computer Science: Object-Oriented Design 16

The Teaching Series

Selected Bibliography
Vaaraniemi, Sami. “The benefits of automated unit testing.” The Code Project. 9

November 2003. 29 April 2004
www.codeproject.com/gen/design/onunittesting.asp.

Jeffries, Ron. “Essential XP: Emergent Design.” Xprogramming.com: An Extreme

Programming Resource. 21 October 2001. 29 April 2004
www.xprogramming.com/xpmag/expEmergentDesign.htm.

Jeffries, Ron. “What is Extreme Programming?” Xprogramming.com: An Extreme

Programming Resource. 8 November 2001. 29 April 2004
www.xprogramming.com/xpmag/whatisxp.htm.

Kessler, Robert and Laurie Williams. “Experimenting with Industry’s ‘Pair Programming’

Model in the Computer Science Classroom.” Pair Programming. 29 April 2004
www.pairprogramming.com.

Weirich, Jim. “Design by Contract and Unit Testing.” Online posting. 6 July 2003. Ruby

Buzz Forum. 29 April 2004
www.artima.com/forums/flat.jsp?forum=123&thread=6794.

Special Focus in Computer Science: Object-Oriented Design 17

The Teaching Series

Modifying and Creating Classes: Money and Fraction

Joe Kmoch
Washington High School
Milwaukee, Wisconsin

Justification:
We are going to study an Abstract Data Type (ADT) for manipulating amounts of
money. The justification for an ADT about money might be the development of classes to
handle money from different countries or to maintain exact accuracy in calculations with
money.

Part A:
In this part, you will study the class Money.java. You will need to perform several
tasks with this class.

Specification:
Money will be created as a Java class. Like any class, it is a recipe (outline, blueprint) for a
structure, a declaration. When thinking about manipulating U.S. money, we know that
we’ll need just two data items (instance, member, state variables):

 myDollars

 myCents

We’ll begin with five actions (member functions) that we can do to a money object.

initialize // constructor-like

add two amounts of money // modifier (mutator)

create a string to display // accessor (observer)

access the number of dollars // accessor (observer)

access the number of cents // accessor (observer)

Special Focus in Computer Science: Object-Oriented Design 18

The Teaching Series

At this point, you should study the sample program MoneyTest.java and its sample
output to see how the class Money works (see Appendix within this article). If you have
access to the code, try these tasks:

1. Compile MoneyTest.java and Money.java, then run MoneyTest.

2. Enter 6.52 (i.e., enter 6 for dollars then enter 52 for cents).

a. What answer do you see displayed? _____________________________________

b. What should the answer be? __

(The problem you observe is left as an exercise for you a bit later.)

Now, take a look at the class Money.java (in the Appendix) and answer these
questions.

3. Look at the constructor(s).

a. How many constructors do you see? ____________________________________

b. Write the header for the default constructor.

 __

c. To what values are the instance variables set in the default constructor?

 __

d. Instead of using the method initialize in the other constructor, write code to

set the instance variables myDollars and myCents.

 __

 __

Special Focus in Computer Science: Object-Oriented Design 19

The Teaching Series

4. Look at the code for the add member function.

a. Why does the member function add have only one parameter when you know
that two values are necessary to add?

 __

 __

b. In the comments just above this method, what does the word “this” refer to?

 __

 __

c. Consider this code to replace the code in the add member function.

Money result = newMoney();

result.myCents = myCents + amount.myCents;

result.myDollars = myDollars + amount.myDollars

return result;

This code will correctly add two amounts of money, but the result will be unusual.
Can you create two values of money for which result will not be in the form you
would expect if you added amounts of money? Indicate what the result for your
amounts would be using this code.

5. Look at the toString member function.

a. As you should have noticed in exercise 2 above, the output was incorrect. What do
you have to do in order to make the output appear correctly?

 __

 __

b. Rewrite the code for this member function which will return the proper String.

(Hint: You’ll need to use an if statement.)

Special Focus in Computer Science: Object-Oriented Design 20

The Teaching Series

6. Run MoneyTest again and use the value 6.75.

a. What output is displayed? __

b. Write a new private member function normalize to the Money class that

causes the number of cents to be between 0 and 99 and the dollar amount to be
adjusted accordingly. For example, if the amount of money was 4 dollars and 112
cents, the result of normalize would be 5 dollars and 12 cents.

c. Where would you call the normalize member function?

d. Enter your new method normalize into the Money class and also call this

method where you have indicated in c. Then test it out.

There are several other methods that could be included which would make the Money
class more useful. One of these is multiplication.

7. Think about what a multiplication method might do.

a. Does it make sense to multiply two money values? Why?

 __

 __

b. What does make sense for multiplication involving money?

 __

 __

c. What is the type for the return value of this method?

 __

d. Devise an algorithm (set of instructions) which would multiply a money value by

an integer. Write your code in the space below.

Special Focus in Computer Science: Object-Oriented Design 21

The Teaching Series

e. Does the algorithm change if you are multiplying by a double versus an integer?

 __

 __

f. Write the complete Java method to do multiplication in the space below, then

enter it into your Money class and test it using MoneyTest. (Don’t forget to call
your normalize method to get reasonable answers.) Test your new routine by
multiplying 2.50 by 3 and several input values of your choosing.

8. Optional for experts:

a. Work the previous exercises for a division method.

b. Work through the previous exercises for a subtraction method.

c. Are there any other operations on money which should be considered for this

class?

 __

 __

Special Focus in Computer Science: Object-Oriented Design 22

The Teaching Series

Part B: Another Class – Fraction
You want a class that will allow you to deal with fractions.

Let’s think about this class.

1. What instance variables might you need to include? ___________________________

2. What values might you initialize a Fraction object to if you have a default

constructor?

3. The initial version of the five Money class methods were described.

a. List those methods which would be appropriate for our new Fraction class.

 __

 __

b. What other arithmetic operations on a Fraction object might we want to also

include?

 __

c. normalize is another method we’d want to have. What would this method do

for a Fraction object?

 __

4. After you create a Fraction class that at least constructs a Fraction object and
then does a single operation (such as add), create a client test for your class. This
might allow the user to input the operation to test and the fractions to use. You could
have the client test program ask the user for the operation and then ask for each part
of each of the two fractions. An alternative would be to allow the user to input the
operator followed by four integers representing the two fractions. For example, if the
user entered + 7 10 2 5, the program would add the two fractions 7/10 and 2/5.

Special Focus in Computer Science: Object-Oriented Design 23

The Teaching Series

Appendix

 MoneyTest.java
 /**
 * MoneyTest is a class used to test the class Money.
 */
 public class MoneyTest
 {

 public static void main(String[] args
 throws IOException
 {
 BufferedReader console = new BufferedReader(
 new InputStreamReader(System.in));
 String input;

 Money valueA = new Money();
 Money valueB = new Money(8, 50);
 Money sum;
 int dollars, cents;

 System.out.print("Enter a number of dollars: ");
 input = console.readLine();
 dollars = Integer.parseInt(input);

 System.out.print("Enter a number of cents: ");
 input = console.readLine();
 cents = Integer.parseInt(input);

 valueA.initialize(dollars, cents);

 System.out.println("valueA is " + valueA);
 System.out.println(“valueB is " + valueB);

 sum = valueA.add(valueB);
 System.out.println("The entered value plus " +
 valueB + " is " + sum);

 System.exit(0);
 }
}

Special Focus in Computer Science: Object-Oriented Design 24

The Teaching Series

/* run #1

Enter a number of dollars: 23
Enter a number of cents: 42
valueA is $23.42
valueB is $8.50
The
*/

entered value plus $8.50 is $31.92

/* run #2

Enter a number of dollars: 15
Enter a number of cents: 83
valueA is $15.83
valueB is $8.50
The entered value plus $8.50 is $24.33
*/

Money.java

/**
 * Money will deal with money as two integer fields,
 * dollars and cents
 */
public class Money
{
 // instance variables
 private int myDollars;
 private int myCents;

 /**
 * Constructors for objects of class Money
 */
 public Money()
 {

 // initialize instance variables
 initialize(0, 0);
 }

Special Focus in Computer Science: Object-Oriented Design 25

The Teaching Series

public Money(int newDollars, int newCents)
{
 // initialize instance variables
 initialize(newDollars, newCents);
}

/**
 * Initialize (reset) an object of the Money class *
 * @param newDollars -an integer number of dollars
 * @param newCents -an integer number of cents
 * @post instance variables are set
 */
public void initialize(int newDollars, int newCents)
{
 myDollars = newDollars;
 myCents = newCents;
}
/**
 * Add two objects of the Money class
 *
 * @param amount is a Money object
 * @pre both operands (this and amount) have been
 * initialized
 * @return this + amount
 */
public Money add(Money amount)
{
 Money result = new Money();
 result.myCents = myCents + amount.myCents;
 result.myDollars = myDollars + amount.myDollars
 + result.myCents / 100;
 result.myCents = result.myCents % 100;
 return result;

}

Special Focus in Computer Science: Object-Oriented Design 26

The Teaching Series

 /**
 * Create a string which can be used to output a
 * money object appropriately
 *
 * @pre this has been initialized
 * @return a string to display a money object
 */
 public String toString()
 {
 return "$" + myDollars + "." + myCents;
 }
 /**
 * Retrieve the value of myDollars instance
 *
 * @return myDollars
 */
 public int getDollars()
 {
 return myDollars;
 }

 /**
 * Retrieve the value of myCents
 *
 * @return myCents
 */
 public int getCents()
 {

 return myCents;
 }
}

Special Focus in Computer Science: Object-Oriented Design 27

The Teaching Series

Design Question Lab

Judy Hromcik
Arlington High School
Arlington, Texas

Design Question Lab (A with AB extension)
Consider the following problem. A company employs two kinds of employees: hourly
wage employees and salaried employees. All employees have a name and a unique
employee ID, can change their name, receive a raise, and get a paycheck every week.
Hourly employees have their paycheck computed by multiplying the number of hours
worked by their hourly pay rate. If an hourly employee works more than 40 hours in a
weekly pay period, all hours over 40 are paid 1.5 times the hourly rate. Salaried employees
receive 1/52 of their salary every week.

Obviously these two types of employees have a lot in common. Apply the “IS-A”
relationship.

An hourly employee “IS-A” salaried employee?

A salaried employee “IS-A” hourly employee?

Neither of these is true. What about:

An hourly employee “IS-A” employee?

A salaried employee “IS-A” employee?

These relationships are true. So the hierarchy should be:

Special Focus in Computer Science: Object-Oriented Design 28

The Teaching Series

But what is a plain old employee? How do you calculate an employee’s pay? You can’t
until you know what kind of employee you have. This problem can be solved by creating
Employee as an abstract class. In this class, the programmer will include all of the
properties that the two subclasses have in common. A constructor is created to initialize
those properties. The subclasses should call that constructor using a super constructor
call. The abstract class will define and implement all of the methods that both classes
have in common and that can be completed at the abstract class level. The methods that
the subclasses have in common, but cannot be completed, will be defined as abstract. The
subclasses MUST implement these methods or be defined as abstract themselves.

• Design and implement the abstract class Employee. All employees have a name
and ID, can change their name, receive a raise, and get a paycheck every week.
Add private instance variables and methods to fulfill these requirements. Provide
an appropriate toString method for this class.

• Design and implement a non-abstract class HourlyEmployee. An hourly
employee’s pay is based on his/her hourly rate and the number of hours worked in
the weekly pay period. If the hourly employee has worked overtime, work for
hours over 40 is paid at 1.5 times the hourly rate. Add private instance variables
and methods as necessary to implement this class. Provide an appropriate
toString method for this class.

• Design and implement a non-abstract class SalariedEmployee. A salaried
employee receives 1/52 of his annual salary each week. Add private instance
variables and methods as necessary to implement this class. Provide an
appropriate toString method for this class.

Now that you have designed and implemented classes for the employees of a company,
consider designing a class that will manage the payroll for this company. The operations
for this class must include the following:

• The payroll class must be able to add hourly employees and salaried employees to
the payroll.

• The payroll class must be able to delete hourly employees and salaried employees
from the payroll.

• Each week, the records for each hourly employee must be updated to reflect the
number of hours that were worked during that weekly pay period. You will need
to resolve how this information (weekly hours worked) is transferred to each
employee object.

• Each week, a total payroll for the company must be computed.

Special Focus in Computer Science: Object-Oriented Design 29

The Teaching Series

AB Extension
If H is the number of hourly employees and S is the number of salaried employees,
updating the hours worked for the hourly employees must run in O(H log (H)) time.
Computing each employee’s paycheck and the total payroll must run in O(H + S) time.
Choose appropriate data structures to fulfill these requirements.

Add the following requirements:

• Print employee information in the following manner:
o Print all of the hourly employees’ information alphabetically
o Print all of the salaried employees’ information alphabetically

This operation must be done in linear time—O(H) for hourly employees, O(S) for
salaried employees.

• Using an employee’s ID number, access to any employee’s record must be done in
O(1) time.

• Adding and deleting employees must be done in O(log (H + S)) time. The
employee’s ID will be used when deleting an employee.

Explain your chosen data structures for this class. Explain how the employee data is being
stored in the Payroll class. Justify how your data structures meet the Big-Oh
requirements for this problem.

Notes
1. Setting the number of hours worked for each hourly employee can be done several

ways. The Payroll method could iterate through the hourly employees and read the
information in from a file. It could accept a data structure with employee ID’s and
hours worked paired together. This is really up to the students and/or the teacher.

2. I assumed that the employee name was in the form Last, First. I am leaving this to the

discretion of the teacher and student. You could create a Name class that encapsulates
the first and last name. I chose not to do this.

3. You can find Teacher Notes for this Design Question lab and all of the code at

fcbrowser.aisd.net/~jhromcik/AP/CBDesignLab.htm.

Special Focus in Computer Science: Object-Oriented Design 30

The Teaching Series

The Game of SET:
A Case Study in OO Design and Team Development

Maria Litvin
Phillips Academy
Andover, Massachusetts

I thank Marsha Jean Falco, president of SET Enterprises, Inc. (and the inventor of the
SET game) for the permission to use SET in this project.

I am very grateful to Gary Litvin for his help with the design and implementation of the
GUI code.

Special Focus in Computer Science: Object-Oriented Design 31

The Teaching Series

Slide 1

Slide 2

Special Focus in Computer Science: Object-Oriented Design 32

The Teaching Series

Slide 3

Slide 4

Special Focus in Computer Science: Object-Oriented Design 33

The Teaching Series

Slide 5

Slide 6

Special Focus in Computer Science: Object-Oriented Design 34

The Teaching Series

Slide 7

Slide 8

Special Focus in Computer Science: Object-Oriented Design 35

The Teaching Series

Slide 9

Slide 10

Special Focus in Computer Science: Object-Oriented Design 36

The Teaching Series

Slide 11

Slide 12

Special Focus in Computer Science: Object-Oriented Design 37

The Teaching Series

Slide 13

Slide 14

Special Focus in Computer Science: Object-Oriented Design 38

The Teaching Series

Slide 15

Slide 16

Special Focus in Computer Science: Object-Oriented Design 39

The Teaching Series

Slide 17

Slide 18

Special Focus in Computer Science: Object-Oriented Design 40

The Teaching Series

Slide 19

Slide 20

Special Focus in Computer Science: Object-Oriented Design 41

The Teaching Series

Slide 21

Slide 22

Special Focus in Computer Science: Object-Oriented Design 42

The Teaching Series

Slide 23

Slide 24

Special Focus in Computer Science: Object-Oriented Design 43

The Teaching Series

Slide 25

Slide 26

Special Focus in Computer Science: Object-Oriented Design 44

The Teaching Series

Slide 27

Slide 28

Special Focus in Computer Science: Object-Oriented Design 45

The Teaching Series

Slide 29

Slide 30

Special Focus in Computer Science: Object-Oriented Design 46

The Teaching Series

Slide 31

Slide 32

Special Focus in Computer Science: Object-Oriented Design 47

The Teaching Series

Slide 33

Slide 34

Special Focus in Computer Science: Object-Oriented Design 48

The Teaching Series

Slide 35

Slide 36

Special Focus in Computer Science: Object-Oriented Design 49

The Teaching Series

Slide 37

Slide 38

Special Focus in Computer Science: Object-Oriented Design 50

The Teaching Series

Notes for the Instructor

Objective: This exercise gives students a taste of how object-oriented design and
programming might work in the “real world.” The emphasis is on project design and on
working as a team, not on writing Java code.

Time requirement: 2-3 hours to include the preliminary discussion of OO design
principles, this project’s design, coding, and lessons learned.

Team composition: 4-10 people. If necessary, several independent teams can work in
parallel.

Prerequisites: The members of the team may have varying levels of technical proficiency.
All participants must have some understanding of classes, objects, constructors and
methods. At least one participant (Group 1 Task 1-b) should be familiar with
java.util.ArrayList or be able to figure out how to use its add and get, and
remove methods. The same person must be familiar with Selection Sort and a similar
shuffling algorithm, or use the Collections.sort and Collections.shuffle
library methods. Group 2 Task 1-a requires basic familiarity with modulo 3 arithmetic,
although the programmer can get around it with more verbose code. Group 2 Task 2-a
requires a fast coder who can write several methods quickly and is familiar with or can
figure out a partitioning algorithm for an array (similar to one used in Quicksort).

In order to facilitate the appropriate allocation of tasks among team members, the
difficulty of each task is labeled with , , or . “Shell” Java files with method
headers and development tips are provided for the more difficult tasks. The instructor
can control the difficulty of the tasks by providing some code from the solution.

The project can accommodate more experienced programmers (who are familiar with
graphics and MVC) by delegating the Group 3 tasks to students instead of using the
provided code.

Project administration: At first, all students participate together in the initial discussion
of OO design principles and project design. After that, a team is formed for implementing
the code. The instructor appoints one project leader and two group leaders, and splits the
rest of the students between Group 1 and Group 2. The project leader and the group
leaders must be enthusiastic, have strong organizational skills, and be fluent in using an
IDE and putting projects together. The group leaders can also participate as developers
on some tasks. If necessary, the instructor can act as the project leader.

Special Focus in Computer Science: Object-Oriented Design 51

The Teaching Series

Teamwork: The two groups work independently of each other, writing code and testing it
independently when possible. In this project, Group 2 has to use the classes developed by
Group 1 for testing. Leaders of Group 1 and Group 2 test the finished code before passing
it to the project leader. The members of each group work independently on their tasks.
However, the group leaders must monitor their group’s progress and, if necessary,
mobilize those who completed their tasks to help other group members. This project is
about teamwork, not competition.

Before the project: Review the main OO design principles, discuss the project design and
its decomposition into independent tasks, and demonstrate the Set Game application.

Slide handouts: The project leader should get copies of slides 20-36. The Group 1 leader
gets copies of slides 26-31 and the Group 2 leader gets copies of slides 32-36. All
participants should get a copy of slide 20, or have it displayed for the whole class.

Docs handouts: All students get javadoc-generated documentation for the classes the
team will be working on. It is available in the docs folder and accessible through
docs\index.html.

Code handouts: The project leader gets the following files:
ZetGame.java
ZetMenu.java
ZetPlayer.java
ComputerZetPlayer.java
HumanZetPlayer.java
ZetTableDisplay.java
ZetGameModel.java
deck.jpg

The Group 1 leader gets the tips and documentation file for Task 1-b,
Group1Tips\Deck.java.

The Group 2 leader gets the tips and documentation files for Tasks 1-a and 2-a:
Group2Tips\ZetAnalyzer.java and Group2Tips\ZetTable.java,
respectively.

During the project: Monitor the progress of each group and provide assistance when
necessary. Developers who have finished their task can help others in their group. Insist
that each task developer tests his or her code independently and that each group tests the
code before having it integrated into the final project.

Special Focus in Computer Science: Object-Oriented Design 52

The Teaching Series

After the project: Test the program thoroughly. Make each group and its members
present each task and the code written for it. Review how the key OOP concepts are used
in this project.

Feedback: We will appreciate any comments and suggestions for improving this project.
Please email mlitvin@andover.edu.

Special Focus in Computer Science: Object-Oriented Design 53

The Teaching Series

Marine Biology Simulation:
The Strategy Pattern Applied to the Fish Class

Chris Nevison
Colgate University
Hamilton, New York

Introduction
Design patterns can be a helpful guide to organizing a program. A pattern is simply a
description of a way of organizing the objects and classes in the design of a program,
which can be adapted to other programs. A difficulty with the Fish class is that if we want
to use inheritance to create subclasses of Fish that have different ways of moving (original
three-way movement, darter movement, slow three-way movement), different ways of
breeding (original all-or-none, independent, one-only) and, perhaps, different ways of
dying (original, based on probability, or age-based), and we want different combinations
of these, then the inheritance hierarchy can become quite large and convoluted, as shown
below.

Special Focus in Computer Science: Object-Oriented Design 54

The Teaching Series

The Strategy Pattern
The strategy design pattern suggests that when a class describes objects that could
implement a particular responsibility in different ways using different strategies
(algorithms), then rather than create modifications through inheritance, we can regard
the strategy as an object (Gamma et al., 1995). For example, the Fish class has three
responsibilities: moving, breeding, and determining whether it should die. Rather than
create subclasses of Fish that define different ways of moving, breeding, and/or dying, we
can define the Fish class as having an instance variable, set by the constructors, for each
strategy.

This is a natural place to use an interface or an abstract class. We define each strategy type
using an interface (or abstract class), and then the implementing classes implement that
interface. If we work with the three movements defined in the MBS and consider two
ways of breeding—the original all-or-none breeding (where, based on a probability, the
fish breeds in every empty neighbor or does not breed) and a different “independent”
breeding (where each empty neighbor is checked independently, and, with a given
probability, the fish breeds into that location or not)—then we can diagram the situation
as follows (we leave the issue of dying out of this example).

Special Focus in Computer Science: Object-Oriented Design 55

The Teaching Series

In the following lab, we ask that the student implement the Fish class in this way.

Lab Setup
You will need to do the following.

1. Create interfaces FishMovement and FishBreed. The movement interface

should specify a method move that takes a Fish as parameter. The breed interface
should specify a method breed that takes a Fish as parameter.

2. Modify the Fish class so that it has an instance variable for each of the interfaces

given above and so that all the constructors set those fields from parameters. You will
delete most of the methods involved in breeding and moving from the Fish class,
but you should keep a file with a copy of this class from which to use those methods.

3. The class ThreeWay will implement the original fish movement strategy. It would

have a move method, which is essentially the same as the original move method,
except that it uses its Fish parameter to reference the environment, location, and
other methods of the Fish that are used in moving. It should also copy the
nextLocation method with the same changes (giving the method a Fish
parameter). The emptyNeighbors method that is used by the nextLocation
method presents an interesting design decision. If we place it in the ThreeWay class,
then we will also need to make a copy in the breeding methods. What alternatives are
there? Where should the emptyNeighbors method be placed? The methods
changeLocation and changeDirection also present a design decision. They
will be used by every class that implements FishMovement. Should they remain in
the Fish class, should they be placed in the abstract FishMovement (making it an
abstract class instead of an interface), or should they be copied into every class that
implements FishMovement?

4. The class AllOrNone will implement the original breeding method. It will include

an instance variable to store the probability of breeding and will implement the breed
method breed (taking a Fish parameter). Again, we need access to the
emptyNeighbors method, so the question is: Where should this method be placed
or copied? For breeding, another design decision is where we should place the
generateChild method, so that it breeds true—that is, the children fish have the
same characteristics as their parents.

5. Delete the move and breed methods from this Fish class, as well as any auxiliary

methods that are placed in the classes implementing FishMovement and
FishBreed (and the probability of breeding, which will now be placed in the
breeding classes). The following is a partial definition of the new Fish class.

Special Focus in Computer Science: Object-Oriented Design 56

The Teaching Series

public class Fish implements Locatable
{
 ...
 private FishMovement mover;
 private FishBreed breeder;

 public Fish(Environment env, Location loc, FishMovement mv,
FishBreed brd)
 ...

 public void act()
 {
 if(!isInEnv())
 return;

 if(!breeder.breed(this))
 move.move(this);

 ...

}

6. Rewrite the class SimpleMBSDemo2 to test the new version of the Fish class. Each

fish that is declared will need to have a FishMovement object and a FishBreed
object passed as a parameter to the constructor, the latter with a probability passed to
its constructor. If you use a constructor that allows you to set color, you can use that
to distinguish the different types of fish for testing.

7. Now that you have the basic fish created using this new organization, we can add new

ways of breeding and dying. Write two movement classes: a DarterMovement,
implementing the FishMovement interface and a SlowThreeWay, which extends
ThreeWay. These should implement the move method in a similar fashion to the
way that DarterFish and SlowFish do, using the Fish parameter to access
needed information about the fish. Also, write a new breeding class—
IndependentBreed— which implements the FishBreed interface.
IndependentBreed should take a probability in its constructor, and when its
breed method is called, it should check each empty neighboring location and breed
into the location with the given probability (so that any number of fish, from zero to
the number of empty neighbors, may be created). Using your new classes, modify
SimpleMBSDemo2 to create fish with different combinations of moving and
breeding.

Special Focus in Computer Science: Object-Oriented Design 57

The Teaching Series

Reference
Gamma, Erich, Richard Helm, and Ralph Jonhson. 1995. Design Patterns. Edited by John

Vlissides. Addison-Wesley: New York.

Special Focus in Computer Science: Object-Oriented Design 58

The Teaching Series

All-or-None Breeder

 import java.util.ArrayList;
 import java.util.Random;

 public class AllOrNoneBreeder implements FishBreeder
 {
 private double probBreed;

 public AllOrNoneBreeder(double pb)
 {
 probBreed = pb;
 }

 protected double probBreed()
 {
 return probBreed;
 }

 public boolean breed(Fish f)
 {
 // Determine whether this fish will try to breed in this
 // timestep. If not, return immediately.
 Random randNumGen = RandNumGenerator.getInstance();
 if (randNumGen.nextDouble() >= probBreed())
 return false;

 // Get list of neighboring empty locations.
 ArrayList emptyNbrs = f.emptyNeighbors();
 Debug.print("Fish " + f.toString() + " attempting to breed. ");
 Debug.println("Has neighboring locations: " + emptyNbrs.
toString());

 // If there is nowhere to breed, then we’re done.
 if (emptyNbrs.size() == 0)
 {
 Debug.println(" Did not breed.");
 return false;
 }
 // Breed to all of the empty neighboring locations.
 for (int index = 0; index < emptyNbrs.size(); index++)
 {
 Location loc = (Location) emptyNbrs.get(index);
 Fish child = f.generateChild(loc);
 Debug.println(" New Fish created: " + child.toString());
 }

 return true;
 }
 }

Special Focus in Computer Science: Object-Oriented Design 59

The Teaching Series

Darter Movement

 import java.util.ArrayList;
 import java.util.Random;

 public class DarterMovement implements FishMovement
 {
 public void move(Fish f)
 {

 // Find a location to move to.
 Debug.print("DarterFish " + f.toString() + " attempting to
move. ");
 Location nextLoc = nextLocation(f);

 // If the next location is different, move there.
 if (! nextLoc.equals(f.location()))
 {

 f.changeLocation(nextLoc);
 Debug.println(" Moves to " + f.location());
 }
 else
 {
 // Otherwise, reverse direction.
 f.changeDirection(f.direction().reverse());
 Debug.println(" Now facing " + f.direction());
 }
 }

 /** Finds this fish’s next location.
 * A darter fish darts forward two spaces if it can, otherwise it
 * tries to move forward one space. A darter fish can only move
 * to empty locations, and it can only move two spaces forward if
 * the intervening space is empty. If the darter fish cannot move
 * forward, <code>nextLocation</code> returns the fish’s current
 * location.
 * @return the next location for this fish
 **/
 protected Location nextLocation(Fish f)
 {
 Environment env = f.environment();
 Location oneInFront = env.getNeighbor(f.location(), f.direction());
 Location twoInFront = env.getNeighbor(oneInFront, f.direction());
 Debug.println(" Location in front is empty? " +
 env.isEmpty(oneInFront));
 Debug.println(" Location in front of that is empty? " +
 env.isEmpty(twoInFront));
 if (env.isEmpty(oneInFront))
 {
 if (env.isEmpty(twoInFront))
 return twoInFront;
 else
 return oneInFront;
}

Special Focus in Computer Science: Object-Oriented Design 60

The Teaching Series

Fish

 // AP(r) Computer Science Marine Biology Simulation:
 // The Fish class is copyright(c) 2002 College Entrance
 // Examination Board (www.collegeboard.com).
 //
 // This class is free software; you can redistribute it and/or
 // modify it under the terms of the GNU General Public License as
 // published by the Free Software Foundation.
 //
 // This class is distributed in the hope that it will be useful,
 // but WITHOUT ANY WARRANTY; without even the implied warranty of
 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 // GNU General Public License for more details.

 import java.awt.Color;
 import java.util.ArrayList;
 import java.util.Random;

 /**
 * AP® Computer Science Marine Biology Simulation:

 * A <code>Fish</code> object represents a fish in the Marine
 * Biology Simulation. Each fish has a unique ID, which remains
 * constant throughout its life. A fish also maintains information
 * about its location and direction in the environment.
 *
 * <p>
 * Modification History:
 * -Modified to support a dynamic population in the environment:
 * fish can now breed and die.
 * -Modified to use strategy pattern for moving and breeding
 *
 * <p>
 * The <code>Fish</code> class is
 * copyright© 2002 College Entrance Examination Board
 * (www.collegeboard.com).
 *
 * @author Alyce Brady
 * @author APCS Development Committee
 * @author Modification for strategy pattern, Chris Nevison
 * @version 3 April 2004
 * @see Environment
 * @see Direction
 * @see Location
 **/

Special Focus in Computer Science: Object-Oriented Design 61

The Teaching Series

public class Fish implements Locatable
{
 // Class Variable: Shared among ALL fish
 private static int nextAvailableID = 1; // next avail unique
identifier

 // Instance Variables: Encapsulated data for EACH fish
 private Environment theEnv; // environment in which the fish lives
 private int myId; // unique ID for this fish
 private Location myLoc; // fish’s location
 private Direction myDir; // fish’s direction
 private Color myColor; // fish’s color

 private double probOfDying; // defines likelihood in each timestep

 private FishMovement mover;
 private FishBreeder breeder;

 // constructors and related helper methods

 public Fish(Environment env, FishMovement mover,
 FishBreeder breeder,
 Location loc)

 {
 initialize(env, mover, breeder,
 loc, env.randomDirection(), randomColor());
 }

 public Fish(Environment env, FishMovement mover,
 FishBreeder breeder,
 Location loc, Direction dir)

 {
 initialize(env, mover, breeder,
 loc, dir, randomColor());
 }

 public Fish(Environment env, FishMovement mover,
 FishBreeder breeder,
 Location loc,
 Direction dir, Color col)

 {
 initialize(env, mover, breeder,
 loc, dir, col);
 }

Special Focus in Computer Science: Object-Oriented Design 62

The Teaching Series

 /** Initializes the state of this fish.
 * (Precondition: parameters are non-null; <code>loc</code> is valid
 * for <code>env</code>.)
 * @param env environment in which this fish will live
 * @param loc location of this fish in <code>env</code>
 * @param dir direction this fish is facing
 * @param col color of this fish
 **/
 private void initialize(Environment env, FishMovement mover,
 FishBreeder breeder,
 Location loc, Direction dir,
 Color col)
 {
 theEnv = env;
 myId = nextAvailableID;
 nextAvailableID++;
 myLoc = loc;
 myDir = dir;
 myColor = col;
 this.mover = mover;
 this.breeder = breeder;
 theEnv.add(this);

 // object is at location myLoc in environment

 probOfDying = 1.0/5.0; // 1 in 5 chance in each timestep
 }

 /** Generates a random color.
 * @return the new random color
 **/
 protected Color randomColor()
 {
 // There are 256 possibilities for the red, green, and blue
 attributes
 // of a color. Generate random values for each color attribute.
 Random randNumGen = RandNumGenerator.getInstance();
 return new Color(randNumGen.nextInt(256), // amount of red
 randNumGen.nextInt(256), // amount of green
 randNumGen.nextInt(256)); // amount of blue
 }

 // accessor methods

 /** Returns this fish’s ID.
 * @return the unique ID for this fish
 **/
 public int id()
 {
return myId;
 }

Special Focus in Computer Science: Object-Oriented Design 63

The Teaching Series

 /** Returns this fish’s environment.
 * @return the environment in which this fish lives
 **/
 public Environment environment()
 {
 return theEnv;
 }

 /** Returns this fish’s color.
 * @return the color of this fish
 **/
 public Color color()
 {
 return myColor;
 }

 /** Returns this fish’s location.
 * @return the location of this fish in the environment
 **/
 public Location location()
 {
 return myLoc;
 }

 /** Returns this fish’s direction.
 * @return the direction in which this fish is facing
 **/
 public Direction direction()
 {
 return myDir;
 }

 /** Checks whether this fish is in an environment.
 * @return <code>true</code> if the fish is in the environment
 * (and at the correct location); <code>false</code> otherwise
 **/
 public boolean isInEnv()
 {
 return environment().objectAt(location()) == this;
 }

 /** Returns a string representing key information about this fish.
 * @return a string indicating the fish’s ID, location, and direction
 **/
 public String toString()
 {
 return id() + location().toString() + direction().toString();
 }

Special Focus in Computer Science: Object-Oriented Design 64

The Teaching Series

 // modifier method

 /** Acts for one step in the simulation.
 **/
 public void act()
 {

 // Make sure fish is alive and well in the environment –fish
 // that have been removed from the environment shouldn’t act.
 if (! isInEnv())
 return;

 // Try to breed.
 if (! breeder.breed(this))
 // Did not breed, so try to move.
 mover.move(this);

 // Determine whether this fish will die in this timestep.
 Random randNumGen = RandNumGenerator.getInstance();
 if (randNumGen.nextDouble() < probOfDying)
 die();
 }

 /** Finds empty locations adjacent to this fish.
 * @return an ArrayList containing neighboring empty locations
 **/
 protected ArrayList emptyNeighbors()
 {

 // Get all the neighbors of this fish, empty or not.
 ArrayList nbrs = environment().neighborsOf(location());

 // Figure out which neighbors are empty and add those to a new
 list.
 ArrayList emptyNbrs = new ArrayList();
 for (int index = 0; index < nbrs.size(); index++)
 {
 Location loc = (Location) nbrs.get(index);
 if (environment().isEmpty(loc))
 emptyNbrs.add(loc);
 }
 return emptyNbrs;
 }

 /** Modifies this fish’s location and notifies the environment.
 * @param newLoc new location value
 **/
 public void changeLocation(Location newLoc)
 {
 // Change location and notify the environment.
 Location oldLoc = location();
 myLoc = newLoc;
 environment().recordMove(this, oldLoc);

 // object is again at location myLoc in environment
 }

Special Focus in Computer Science: Object-Oriented Design 65

The Teaching Series

 /** Modifies this fish’s direction.
 * @param newDir new direction value
 **/
 public void changeDirection(Direction newDir)
 {
 // Change direction.
 myDir = newDir;
 }

 /** Creates a new fish with the color of its parent.
 * @param loc location of the new fish
 **/
 public Fish generateChild(Location loc)

 {
 // Create new fish, which adds itself to the environment.
 return new Fish(environment(), mover,
 breeder,
 loc, environment().randomDirection(), color());
 }

 /** Removes this fish from the environment.
 **/
 protected void die()
 {
 Debug.println(toString() + " about to die.");
 environment().remove(this);
 }
 }

Fish Breeder

public interface FishBreeder
{
 boolean breed(Fish fish);
}

Fish Movement

public interface FishMovement
{
 void move(Fish fish);
}

Special Focus in Computer Science: Object-Oriented Design 66

The Teaching Series

Independent Breeder

import java.util.ArrayList;
import java.util.Random;

public class IndependentBreeder implements FishBreeder
{
 private double probBreed;

 public IndependentBreeder(double pb)
 {
 probBreed = pb;
 }

 protected double probBreed()
 {
 return probBreed;
 }

 public boolean breed(Fish f)
 {
 Random randNumGen = RandNumGenerator.getInstance();

 // Get list of neighboring empty locations.
 ArrayList emptyNbrs = f.emptyNeighbors();
 Debug.print("Fish " + f.toString() + " attempting to breed. ");
 Debug.println("Has neighboring locations: " + emptyNbrs.
toString());

 // If there is nowhere to breed, then we’re done.
 if (emptyNbrs.size() == 0)
 {
 Debug.println(" Did not breed.");
 return false;
 }

 // Try to breed to all of the empty neighboring locations.
 boolean result = false;
 for (int index = 0; index < emptyNbrs.size(); index++)
 {
 if(randNumGen.nextDouble() < probBreed())
 {
 Location loc = (Location) emptyNbrs.get(index);
 Fish child = f.generateChild(loc);
 Debug.println(" New Fish created: " + child.toString());
 result = true;
 }
 }
 return result;
 }
}

Special Focus in Computer Science: Object-Oriented Design 67

The Teaching Series

Simple MBS Demo 2

// AP(r) Computer Science Marine Biology Simulation:
// The SimpleMBSDemo2 class is copyright(c) 2002 College Entrance
// Examination Board (www.collegeboard.com).
//
// This class is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation.
//
// This class is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

/**
 * AP® Computer Science Marine Biology Simulation:

 * The <code>SimpleMBSDemo2</code> class provides a main method that
creates
 * a simulation of a number of fish swimming in a bounded environment.
 * It also creates a simple window in which to view the environment
 * after each timestep in the simulation. This version of the MBS demo
uses
 * an object of the <code>Simulation</code> class.
 *
 * <p>
 * This class will NOT be tested on the Advanced Placement exam.
 * Modified to use Fish built with the strategy pattern.
 *
 * <p>
 * The <code>SimpleMBSDemo2</code> class is
 * copyright© 2002 College Entrance Examination Board
 * (www.collegeboard.com).
 *
 * @author Alyce Brady
 * @author Chris Nevison
 * @version 3 April, 2004
 **/

 public class SimpleMBSDemo2
 {
 // Specify number of rows and columns in environment.
 private static final int ENV _ ROWS = 30; // rows in environment
 private static final int ENV _ COLS = 30; // columns in environment

 // Specify how many timesteps to run the simulation.
 private static final int NUM _ STEPS = 500; // number of timesteps

 // Specify the time delay for each step
 private static final int DELAY = 1000; // delay in milliseconds

Special Focus in Computer Science: Object-Oriented Design 68

The Teaching Series

 /** Start the Marine Biology Simulation program.
 * The String arguments (args) are not used in this application.
 **/
 public static void main(String[] args)
 {
 // Construct an empty environment and several fish in the context
 // of that environment.
 BoundedEnv env = new BoundedEnv(ENV _ ROWS, ENV _ COLS);
 Fish f1 = new Fish(env, new ThreewayMovement(),
 new AllOrNoneBreeder(0.05),
 new Location(2, 2));
 Fish f2 = new Fish(env, new DarterMovement(),
 new AllOrNoneBreeder(0.05),
 new Location(12, 2));
 Fish f3 = new Fish(env, new SlowThreewayMovement(0.1),
 new AllOrNoneBreeder(0.05),
 new Location(8, 2));
 Fish f4 = new Fish(env, new ThreewayMovement(),
 new AllOrNoneBreeder(0.05),
 new Location(10, 3));
 Fish f5 = new Fish(env, new ThreewayMovement(),
 new IndependentBreeder(0.05),
 new Location(4, 6));
 Fish f6 = new Fish(env, new SlowThreewayMovement(0.1),
 new IndependentBreeder(0.05),
 new Location(6, 6));
 Fish f7 = new Fish(env, new DarterMovement(),
 new AllOrNoneBreeder(0.05),
 new Location(8, 10));
 Fish f8 = new Fish(env, new DarterMovement(),
 new AllOrNoneBreeder(0.05),
 new Location(10, 12));
 Fish f9 = new Fish(env, new DarterMovement(),
 new IndependentBreeder(0.05),
 new Location(15, 2));
 Fish f10 = new Fish(env, new DarterMovement(),
 new IndependentBreeder(0.05),
 new Location(15, 3));
 Fish f11 = new Fish(env, new TurningDarterMovement(0.1),
 new AllOrNoneBreeder(0.05),
 new Location(9, 13));
 Fish f12 = new Fish(env, new TurningDarterMovement(0.1),
 new AllOrNoneBreeder(0.05),
 new Location(11, 14));
 Fish f13 = new Fish(env, new TurningDarterMovement(0.1),
 new IndependentBreeder(0.05),
 new Location(13, 15));
 Fish f14 = new Fish(env, new TurningDarterMovement(0.1),
 new IndependentBreeder(0.05),
 new Location(15, 16));

Special Focus in Computer Science: Object-Oriented Design 69

The Teaching Series

 // Construct an object that knows how to draw the environment
with
 // a delay.
 SimpleMBSDisplay display = new SimpleMBSDisplay(env, DELAY);

 // Construct the simulation object. It needs to have the
environment
 // and the object that can draw the environment.
 Simulation sim = new Simulation(env, display);

 // Run the simulation for the specified number of steps.
 for (int i = 0; i < NUM_STEPS; i++)
 {
 sim.step();
 }
 }
 }

Slow Three-way Movement

import java.util.Random;

public class SlowThreewayMovement extends ThreewayMovement
{
 private double probOfMoving;

 public SlowThreewayMovement(double probMove)
 {
 probOfMoving = probMove;
 }

 protected Location nextLocation(Fish f)
 {
 // There’s only a small chance that a slow fish will actually
 // move in any given timestep, defined by probOfMoving.
 Random randNumGen = RandNumGenerator.getInstance();
 if (randNumGen.nextDouble() < probOfMoving)
 return super.nextLocation(f);
 else return f.location();
 }
}

Special Focus in Computer Science: Object-Oriented Design 70

The Teaching Series

Three-way Movement
import java.util.ArrayList;
import java.util.Random;

public class ThreewayMovement implements FishMovement
{
 public ThreewayMovement()
 {}

 /** Moves this fish in its environment.
 **/
 public void move(Fish f)
 {

 // Find a location to move to.
 Debug.print("Fish " + f.toString() + " attempting to move. ");
 Location nextLoc = nextLocation(f);

 // If the next location is different, move there.
 if (! nextLoc.equals(f.location()))
 {
 // Move to new location.
 Location oldLoc = f.location();
 f.changeLocation(nextLoc);

 // Update direction in case fish had to turn to move.
 Direction newDir = f.environment().getDirection(oldLoc, nextLoc);
 f.changeDirection(newDir);
 Debug.println(" Moves to " + f.location() + f.direction());
 }
 else
 Debug.println(" Does not move.");
 }

 /** Finds this fish’s next location.
 * A fish may move to any empty adjacent locations except the one
 * behind it (fish do not move backwards). If this fish cannot
 * move, <code>nextLocation</code> returns its current location.
 * @return the next location for this fish
 **/
 protected Location nextLocation(Fish f)
 {
 // Get list of neighboring empty locations.
 ArrayList emptyNbrs = f.emptyNeighbors();

 // Remove the location behind, since fish do not move backwards.
 Direction oppositeDir = f.direction().reverse();
 Location locationBehind =
 f.environment().getNeighbor(f.location(),
 oppositeDir);
 emptyNbrs.remove(locationBehind);
 Debug.print("Possible new locations are: " + emptyNbrs.
 toString());

Special Focus in Computer Science: Object-Oriented Design 71

The Teaching Series

 // If there are no valid empty neighboring locations, then we’re
done.
 if (emptyNbrs.size() == 0)
 return f.location();

 // Return a randomly chosen neighboring empty location.
 Random randNumGen = RandNumGenerator.getInstance();
 int randNum = randNumGen.nextInt(emptyNbrs.size());
 return (Location) emptyNbrs.get(randNum);
 }
}

Turning Darter Movement

import java.util.Random;

public class TurningDarterMovement extends DarterMovement
{
 double probTurn;
 public TurningDarterMovement(double pt)
 {
 probTurn= pt;
 }

 protected double probTurn()
 {
 return probTurn;
 }

 public void move(Fish f)
 {
 Random rand = RandNumGenerator.getInstance();

 if(rand.nextDouble() < probTurn())
 {
 f.changeDirection(f.direction().toRight());
 }
 else
 {
 super.move(f);
 }
 }

}

Special Focus in Computer Science: Object-Oriented Design 72

The Teaching Series

Object-Oriented Design Concepts via Playing Cards
Owen Astrachan
Duke University
Durham, North Carolina

Most students have played card games: blackjack, war, hearts, solitaire,
bridge. The list of games isn’t infinite, but it’s practically unbounded. In
this design exposition, we’ll discuss the design and implementation of a
playing card class. We’ll talk about issues in designing classes to represent
both a deck of cards and piles of cards used in different games. The Web
site that accompanies this design discussion includes references, code, and

exercises for many assignments and in-class discussions. In this document we’ll
concentrate on the playing card classes and the deck class to keep things simple.

Students and teachers often wonder when it’s appropriate to use a Java
interface rather than a class. Some designers and educators think all
object-oriented designs should start with interfaces. It is hard to motivate
this stance with only a simple appeal to experts as a justification. In the
design of a playing card class, our scenario begins with a teacher providing
an initial specification and code to students and then asking them to write

programs that play games with cards. Our goal is for one student’s game or player to
interact with another’s. We’d also like to ensure that student-written code for a card
player does not change the cards that are dealt. Using an interface provides a simple way
for students to use cards in the code they write without having access to a card’s internals,
without being able to create a specific card, and without knowing how cards are
implemented. This process begins with the code for a card interface, an interface we call
ICard.1

Special Focus in Computer Science: Object-Oriented Design 73

The Teaching Series

public interface ICard extends Comparable
{
 public static final int SPADES = 0;
 public static final int HEARTS = 1;
 public static final int DIAMONDS = 2;
 public static final int CLUBS = 3;

 public int getSuit();
 public int getRank();
}

The interface specifies the behavior of a card without providing information about how
cards are implemented. Once they know that getSuit() returns a value like ICard.
HEARTS, and that getRank() returns a value in the range of 1 (ace) to 13 (king),
students can write code from this specification. For example, here’s code to check
whether an array of cards is sorted. We don’t know how it’s been sorted (e.g., do all the
aces come before the twos or do all the spades come before the hearts?), but we can
determine that an array is sorted.

public boolean isSorted(ICard[] list){
 for(int k=1; k < list.length; k++){
 if (list[k-1].compareTo(list[k]) > 0){
 return false;
 }
 }
 return true;
}

Starting with this simple ICard interface, we can ask students many kinds
of questions to test and review concepts ranging from Java syntax to
problem-solving with respect to one, two, or many cards. Some simple
examples are included here, and more are available on the Web site. In
answering these questions students must understand the interface since
there is no implementation. Students focus on behavior rather than on

instance variables and other implementation details, such as how to create a string to
represent the ace of spades.

Special Focus in Computer Science: Object-Oriented Design 74

The Teaching Series

ICard Study/Code Questions
1. Write the function isRed that returns true if its ICard parameter is red (hearts or

diamonds) and returns false otherwise.

public boolean isRed(ICard card){…}

2. A pair is two cards of the same rank (e.g., two kings or two eights). Write the function

isPair that returns true if its two ICard parameters represent a pair and returns
false otherwise.

public boolean isPair(ICard a, ICard b){…}

3. A flush is a hand, say in poker, in which all the cards have the same suit (e.g., five

hearts, or five clubs for a five-card hand). Write the function isFlush that returns
true if the array of cards is a flush and returns false otherwise.

public boolean isFlush(ICard[] hand){…}

4. In blackjack or 21, the value of a hand is the total of the cards, where jacks, queens,

and kings (11, 12, and 13, respectively, as returned by getRank()) each count as 10,
and an ace counts as 1 or 10, whichever is better. A total over 21 is a bust; it’s not good
to bust. Write function handTotal, which returns the total value of a hand.

public int handTotal(ICard[] hand){…}

From Interface to Implementation
The ICard interface provides enough information to write code about
cards, but there’s no way to create an array of cards, for example, or even a
single card to test the functions written above (like isPair and
handTotal). Where do cards come from? In most real-world examples,
cards come from a Deck. We’ll design a class that models a Deck—which is

basically a factory for creating and obtaining cards.

To keep things simple, and to encourage the study of some standard Java interfaces, the
class Deck will implement the java.util.Iterator interface. For example, to
store all the cards from a deck into an ArrayList variable, we can use the following
code:

Special Focus in Computer Science: Object-Oriented Design 75

The Teaching Series

Deck d = new Deck();
ArrayList cards = new ArrayList();
while (d.hasNext()){
 ICard card = (ICard) d.next();
 System.out.println(card);
 cards.add(card);
}
System.out.println("# of cards dealt = "+cards.size());

The last few lines output by this code snippet might be as shown below. They will be
different each time because the Deck class developed here shuffles the cards it deals via
iteration.

 …
 ace of spades
 jack of clubs
 six of spades
 ten of hearts
 ten of spades
 # of cards dealt = 52

If we change the lines after the loop as follows, the output changes as well.

Collections.sort(cards);
for(int k=0; k < cards.size(); k++){
 System.out.println(cards.get(k));
}
System.out.println("# of cards dealt = "+cards.size());

The output shows how cards returned from the Deck class implement the
Comparable interface.

 …
 nine of clubs
 ten of clubs
 jack of clubs
 queen of clubs
 king of clubs
 # of cards dealt = 52

Special Focus in Computer Science: Object-Oriented Design 76

The Teaching Series

The complete code for the class Deck is shown below. The methods hasNext(),
next(), and remove() are required for classes that implement the Iterator
interface. The code below shows how objects of type Card are constructed.

public class Deck implements Iterator{

 private ArrayList myCardList;
 private int myIndex;

 public Deck(){
 myCardList = new ArrayList();

 for(int suit = ICard.SPADES; suit <= ICard.CLUBS; suit++){
 for (int rank = 1; rank <= 13; rank++){
 myCardList.add(new Card(suit,rank));
 }
 }
 shuffle();

 }

 private void shuffle(){
 Collections.shuffle(myCardList);
 myIndex = 0;
 }

 public boolean hasNext() {
 return myIndex < myCardList.size();
 }

 public Object next() {
 ICard card = (ICard) myCardList.get(myIndex);
 myIndex++;
 return card;
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

A Deck object stores 52 cards—these cards can be obtained from a Deck
object via iteration, but a Deck object cannot be reshuffled and re-used.
Instead, a new Deck object must be created to deal new cards. This keeps
things simple and provides an easy-to-follow example of a class that
implements the Iterator interface. The method remove() is

optional— for the Deck class calling this method throws an exception.

Special Focus in Computer Science: Object-Oriented Design 77

The Teaching Series

Deck Study/Code Questions
1. Just before the shuffle method is called in the constructor, describe the order of

the objects stored in myCardList.

2. Describe how each Deck method changes if the instance variable myCardList is

changed to an array of Card objects, for example,

 private ICard[] myCardList;

 Which choice for myCardList is better? Why?

3. Write client code that defines a Deck object and creates an array of 13 ICard

objects that represent the spades that are dealt from the Deck. Do this by examining
each object dealt and only storing the spade cards.

4. Write the body of the hypothetical Hand class constructor specified below:

 private ArrayList myCards;
 /**
 * deal numCards cards from d, store in myCards
 * (assume there are at least numCards cards left in d)
 */
 public Hand(Deck d, int numCards){

 }

Special Focus in Computer Science: Object-Oriented Design 78

The Teaching Series

From Decks to Cards
Our original concern was to use the ICard interface rather than worry
about how cards are implemented. Nevertheless, at some point, there needs
to be an implementation. It’s not hard to argue that Card objects should
be created by the Deck class. This is the approach we’ve used here. The
Card class is a private class declared within the Deck class. There’s

actually no good reason to declare it within the Deck (the Deck.java file). However, by
declaring it private, we make it impossible for any code class2; it could just as easily be
declared as a non-public class within methods other than the Deck class to construct
Card objects. This helps meet our original goal. Client programs can obtain cards from
a Deck, but cannot create cards. Since the Deck supplies ICard objects, it’s not
possible to change a card once it’s obtained from the Deck since the ICard interfaced
doesn’t support modification of a card. As written, the private Card class defined within
the Deck class doesn’t support modification either since its private state instance
variables are final, but this is extra protection that’s likely not needed since no client code
has access the private Card class. The Card class is available on the Web site; we’re not
including it here since its implementation isn’t directly related to our discussion about
design.

A careful reader might claim that our original goal hasn’t been met. Client code can cheat,
for example, by creating a Deck object and then dealing cards from this object until an
ace of spaces (or any other card) is dealt. In the current design of the Deck class this is
true. However, we could create a singleton Deck object, in the same way that a single
instance of the class Random is used in the Marine Biology Case Study. Singleton objects
are typically created by declaring constructors so that they’re private. In this case the
Deck constructor would change from public to private. Client code obtains a Deck by
calling a public getInstance() method, which returns a private static Deck object
stored in the Deck class. The getInstance method creates this private object the
first time getInstance is called. Details can be found in many texts or by studying
the code from the Marine Biology Case Study.

Special Focus in Computer Science: Object-Oriented Design 79

The Teaching Series

More Code and Details
The images used in this article, and in the card games and supporting code
available from the companion website, have been released under the GPL—
the Gnu Public License. They are available from the creator of the images at
www.waste.org/~oxymoron/cards/ and from many other sites (including
the companion site for this material). The code supporting this design

document is released under a Creative Commons License, as described at www.cs.duke.
edu/csed/ap/cards, where the code and more material are available.

Notes
1. Beginning interface names with an uppercase I, followed by a capitalized name, is a

common naming convention in object-oriented programming in many languages, not
just Java.

2. Typically classes declared within another class often make reference to the enclosing

object’s state. In this case the nested class Card is declared as a private static class, so
it can’t reference private non-static state within a Deck object. The Card class
could reference static Deck state, but there is none in this code.

Special Focus in Computer Science: Object-Oriented Design 80

The Teaching Series

Object-Oriented Programming Web Resources
Debbie Carter
Lancaster Country Day School
Lancaster, Pennsylvania

Teaching Techniques and Materials
How my Dog learned Polymorphism
JavaRanch
www.javaranch.com/campfire/StoryPoly.jsp

An illustration of inheritance using Animal and Dog classes.

Role Playing In an Object-Oriented World
Prof. David B. Levine and Prof. Steve Andrianoff, St. Bonaventure University, St.
Bonaventure, New York

web.sbu.edu/cs/dlevine/RolePlay/roleplay.html

Descriptions and scripts for teaching object-oriented principles through role-play
activities. Examples include a first-day activity and a Marine Biology Simulation role-
play.

Karel J. Robot
Karel J. Robot consists of an online text and a set of Java classes that implement robots in
a two-dimensional environment. It provides a very visual, highly intuitive context in
which many OOP ideas can be effectively explored and demonstrated.

• Text and classes Prof. Joseph Bergin, Pace University, New York, New York
csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html

• Demonstrations and code examples Prof. Don Slater, Carnegie Mellon University,
Pittsburgh, Pennsylvania
• Teacher Training Institute, CMU, July 2003

www-2.cs.cmu.edu/~djslater/presentations.html#Training
• SIGCSE 2003: “Helping Students ‘See’ Polymorphism,” February 2003

www-2.cs.cmu.edu/~djslater/presentations.html#SIGCSE2003

Special Focus in Computer Science: Object-Oriented Design 81

The Teaching Series

A Simple Calculator for Novice Learning
Prof. Joseph Bergin, Pace University, New York, New York
csis.pace.edu/~bergin/polycalc/index.html

Demonstrates what can be done in an object-oriented language without using if or while.
It implements the key parts of a simple four-function algebraic calculator that has no
knowledge of operator precedence.

Object Oriented Analysis and Design using CRC Cards
Nils Brummond
www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/

CRC cards were created for teaching the OO paradigm. This site gives the background of
CRC cards and guides you through the use of them in the classroom.

Team OOP Projects as a Teaching Tool (The Quizard of OOP)
www.skylit.com/oop/index.html
Maria Litvin

A PowerPoint presentation guides students through a design of a quiz development
project that ultimately assigns group tasks for a team project.

Online Textbooks: OOP-related excerpts
Note: Free, downloadable source code is available for all texts in this list.

Introduction to Programming Using Java
David J. Eck
Version 4.0, July 2002
math.hws.edu/javanotes/index.html

• Chapter 5: Programming in the Large II—Objects and Classes
math.hws.edu/javanotes/c5/index.html

• Section 5.3: Programming with Objects (especially the card game ideas)
math.hws.edu/javanotes/c5/s3.html

• Section 5.4: Inheritance, Polymorphism, and Abstract Classes
math.hws.edu/javanotes/c5/s4.html

Special Focus in Computer Science: Object-Oriented Design 82

The Teaching Series

Java: An Eventful Approach
Kim B. Bruce, Andrea Pohoreckyj Danyluk, and Thomas P. Murtagh
applecore.cs.williams.edu/~cs134/eof/

From the authors: “The key features of the approach taken by our text are ‘objects first’,
‘events first’, and ‘concurrency early’. We also emphasize graphics as a pedagogical aid.
Students use graphical objects and do event-driven programming (primarily using mouse
events) from beginning.” The objectdraw library is freely available, along with instructor
resources.

Thinking in Java, 3rd ed. (online version)
Bruce Eckel
www.mindview.net/Books/TIJ/

This text introduces objects at the very beginning. (Chapter 1 is “Introduction to
Objects”; Chapter 2 is “Everything Is an Object.”) It also has an annotated solution guide.
Other particularly O-O chapters:

• Reusing Classes (Chapter 6): Composition and Inheritance.
• Analysis and Design (Chapter 16): A five-phase process for designing and

developing a system of classes.

Java Au Naturel, 3rd ed.
Dr. William C. Jones, Jr., Central Connecticut State University, March 2003.
www.cs.ccsu.edu/~jones/book.htm

This text introduces object-oriented software design at the very beginning. Its
copyrighted material is available free of charge for teaching, provided you fill out and
submit a five-minute questionnaire. PDF files, source code, and syllabi are provided.

Introduction to Computer Science using Java
Bradley Kjell
chortle.ccsu.ctstateu.edu/cs151/cs151java.html

A Java programming tutorial with quizzes, flash cards, reviews, and programming
exercises. Part 4, Object Oriented Programming, uses car and checking account examples.
It also includes good diagrams.

Special Focus in Computer Science: Object-Oriented Design 83

The Teaching Series

Java: an Object First Approach
Fintan Culwin
www.scism.sbu.ac.uk/jfl/jflcontents.html

The OOP paradigm is emphasized throughout. The end-of-chapter exercises could be
modified to incorporate students’ ideas.

Computer Science, Java Style
Craig Graci
www.cs.oswego.edu/~blue/java/hyperbook/org/Contents.html

Part 1, Chapter 3 is “A Conception of the Java Object Model” and develops circle,
rectangle, square, triangle, and polygon classes and some applications.
www.cs.oswego.edu/~blue/java/hyperbook/part1/chapter3/Contents.html

Special Focus in Computer Science: Object-Oriented Design 84

The Teaching Series

Contributors
Information current as of original publish date of September 2004.

About the Editor
Fran Trees taught AP Computer Science from 1983 to 2001 in Westfield, New Jersey. She
presently teaches CS1/CS2 at Drew University in Madison, New Jersey. Fran is a College
Board consultant for AP Computer Science, an exam leader, and AP Central’s content
advisor for AP Computer Science.

Welcome Letter
Scot Drysdale teaches computer science at Dartmouth College and is currently serving as
Chair of the Department of Computer Science. He has been on the Computer Science
Development Committee for four years and recently became Chair of that committee. He
has also served as a Reader for the AP Computer Science Exam.

Syllabi Contributors
Steven K. Andrianoff is a faculty member in the Computer Science Department at St.
Bonaventure University, where he has taught since 1979. He holds a Ph.D. from Syracuse
University. He has seven years experience as both a Reader of the AP Computer Science
Exam and a College Board consultant in computer science. In addition, he has published
papers in a variety of areas of computer science, most notably in the field of computer
science education.

Rodney Hoffman teaches computer science at Occidental College. He also works as a
software engineer at NASA’s Jet Propulsion Laboratory. He is a longtime AP Computer
Science Reader. He has been a local and national officer of Computer Professionals for
Social Responsibility.

Kathy Larson teaches AP Computer Science and AP Statistics at Kingston High School in
Kingston, New York. She has served as a Reader, Question Leader, and member of the AP
Computer Science Development Committee. She also has a strong interest in developing
Vertical Teams in her district.

Maria Litvin teaches mathematics and computer science at Phillips Academy in
Andover, Massachusetts. She is a College Board consultant in computer science for New
England and an AP Exam Reader. Maria is a recipient of the 1999 Siemens Award for AP
teachers and of the 2003 RadioShack National Teacher Award. She is also a co-author of
several computer science textbooks.

Special Focus in Computer Science: Object-Oriented Design 85

The Teaching Series

Don Slater is a lecturer in the School of Computer Science at Carnegie Mellon
University. He has been a Reader and Question Leader for the AP Computer Science
Exam since 1991.

Barbara Wells is a teacher at South Fork High School in Stuart, Florida. She has been
teaching AP Computer Science since 1985. She is a Reader for the AP Exam and has
received many awards during her 30-year involvement in education.

Review Contributors
Brian Ellis is a mathematics and computer science teacher at Manheim Township High
School in Lancaster, Pennsylvania, where he has taught AP Computer Science for six
years. He has finished his M.S. in computer science, having studied different practices in
the teaching of OOP and Java.

Kathy Larson teaches AP Computer Science and AP Statistics at Kingston High School in
Kingston, New York. She has served as a Reader, Question Leader, and member of the AP
Computer Science Development Committee. She also has a strong interest in developing
Vertical Teams in her district.

Chris Nevison teaches computer science at Colgate University in Hamilton, New York.
He is currently the Chief Reader for AP Computer Science and was on the AP Computer
Science Development Committee for eight years.

Theme Material Contributors
Owen Astrachan is Professor of the Practice of Computer Science at Duke University. He
taught high school for seven years and served on the AP Computer Science Development
Committee, including five years as Chief Reader from 1990 to 1995.

Debbie Carter is Upper School Computer Coordinator at Lancaster Country Day School
in Lancaster, Pennsylvania, where she teaches computer science and assists faculty with
technology integration. She is a question leader for the AP Computer Science Exam.

Robb Cutler is the Department Chair of Computer Science at The Harker School, a K-12
college preparatory school in San Jose, California, where he teaches AP Computer Science
and leads post-AP seminars on a variety of computer science topics. Robb is currently a
Reader for the AP Computer Science Exam.

Judy Hromcik is a teacher at Arlington High School in Arlington, Texas. Judy is a current
member of the AP Computer Science Development Committee and has served as both a
Reader and a question leader. Judy has a strong interest in developing curriculum for
computer science and technology applications.

Special Focus in Computer Science: Object-Oriented Design 86

The Teaching Series

Joe Kmoch is a teacher at Washington High School in Milwaukee, Wisconsin. He served
on the AP Computer Science Development Committee and is the Director of one of the
12 national pilot sites for the Academy of Information Technology. In addition, he is
Chair of the International Society for Technology in Education’s Special Interest Group
for Computer Science.

Maria Litvin teaches mathematics and computer science at Phillips Academy in
Andover, Massachusetts. She is a College Board consultant in computer science for New
England and an AP Exam Reader. Maria is a recipient of the 1999 Siemens Award for AP
teachers and of the 2003 RadioShack National Teacher Award. She is also a co-author of
several computer science textbooks.

Chris Nevison teaches computer science at Colgate University in Hamilton, New York.
He is currently the Chief Reader for AP Computer Science and was on the AP Computer
Science Development Committee for eight years.

Dave Wittry is the Computer Science Department Chair at Troy High School, the largest
magnet program for computer science in California. He has taught AP CS A and AB for
eight years and has been an AP Reader for the College Board for five years. Dave is a
contributor to the Be Prepared for the AP Computer Science Exam review book. He has
been instrumental in developing and teaching the innovative computer science
curriculum, which has contributed to Troy’s immense success as a California
Distinguished School, a National Blue Ribbon School of Excellence, and a New American
High School—one of only 17 showcase schools in the nation.

Special Focus in Computer Science: Object-Oriented Design 87

	Introduction from the Editor
	Immersing AP CS Students in Object-Oriented Design Using Rol
	Introduction
	Initial Exercises
	Designing an ATM Machine
	The Marine Biology Simulation Case Study
	Summary
	Resources

	Automated Unit Testing with JUnit
	JUnit from the Teacher’s Perspective
	What is JUnit?
	How does JUnit work?
	How and when should I introduce and use JUnit in the classro
	How should I use JUnit to help students test their classes?
	How can I possibly fit one more topic into my course?
	How can JUnit aid in regression testing?
	Why are ad hoc testing techniques flawed?
	How does JUnit help students design cohesive methods?
	How can JUnit help me give my students more feedback?
	Does all of this mean that I will save time on grading labs?

	JUnit from the Student’s Perspective
	Can students create, edit, and run JUnit tests easily and in
	Can use of JUnit alleviate students’ stress levels?
	How does the use of JUnit increase student-student cooperati
	Selected Bibliography

	Modifying and Creating Classes: Money and Fraction
	Justification:
	Part A:
	Part B: Another Class – Fraction
	Appendix

	Design Question Lab
	Design Question Lab (A with AB extension)
	AB Extension
	Notes

	The Game of SET:
	A Case Study in OO Design and Team Development
	Notes for the Instructor

	Marine Biology Simulation:
	The Strategy Pattern Applied to the Fish Class
	Introduction
	The Strategy Pattern
	Lab Setup
	Reference

	All-or-None Breeder
	Darter Movement
	Fish
	Fish Breeder
	Fish Movement
	Independent Breeder
	Simple MBS Demo 2
	Slow Three-way Movement
	Three-way Movement
	Turning Darter Movement

	Object-Oriented Design Concepts via Playing Cards
	ICard Study/Code Questions
	From Interface to Implementation
	Deck Study/Code Questions
	From Decks to Cards
	More Code and Details
	Notes

	Object-Oriented Programming Web Resources
	Teaching Techniques and Materials
	Online Textbooks: OOP-related excerpts

	Contributors
	About the Editor
	Welcome Letter
	Syllabi Contributors
	Review Contributors
	Theme Material Contributors

	CompSci_Front_Material_10_25_05.CY.AC.pdf
	Table of Contents

